]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/process.c
832a6acd730fad70e1426052d502f6438b30e38e
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / process.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/tick.h>
25 #include <linux/cpuidle.h>
26 #include <trace/events/power.h>
27 #include <linux/hw_breakpoint.h>
28 #include <asm/cpu.h>
29 #include <asm/apic.h>
30 #include <asm/syscalls.h>
31 #include <linux/uaccess.h>
32 #include <asm/mwait.h>
33 #include <asm/fpu/internal.h>
34 #include <asm/debugreg.h>
35 #include <asm/nmi.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mce.h>
38 #include <asm/vm86.h>
39 #include <asm/switch_to.h>
40 #include <asm/desc.h>
41 #include <asm/prctl.h>
42
43 /*
44 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
45 * no more per-task TSS's. The TSS size is kept cacheline-aligned
46 * so they are allowed to end up in the .data..cacheline_aligned
47 * section. Since TSS's are completely CPU-local, we want them
48 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
49 */
50 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
51 .x86_tss = {
52 /*
53 * .sp0 is only used when entering ring 0 from a lower
54 * privilege level. Since the init task never runs anything
55 * but ring 0 code, there is no need for a valid value here.
56 * Poison it.
57 */
58 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
59
60 #ifdef CONFIG_X86_64
61 /*
62 * .sp1 is cpu_current_top_of_stack. The init task never
63 * runs user code, but cpu_current_top_of_stack should still
64 * be well defined before the first context switch.
65 */
66 .sp1 = TOP_OF_INIT_STACK,
67 #endif
68
69 #ifdef CONFIG_X86_32
70 .ss0 = __KERNEL_DS,
71 .ss1 = __KERNEL_CS,
72 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
73 #endif
74 },
75 #ifdef CONFIG_X86_32
76 /*
77 * Note that the .io_bitmap member must be extra-big. This is because
78 * the CPU will access an additional byte beyond the end of the IO
79 * permission bitmap. The extra byte must be all 1 bits, and must
80 * be within the limit.
81 */
82 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
83 #endif
84 };
85 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
86
87 DEFINE_PER_CPU(bool, __tss_limit_invalid);
88 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
89
90 /*
91 * this gets called so that we can store lazy state into memory and copy the
92 * current task into the new thread.
93 */
94 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
95 {
96 memcpy(dst, src, arch_task_struct_size);
97 #ifdef CONFIG_VM86
98 dst->thread.vm86 = NULL;
99 #endif
100
101 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
102 }
103
104 /*
105 * Free current thread data structures etc..
106 */
107 void exit_thread(struct task_struct *tsk)
108 {
109 struct thread_struct *t = &tsk->thread;
110 unsigned long *bp = t->io_bitmap_ptr;
111 struct fpu *fpu = &t->fpu;
112
113 if (bp) {
114 struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
115
116 t->io_bitmap_ptr = NULL;
117 clear_thread_flag(TIF_IO_BITMAP);
118 /*
119 * Careful, clear this in the TSS too:
120 */
121 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
122 t->io_bitmap_max = 0;
123 put_cpu();
124 kfree(bp);
125 }
126
127 free_vm86(t);
128
129 fpu__drop(fpu);
130 }
131
132 void flush_thread(void)
133 {
134 struct task_struct *tsk = current;
135
136 flush_ptrace_hw_breakpoint(tsk);
137 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
138
139 fpu__clear(&tsk->thread.fpu);
140 }
141
142 void disable_TSC(void)
143 {
144 preempt_disable();
145 if (!test_and_set_thread_flag(TIF_NOTSC))
146 /*
147 * Must flip the CPU state synchronously with
148 * TIF_NOTSC in the current running context.
149 */
150 cr4_set_bits(X86_CR4_TSD);
151 preempt_enable();
152 }
153
154 static void enable_TSC(void)
155 {
156 preempt_disable();
157 if (test_and_clear_thread_flag(TIF_NOTSC))
158 /*
159 * Must flip the CPU state synchronously with
160 * TIF_NOTSC in the current running context.
161 */
162 cr4_clear_bits(X86_CR4_TSD);
163 preempt_enable();
164 }
165
166 int get_tsc_mode(unsigned long adr)
167 {
168 unsigned int val;
169
170 if (test_thread_flag(TIF_NOTSC))
171 val = PR_TSC_SIGSEGV;
172 else
173 val = PR_TSC_ENABLE;
174
175 return put_user(val, (unsigned int __user *)adr);
176 }
177
178 int set_tsc_mode(unsigned int val)
179 {
180 if (val == PR_TSC_SIGSEGV)
181 disable_TSC();
182 else if (val == PR_TSC_ENABLE)
183 enable_TSC();
184 else
185 return -EINVAL;
186
187 return 0;
188 }
189
190 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
191
192 static void set_cpuid_faulting(bool on)
193 {
194 u64 msrval;
195
196 msrval = this_cpu_read(msr_misc_features_shadow);
197 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
198 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
199 this_cpu_write(msr_misc_features_shadow, msrval);
200 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
201 }
202
203 static void disable_cpuid(void)
204 {
205 preempt_disable();
206 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
207 /*
208 * Must flip the CPU state synchronously with
209 * TIF_NOCPUID in the current running context.
210 */
211 set_cpuid_faulting(true);
212 }
213 preempt_enable();
214 }
215
216 static void enable_cpuid(void)
217 {
218 preempt_disable();
219 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
220 /*
221 * Must flip the CPU state synchronously with
222 * TIF_NOCPUID in the current running context.
223 */
224 set_cpuid_faulting(false);
225 }
226 preempt_enable();
227 }
228
229 static int get_cpuid_mode(void)
230 {
231 return !test_thread_flag(TIF_NOCPUID);
232 }
233
234 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
235 {
236 if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
237 return -ENODEV;
238
239 if (cpuid_enabled)
240 enable_cpuid();
241 else
242 disable_cpuid();
243
244 return 0;
245 }
246
247 /*
248 * Called immediately after a successful exec.
249 */
250 void arch_setup_new_exec(void)
251 {
252 /* If cpuid was previously disabled for this task, re-enable it. */
253 if (test_thread_flag(TIF_NOCPUID))
254 enable_cpuid();
255 }
256
257 static inline void switch_to_bitmap(struct tss_struct *tss,
258 struct thread_struct *prev,
259 struct thread_struct *next,
260 unsigned long tifp, unsigned long tifn)
261 {
262 if (tifn & _TIF_IO_BITMAP) {
263 /*
264 * Copy the relevant range of the IO bitmap.
265 * Normally this is 128 bytes or less:
266 */
267 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
268 max(prev->io_bitmap_max, next->io_bitmap_max));
269 /*
270 * Make sure that the TSS limit is correct for the CPU
271 * to notice the IO bitmap.
272 */
273 refresh_tss_limit();
274 } else if (tifp & _TIF_IO_BITMAP) {
275 /*
276 * Clear any possible leftover bits:
277 */
278 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
279 }
280 }
281
282 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
283 struct tss_struct *tss)
284 {
285 struct thread_struct *prev, *next;
286 unsigned long tifp, tifn;
287
288 prev = &prev_p->thread;
289 next = &next_p->thread;
290
291 tifn = READ_ONCE(task_thread_info(next_p)->flags);
292 tifp = READ_ONCE(task_thread_info(prev_p)->flags);
293 switch_to_bitmap(tss, prev, next, tifp, tifn);
294
295 propagate_user_return_notify(prev_p, next_p);
296
297 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
298 arch_has_block_step()) {
299 unsigned long debugctl, msk;
300
301 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
302 debugctl &= ~DEBUGCTLMSR_BTF;
303 msk = tifn & _TIF_BLOCKSTEP;
304 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
305 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
306 }
307
308 if ((tifp ^ tifn) & _TIF_NOTSC)
309 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
310
311 if ((tifp ^ tifn) & _TIF_NOCPUID)
312 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
313 }
314
315 /*
316 * Idle related variables and functions
317 */
318 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
319 EXPORT_SYMBOL(boot_option_idle_override);
320
321 static void (*x86_idle)(void);
322
323 #ifndef CONFIG_SMP
324 static inline void play_dead(void)
325 {
326 BUG();
327 }
328 #endif
329
330 void arch_cpu_idle_enter(void)
331 {
332 tsc_verify_tsc_adjust(false);
333 local_touch_nmi();
334 }
335
336 void arch_cpu_idle_dead(void)
337 {
338 play_dead();
339 }
340
341 /*
342 * Called from the generic idle code.
343 */
344 void arch_cpu_idle(void)
345 {
346 x86_idle();
347 }
348
349 /*
350 * We use this if we don't have any better idle routine..
351 */
352 void __cpuidle default_idle(void)
353 {
354 trace_cpu_idle_rcuidle(1, smp_processor_id());
355 safe_halt();
356 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
357 }
358 #ifdef CONFIG_APM_MODULE
359 EXPORT_SYMBOL(default_idle);
360 #endif
361
362 #ifdef CONFIG_XEN
363 bool xen_set_default_idle(void)
364 {
365 bool ret = !!x86_idle;
366
367 x86_idle = default_idle;
368
369 return ret;
370 }
371 #endif
372
373 void stop_this_cpu(void *dummy)
374 {
375 local_irq_disable();
376 /*
377 * Remove this CPU:
378 */
379 set_cpu_online(smp_processor_id(), false);
380 disable_local_APIC();
381 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
382
383 for (;;) {
384 /*
385 * Use wbinvd followed by hlt to stop the processor. This
386 * provides support for kexec on a processor that supports
387 * SME. With kexec, going from SME inactive to SME active
388 * requires clearing cache entries so that addresses without
389 * the encryption bit set don't corrupt the same physical
390 * address that has the encryption bit set when caches are
391 * flushed. To achieve this a wbinvd is performed followed by
392 * a hlt. Even if the processor is not in the kexec/SME
393 * scenario this only adds a wbinvd to a halting processor.
394 */
395 asm volatile("wbinvd; hlt" : : : "memory");
396 }
397 }
398
399 /*
400 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
401 * states (local apic timer and TSC stop).
402 */
403 static void amd_e400_idle(void)
404 {
405 /*
406 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
407 * gets set after static_cpu_has() places have been converted via
408 * alternatives.
409 */
410 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
411 default_idle();
412 return;
413 }
414
415 tick_broadcast_enter();
416
417 default_idle();
418
419 /*
420 * The switch back from broadcast mode needs to be called with
421 * interrupts disabled.
422 */
423 local_irq_disable();
424 tick_broadcast_exit();
425 local_irq_enable();
426 }
427
428 /*
429 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
430 * We can't rely on cpuidle installing MWAIT, because it will not load
431 * on systems that support only C1 -- so the boot default must be MWAIT.
432 *
433 * Some AMD machines are the opposite, they depend on using HALT.
434 *
435 * So for default C1, which is used during boot until cpuidle loads,
436 * use MWAIT-C1 on Intel HW that has it, else use HALT.
437 */
438 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
439 {
440 if (c->x86_vendor != X86_VENDOR_INTEL)
441 return 0;
442
443 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
444 return 0;
445
446 return 1;
447 }
448
449 /*
450 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
451 * with interrupts enabled and no flags, which is backwards compatible with the
452 * original MWAIT implementation.
453 */
454 static __cpuidle void mwait_idle(void)
455 {
456 if (!current_set_polling_and_test()) {
457 trace_cpu_idle_rcuidle(1, smp_processor_id());
458 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
459 mb(); /* quirk */
460 clflush((void *)&current_thread_info()->flags);
461 mb(); /* quirk */
462 }
463
464 __monitor((void *)&current_thread_info()->flags, 0, 0);
465 if (!need_resched())
466 __sti_mwait(0, 0);
467 else
468 local_irq_enable();
469 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
470 } else {
471 local_irq_enable();
472 }
473 __current_clr_polling();
474 }
475
476 void select_idle_routine(const struct cpuinfo_x86 *c)
477 {
478 #ifdef CONFIG_SMP
479 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
480 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
481 #endif
482 if (x86_idle || boot_option_idle_override == IDLE_POLL)
483 return;
484
485 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
486 pr_info("using AMD E400 aware idle routine\n");
487 x86_idle = amd_e400_idle;
488 } else if (prefer_mwait_c1_over_halt(c)) {
489 pr_info("using mwait in idle threads\n");
490 x86_idle = mwait_idle;
491 } else
492 x86_idle = default_idle;
493 }
494
495 void amd_e400_c1e_apic_setup(void)
496 {
497 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
498 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
499 local_irq_disable();
500 tick_broadcast_force();
501 local_irq_enable();
502 }
503 }
504
505 void __init arch_post_acpi_subsys_init(void)
506 {
507 u32 lo, hi;
508
509 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
510 return;
511
512 /*
513 * AMD E400 detection needs to happen after ACPI has been enabled. If
514 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
515 * MSR_K8_INT_PENDING_MSG.
516 */
517 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
518 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
519 return;
520
521 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
522
523 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
524 mark_tsc_unstable("TSC halt in AMD C1E");
525 pr_info("System has AMD C1E enabled\n");
526 }
527
528 static int __init idle_setup(char *str)
529 {
530 if (!str)
531 return -EINVAL;
532
533 if (!strcmp(str, "poll")) {
534 pr_info("using polling idle threads\n");
535 boot_option_idle_override = IDLE_POLL;
536 cpu_idle_poll_ctrl(true);
537 } else if (!strcmp(str, "halt")) {
538 /*
539 * When the boot option of idle=halt is added, halt is
540 * forced to be used for CPU idle. In such case CPU C2/C3
541 * won't be used again.
542 * To continue to load the CPU idle driver, don't touch
543 * the boot_option_idle_override.
544 */
545 x86_idle = default_idle;
546 boot_option_idle_override = IDLE_HALT;
547 } else if (!strcmp(str, "nomwait")) {
548 /*
549 * If the boot option of "idle=nomwait" is added,
550 * it means that mwait will be disabled for CPU C2/C3
551 * states. In such case it won't touch the variable
552 * of boot_option_idle_override.
553 */
554 boot_option_idle_override = IDLE_NOMWAIT;
555 } else
556 return -1;
557
558 return 0;
559 }
560 early_param("idle", idle_setup);
561
562 unsigned long arch_align_stack(unsigned long sp)
563 {
564 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
565 sp -= get_random_int() % 8192;
566 return sp & ~0xf;
567 }
568
569 unsigned long arch_randomize_brk(struct mm_struct *mm)
570 {
571 return randomize_page(mm->brk, 0x02000000);
572 }
573
574 /*
575 * Called from fs/proc with a reference on @p to find the function
576 * which called into schedule(). This needs to be done carefully
577 * because the task might wake up and we might look at a stack
578 * changing under us.
579 */
580 unsigned long get_wchan(struct task_struct *p)
581 {
582 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
583 int count = 0;
584
585 if (!p || p == current || p->state == TASK_RUNNING)
586 return 0;
587
588 if (!try_get_task_stack(p))
589 return 0;
590
591 start = (unsigned long)task_stack_page(p);
592 if (!start)
593 goto out;
594
595 /*
596 * Layout of the stack page:
597 *
598 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
599 * PADDING
600 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
601 * stack
602 * ----------- bottom = start
603 *
604 * The tasks stack pointer points at the location where the
605 * framepointer is stored. The data on the stack is:
606 * ... IP FP ... IP FP
607 *
608 * We need to read FP and IP, so we need to adjust the upper
609 * bound by another unsigned long.
610 */
611 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
612 top -= 2 * sizeof(unsigned long);
613 bottom = start;
614
615 sp = READ_ONCE(p->thread.sp);
616 if (sp < bottom || sp > top)
617 goto out;
618
619 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
620 do {
621 if (fp < bottom || fp > top)
622 goto out;
623 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
624 if (!in_sched_functions(ip)) {
625 ret = ip;
626 goto out;
627 }
628 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
629 } while (count++ < 16 && p->state != TASK_RUNNING);
630
631 out:
632 put_task_stack(p);
633 return ret;
634 }
635
636 long do_arch_prctl_common(struct task_struct *task, int option,
637 unsigned long cpuid_enabled)
638 {
639 switch (option) {
640 case ARCH_GET_CPUID:
641 return get_cpuid_mode();
642 case ARCH_SET_CPUID:
643 return set_cpuid_mode(task, cpuid_enabled);
644 }
645
646 return -EINVAL;
647 }