]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/process.c
x86, fpu: use non-lazy fpu restore for processors supporting xsave
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / process.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/clockchips.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/i387.h>
28 #include <asm/fpu-internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31
32 /*
33 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
34 * no more per-task TSS's. The TSS size is kept cacheline-aligned
35 * so they are allowed to end up in the .data..cacheline_aligned
36 * section. Since TSS's are completely CPU-local, we want them
37 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
38 */
39 DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
40
41 #ifdef CONFIG_X86_64
42 static DEFINE_PER_CPU(unsigned char, is_idle);
43 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
44
45 void idle_notifier_register(struct notifier_block *n)
46 {
47 atomic_notifier_chain_register(&idle_notifier, n);
48 }
49 EXPORT_SYMBOL_GPL(idle_notifier_register);
50
51 void idle_notifier_unregister(struct notifier_block *n)
52 {
53 atomic_notifier_chain_unregister(&idle_notifier, n);
54 }
55 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
56 #endif
57
58 struct kmem_cache *task_xstate_cachep;
59 EXPORT_SYMBOL_GPL(task_xstate_cachep);
60
61 /*
62 * this gets called so that we can store lazy state into memory and copy the
63 * current task into the new thread.
64 */
65 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
66 {
67 int ret;
68
69 *dst = *src;
70 if (fpu_allocated(&src->thread.fpu)) {
71 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
72 ret = fpu_alloc(&dst->thread.fpu);
73 if (ret)
74 return ret;
75 fpu_copy(dst, src);
76 }
77 return 0;
78 }
79
80 void free_thread_xstate(struct task_struct *tsk)
81 {
82 fpu_free(&tsk->thread.fpu);
83 }
84
85 void arch_release_task_struct(struct task_struct *tsk)
86 {
87 free_thread_xstate(tsk);
88 }
89
90 void arch_task_cache_init(void)
91 {
92 task_xstate_cachep =
93 kmem_cache_create("task_xstate", xstate_size,
94 __alignof__(union thread_xstate),
95 SLAB_PANIC | SLAB_NOTRACK, NULL);
96 }
97
98 /*
99 * Free current thread data structures etc..
100 */
101 void exit_thread(void)
102 {
103 struct task_struct *me = current;
104 struct thread_struct *t = &me->thread;
105 unsigned long *bp = t->io_bitmap_ptr;
106
107 if (bp) {
108 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
109
110 t->io_bitmap_ptr = NULL;
111 clear_thread_flag(TIF_IO_BITMAP);
112 /*
113 * Careful, clear this in the TSS too:
114 */
115 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
116 t->io_bitmap_max = 0;
117 put_cpu();
118 kfree(bp);
119 }
120
121 drop_fpu(me);
122 }
123
124 void show_regs_common(void)
125 {
126 const char *vendor, *product, *board;
127
128 vendor = dmi_get_system_info(DMI_SYS_VENDOR);
129 if (!vendor)
130 vendor = "";
131 product = dmi_get_system_info(DMI_PRODUCT_NAME);
132 if (!product)
133 product = "";
134
135 /* Board Name is optional */
136 board = dmi_get_system_info(DMI_BOARD_NAME);
137
138 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s %s%s%s\n",
139 current->pid, current->comm, print_tainted(),
140 init_utsname()->release,
141 (int)strcspn(init_utsname()->version, " "),
142 init_utsname()->version,
143 vendor, product,
144 board ? "/" : "",
145 board ? board : "");
146 }
147
148 void flush_thread(void)
149 {
150 struct task_struct *tsk = current;
151
152 flush_ptrace_hw_breakpoint(tsk);
153 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
154 drop_init_fpu(tsk);
155 /*
156 * Free the FPU state for non xsave platforms. They get reallocated
157 * lazily at the first use.
158 */
159 if (!use_xsave())
160 free_thread_xstate(tsk);
161 }
162
163 static void hard_disable_TSC(void)
164 {
165 write_cr4(read_cr4() | X86_CR4_TSD);
166 }
167
168 void disable_TSC(void)
169 {
170 preempt_disable();
171 if (!test_and_set_thread_flag(TIF_NOTSC))
172 /*
173 * Must flip the CPU state synchronously with
174 * TIF_NOTSC in the current running context.
175 */
176 hard_disable_TSC();
177 preempt_enable();
178 }
179
180 static void hard_enable_TSC(void)
181 {
182 write_cr4(read_cr4() & ~X86_CR4_TSD);
183 }
184
185 static void enable_TSC(void)
186 {
187 preempt_disable();
188 if (test_and_clear_thread_flag(TIF_NOTSC))
189 /*
190 * Must flip the CPU state synchronously with
191 * TIF_NOTSC in the current running context.
192 */
193 hard_enable_TSC();
194 preempt_enable();
195 }
196
197 int get_tsc_mode(unsigned long adr)
198 {
199 unsigned int val;
200
201 if (test_thread_flag(TIF_NOTSC))
202 val = PR_TSC_SIGSEGV;
203 else
204 val = PR_TSC_ENABLE;
205
206 return put_user(val, (unsigned int __user *)adr);
207 }
208
209 int set_tsc_mode(unsigned int val)
210 {
211 if (val == PR_TSC_SIGSEGV)
212 disable_TSC();
213 else if (val == PR_TSC_ENABLE)
214 enable_TSC();
215 else
216 return -EINVAL;
217
218 return 0;
219 }
220
221 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
222 struct tss_struct *tss)
223 {
224 struct thread_struct *prev, *next;
225
226 prev = &prev_p->thread;
227 next = &next_p->thread;
228
229 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
230 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
231 unsigned long debugctl = get_debugctlmsr();
232
233 debugctl &= ~DEBUGCTLMSR_BTF;
234 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
235 debugctl |= DEBUGCTLMSR_BTF;
236
237 update_debugctlmsr(debugctl);
238 }
239
240 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
241 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
242 /* prev and next are different */
243 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
244 hard_disable_TSC();
245 else
246 hard_enable_TSC();
247 }
248
249 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
250 /*
251 * Copy the relevant range of the IO bitmap.
252 * Normally this is 128 bytes or less:
253 */
254 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
255 max(prev->io_bitmap_max, next->io_bitmap_max));
256 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
257 /*
258 * Clear any possible leftover bits:
259 */
260 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
261 }
262 propagate_user_return_notify(prev_p, next_p);
263 }
264
265 int sys_fork(struct pt_regs *regs)
266 {
267 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
268 }
269
270 /*
271 * This is trivial, and on the face of it looks like it
272 * could equally well be done in user mode.
273 *
274 * Not so, for quite unobvious reasons - register pressure.
275 * In user mode vfork() cannot have a stack frame, and if
276 * done by calling the "clone()" system call directly, you
277 * do not have enough call-clobbered registers to hold all
278 * the information you need.
279 */
280 int sys_vfork(struct pt_regs *regs)
281 {
282 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
283 NULL, NULL);
284 }
285
286 long
287 sys_clone(unsigned long clone_flags, unsigned long newsp,
288 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
289 {
290 if (!newsp)
291 newsp = regs->sp;
292 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
293 }
294
295 /*
296 * This gets run with %si containing the
297 * function to call, and %di containing
298 * the "args".
299 */
300 extern void kernel_thread_helper(void);
301
302 /*
303 * Create a kernel thread
304 */
305 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
306 {
307 struct pt_regs regs;
308
309 memset(&regs, 0, sizeof(regs));
310
311 regs.si = (unsigned long) fn;
312 regs.di = (unsigned long) arg;
313
314 #ifdef CONFIG_X86_32
315 regs.ds = __USER_DS;
316 regs.es = __USER_DS;
317 regs.fs = __KERNEL_PERCPU;
318 regs.gs = __KERNEL_STACK_CANARY;
319 #else
320 regs.ss = __KERNEL_DS;
321 #endif
322
323 regs.orig_ax = -1;
324 regs.ip = (unsigned long) kernel_thread_helper;
325 regs.cs = __KERNEL_CS | get_kernel_rpl();
326 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
327
328 /* Ok, create the new process.. */
329 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
330 }
331 EXPORT_SYMBOL(kernel_thread);
332
333 /*
334 * sys_execve() executes a new program.
335 */
336 long sys_execve(const char __user *name,
337 const char __user *const __user *argv,
338 const char __user *const __user *envp, struct pt_regs *regs)
339 {
340 long error;
341 char *filename;
342
343 filename = getname(name);
344 error = PTR_ERR(filename);
345 if (IS_ERR(filename))
346 return error;
347 error = do_execve(filename, argv, envp, regs);
348
349 #ifdef CONFIG_X86_32
350 if (error == 0) {
351 /* Make sure we don't return using sysenter.. */
352 set_thread_flag(TIF_IRET);
353 }
354 #endif
355
356 putname(filename);
357 return error;
358 }
359
360 /*
361 * Idle related variables and functions
362 */
363 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
364 EXPORT_SYMBOL(boot_option_idle_override);
365
366 /*
367 * Powermanagement idle function, if any..
368 */
369 void (*pm_idle)(void);
370 #ifdef CONFIG_APM_MODULE
371 EXPORT_SYMBOL(pm_idle);
372 #endif
373
374 static inline int hlt_use_halt(void)
375 {
376 return 1;
377 }
378
379 #ifndef CONFIG_SMP
380 static inline void play_dead(void)
381 {
382 BUG();
383 }
384 #endif
385
386 #ifdef CONFIG_X86_64
387 void enter_idle(void)
388 {
389 this_cpu_write(is_idle, 1);
390 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
391 }
392
393 static void __exit_idle(void)
394 {
395 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
396 return;
397 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
398 }
399
400 /* Called from interrupts to signify idle end */
401 void exit_idle(void)
402 {
403 /* idle loop has pid 0 */
404 if (current->pid)
405 return;
406 __exit_idle();
407 }
408 #endif
409
410 /*
411 * The idle thread. There's no useful work to be
412 * done, so just try to conserve power and have a
413 * low exit latency (ie sit in a loop waiting for
414 * somebody to say that they'd like to reschedule)
415 */
416 void cpu_idle(void)
417 {
418 /*
419 * If we're the non-boot CPU, nothing set the stack canary up
420 * for us. CPU0 already has it initialized but no harm in
421 * doing it again. This is a good place for updating it, as
422 * we wont ever return from this function (so the invalid
423 * canaries already on the stack wont ever trigger).
424 */
425 boot_init_stack_canary();
426 current_thread_info()->status |= TS_POLLING;
427
428 while (1) {
429 tick_nohz_idle_enter();
430
431 while (!need_resched()) {
432 rmb();
433
434 if (cpu_is_offline(smp_processor_id()))
435 play_dead();
436
437 /*
438 * Idle routines should keep interrupts disabled
439 * from here on, until they go to idle.
440 * Otherwise, idle callbacks can misfire.
441 */
442 local_touch_nmi();
443 local_irq_disable();
444
445 enter_idle();
446
447 /* Don't trace irqs off for idle */
448 stop_critical_timings();
449
450 /* enter_idle() needs rcu for notifiers */
451 rcu_idle_enter();
452
453 if (cpuidle_idle_call())
454 pm_idle();
455
456 rcu_idle_exit();
457 start_critical_timings();
458
459 /* In many cases the interrupt that ended idle
460 has already called exit_idle. But some idle
461 loops can be woken up without interrupt. */
462 __exit_idle();
463 }
464
465 tick_nohz_idle_exit();
466 preempt_enable_no_resched();
467 schedule();
468 preempt_disable();
469 }
470 }
471
472 /*
473 * We use this if we don't have any better
474 * idle routine..
475 */
476 void default_idle(void)
477 {
478 if (hlt_use_halt()) {
479 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
480 trace_cpu_idle_rcuidle(1, smp_processor_id());
481 current_thread_info()->status &= ~TS_POLLING;
482 /*
483 * TS_POLLING-cleared state must be visible before we
484 * test NEED_RESCHED:
485 */
486 smp_mb();
487
488 if (!need_resched())
489 safe_halt(); /* enables interrupts racelessly */
490 else
491 local_irq_enable();
492 current_thread_info()->status |= TS_POLLING;
493 trace_power_end_rcuidle(smp_processor_id());
494 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
495 } else {
496 local_irq_enable();
497 /* loop is done by the caller */
498 cpu_relax();
499 }
500 }
501 #ifdef CONFIG_APM_MODULE
502 EXPORT_SYMBOL(default_idle);
503 #endif
504
505 bool set_pm_idle_to_default(void)
506 {
507 bool ret = !!pm_idle;
508
509 pm_idle = default_idle;
510
511 return ret;
512 }
513 void stop_this_cpu(void *dummy)
514 {
515 local_irq_disable();
516 /*
517 * Remove this CPU:
518 */
519 set_cpu_online(smp_processor_id(), false);
520 disable_local_APIC();
521
522 for (;;) {
523 if (hlt_works(smp_processor_id()))
524 halt();
525 }
526 }
527
528 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
529 static void mwait_idle(void)
530 {
531 if (!need_resched()) {
532 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
533 trace_cpu_idle_rcuidle(1, smp_processor_id());
534 if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
535 clflush((void *)&current_thread_info()->flags);
536
537 __monitor((void *)&current_thread_info()->flags, 0, 0);
538 smp_mb();
539 if (!need_resched())
540 __sti_mwait(0, 0);
541 else
542 local_irq_enable();
543 trace_power_end_rcuidle(smp_processor_id());
544 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
545 } else
546 local_irq_enable();
547 }
548
549 /*
550 * On SMP it's slightly faster (but much more power-consuming!)
551 * to poll the ->work.need_resched flag instead of waiting for the
552 * cross-CPU IPI to arrive. Use this option with caution.
553 */
554 static void poll_idle(void)
555 {
556 trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
557 trace_cpu_idle_rcuidle(0, smp_processor_id());
558 local_irq_enable();
559 while (!need_resched())
560 cpu_relax();
561 trace_power_end_rcuidle(smp_processor_id());
562 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
563 }
564
565 /*
566 * mwait selection logic:
567 *
568 * It depends on the CPU. For AMD CPUs that support MWAIT this is
569 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
570 * then depend on a clock divisor and current Pstate of the core. If
571 * all cores of a processor are in halt state (C1) the processor can
572 * enter the C1E (C1 enhanced) state. If mwait is used this will never
573 * happen.
574 *
575 * idle=mwait overrides this decision and forces the usage of mwait.
576 */
577
578 #define MWAIT_INFO 0x05
579 #define MWAIT_ECX_EXTENDED_INFO 0x01
580 #define MWAIT_EDX_C1 0xf0
581
582 int mwait_usable(const struct cpuinfo_x86 *c)
583 {
584 u32 eax, ebx, ecx, edx;
585
586 /* Use mwait if idle=mwait boot option is given */
587 if (boot_option_idle_override == IDLE_FORCE_MWAIT)
588 return 1;
589
590 /*
591 * Any idle= boot option other than idle=mwait means that we must not
592 * use mwait. Eg: idle=halt or idle=poll or idle=nomwait
593 */
594 if (boot_option_idle_override != IDLE_NO_OVERRIDE)
595 return 0;
596
597 if (c->cpuid_level < MWAIT_INFO)
598 return 0;
599
600 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
601 /* Check, whether EDX has extended info about MWAIT */
602 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
603 return 1;
604
605 /*
606 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
607 * C1 supports MWAIT
608 */
609 return (edx & MWAIT_EDX_C1);
610 }
611
612 bool amd_e400_c1e_detected;
613 EXPORT_SYMBOL(amd_e400_c1e_detected);
614
615 static cpumask_var_t amd_e400_c1e_mask;
616
617 void amd_e400_remove_cpu(int cpu)
618 {
619 if (amd_e400_c1e_mask != NULL)
620 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
621 }
622
623 /*
624 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
625 * pending message MSR. If we detect C1E, then we handle it the same
626 * way as C3 power states (local apic timer and TSC stop)
627 */
628 static void amd_e400_idle(void)
629 {
630 if (need_resched())
631 return;
632
633 if (!amd_e400_c1e_detected) {
634 u32 lo, hi;
635
636 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
637
638 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
639 amd_e400_c1e_detected = true;
640 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
641 mark_tsc_unstable("TSC halt in AMD C1E");
642 pr_info("System has AMD C1E enabled\n");
643 }
644 }
645
646 if (amd_e400_c1e_detected) {
647 int cpu = smp_processor_id();
648
649 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
650 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
651 /*
652 * Force broadcast so ACPI can not interfere.
653 */
654 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
655 &cpu);
656 pr_info("Switch to broadcast mode on CPU%d\n", cpu);
657 }
658 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
659
660 default_idle();
661
662 /*
663 * The switch back from broadcast mode needs to be
664 * called with interrupts disabled.
665 */
666 local_irq_disable();
667 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
668 local_irq_enable();
669 } else
670 default_idle();
671 }
672
673 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
674 {
675 #ifdef CONFIG_SMP
676 if (pm_idle == poll_idle && smp_num_siblings > 1) {
677 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
678 }
679 #endif
680 if (pm_idle)
681 return;
682
683 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
684 /*
685 * One CPU supports mwait => All CPUs supports mwait
686 */
687 pr_info("using mwait in idle threads\n");
688 pm_idle = mwait_idle;
689 } else if (cpu_has_amd_erratum(amd_erratum_400)) {
690 /* E400: APIC timer interrupt does not wake up CPU from C1e */
691 pr_info("using AMD E400 aware idle routine\n");
692 pm_idle = amd_e400_idle;
693 } else
694 pm_idle = default_idle;
695 }
696
697 void __init init_amd_e400_c1e_mask(void)
698 {
699 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
700 if (pm_idle == amd_e400_idle)
701 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
702 }
703
704 static int __init idle_setup(char *str)
705 {
706 if (!str)
707 return -EINVAL;
708
709 if (!strcmp(str, "poll")) {
710 pr_info("using polling idle threads\n");
711 pm_idle = poll_idle;
712 boot_option_idle_override = IDLE_POLL;
713 } else if (!strcmp(str, "mwait")) {
714 boot_option_idle_override = IDLE_FORCE_MWAIT;
715 WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
716 } else if (!strcmp(str, "halt")) {
717 /*
718 * When the boot option of idle=halt is added, halt is
719 * forced to be used for CPU idle. In such case CPU C2/C3
720 * won't be used again.
721 * To continue to load the CPU idle driver, don't touch
722 * the boot_option_idle_override.
723 */
724 pm_idle = default_idle;
725 boot_option_idle_override = IDLE_HALT;
726 } else if (!strcmp(str, "nomwait")) {
727 /*
728 * If the boot option of "idle=nomwait" is added,
729 * it means that mwait will be disabled for CPU C2/C3
730 * states. In such case it won't touch the variable
731 * of boot_option_idle_override.
732 */
733 boot_option_idle_override = IDLE_NOMWAIT;
734 } else
735 return -1;
736
737 return 0;
738 }
739 early_param("idle", idle_setup);
740
741 unsigned long arch_align_stack(unsigned long sp)
742 {
743 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
744 sp -= get_random_int() % 8192;
745 return sp & ~0xf;
746 }
747
748 unsigned long arch_randomize_brk(struct mm_struct *mm)
749 {
750 unsigned long range_end = mm->brk + 0x02000000;
751 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
752 }
753