]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/process.c
ccf3a4f4ef686a326ae7e080661823418b3bb7c3
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / process.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/sched/idle.h>
11 #include <linux/sched/debug.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/init.h>
15 #include <linux/export.h>
16 #include <linux/pm.h>
17 #include <linux/tick.h>
18 #include <linux/random.h>
19 #include <linux/user-return-notifier.h>
20 #include <linux/dmi.h>
21 #include <linux/utsname.h>
22 #include <linux/stackprotector.h>
23 #include <linux/tick.h>
24 #include <linux/cpuidle.h>
25 #include <trace/events/power.h>
26 #include <linux/hw_breakpoint.h>
27 #include <asm/cpu.h>
28 #include <asm/apic.h>
29 #include <asm/syscalls.h>
30 #include <linux/uaccess.h>
31 #include <asm/mwait.h>
32 #include <asm/fpu/internal.h>
33 #include <asm/debugreg.h>
34 #include <asm/nmi.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mce.h>
37 #include <asm/vm86.h>
38 #include <asm/switch_to.h>
39 #include <asm/desc.h>
40 #include <asm/prctl.h>
41
42 /*
43 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
44 * no more per-task TSS's. The TSS size is kept cacheline-aligned
45 * so they are allowed to end up in the .data..cacheline_aligned
46 * section. Since TSS's are completely CPU-local, we want them
47 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
48 */
49 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
50 .x86_tss = {
51 /*
52 * .sp0 is only used when entering ring 0 from a lower
53 * privilege level. Since the init task never runs anything
54 * but ring 0 code, there is no need for a valid value here.
55 * Poison it.
56 */
57 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
58 #ifdef CONFIG_X86_32
59 .ss0 = __KERNEL_DS,
60 .ss1 = __KERNEL_CS,
61 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
62 #endif
63 },
64 #ifdef CONFIG_X86_32
65 /*
66 * Note that the .io_bitmap member must be extra-big. This is because
67 * the CPU will access an additional byte beyond the end of the IO
68 * permission bitmap. The extra byte must be all 1 bits, and must
69 * be within the limit.
70 */
71 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
72 #endif
73 #ifdef CONFIG_X86_32
74 .SYSENTER_stack_canary = STACK_END_MAGIC,
75 #endif
76 };
77 EXPORT_PER_CPU_SYMBOL(cpu_tss);
78
79 DEFINE_PER_CPU(bool, __tss_limit_invalid);
80 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
81
82 /*
83 * this gets called so that we can store lazy state into memory and copy the
84 * current task into the new thread.
85 */
86 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
87 {
88 memcpy(dst, src, arch_task_struct_size);
89 #ifdef CONFIG_VM86
90 dst->thread.vm86 = NULL;
91 #endif
92
93 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
94 }
95
96 /*
97 * Free current thread data structures etc..
98 */
99 void exit_thread(struct task_struct *tsk)
100 {
101 struct thread_struct *t = &tsk->thread;
102 unsigned long *bp = t->io_bitmap_ptr;
103 struct fpu *fpu = &t->fpu;
104
105 if (bp) {
106 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
107
108 t->io_bitmap_ptr = NULL;
109 clear_thread_flag(TIF_IO_BITMAP);
110 /*
111 * Careful, clear this in the TSS too:
112 */
113 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
114 t->io_bitmap_max = 0;
115 put_cpu();
116 kfree(bp);
117 }
118
119 free_vm86(t);
120
121 fpu__drop(fpu);
122 }
123
124 void flush_thread(void)
125 {
126 struct task_struct *tsk = current;
127
128 flush_ptrace_hw_breakpoint(tsk);
129 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
130
131 fpu__clear(&tsk->thread.fpu);
132 }
133
134 void disable_TSC(void)
135 {
136 preempt_disable();
137 if (!test_and_set_thread_flag(TIF_NOTSC))
138 /*
139 * Must flip the CPU state synchronously with
140 * TIF_NOTSC in the current running context.
141 */
142 cr4_set_bits(X86_CR4_TSD);
143 preempt_enable();
144 }
145
146 static void enable_TSC(void)
147 {
148 preempt_disable();
149 if (test_and_clear_thread_flag(TIF_NOTSC))
150 /*
151 * Must flip the CPU state synchronously with
152 * TIF_NOTSC in the current running context.
153 */
154 cr4_clear_bits(X86_CR4_TSD);
155 preempt_enable();
156 }
157
158 int get_tsc_mode(unsigned long adr)
159 {
160 unsigned int val;
161
162 if (test_thread_flag(TIF_NOTSC))
163 val = PR_TSC_SIGSEGV;
164 else
165 val = PR_TSC_ENABLE;
166
167 return put_user(val, (unsigned int __user *)adr);
168 }
169
170 int set_tsc_mode(unsigned int val)
171 {
172 if (val == PR_TSC_SIGSEGV)
173 disable_TSC();
174 else if (val == PR_TSC_ENABLE)
175 enable_TSC();
176 else
177 return -EINVAL;
178
179 return 0;
180 }
181
182 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
183
184 static void set_cpuid_faulting(bool on)
185 {
186 u64 msrval;
187
188 msrval = this_cpu_read(msr_misc_features_shadow);
189 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
190 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
191 this_cpu_write(msr_misc_features_shadow, msrval);
192 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
193 }
194
195 static void disable_cpuid(void)
196 {
197 preempt_disable();
198 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
199 /*
200 * Must flip the CPU state synchronously with
201 * TIF_NOCPUID in the current running context.
202 */
203 set_cpuid_faulting(true);
204 }
205 preempt_enable();
206 }
207
208 static void enable_cpuid(void)
209 {
210 preempt_disable();
211 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
212 /*
213 * Must flip the CPU state synchronously with
214 * TIF_NOCPUID in the current running context.
215 */
216 set_cpuid_faulting(false);
217 }
218 preempt_enable();
219 }
220
221 static int get_cpuid_mode(void)
222 {
223 return !test_thread_flag(TIF_NOCPUID);
224 }
225
226 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
227 {
228 if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
229 return -ENODEV;
230
231 if (cpuid_enabled)
232 enable_cpuid();
233 else
234 disable_cpuid();
235
236 return 0;
237 }
238
239 /*
240 * Called immediately after a successful exec.
241 */
242 void arch_setup_new_exec(void)
243 {
244 /* If cpuid was previously disabled for this task, re-enable it. */
245 if (test_thread_flag(TIF_NOCPUID))
246 enable_cpuid();
247 }
248
249 static inline void switch_to_bitmap(struct tss_struct *tss,
250 struct thread_struct *prev,
251 struct thread_struct *next,
252 unsigned long tifp, unsigned long tifn)
253 {
254 if (tifn & _TIF_IO_BITMAP) {
255 /*
256 * Copy the relevant range of the IO bitmap.
257 * Normally this is 128 bytes or less:
258 */
259 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
260 max(prev->io_bitmap_max, next->io_bitmap_max));
261 /*
262 * Make sure that the TSS limit is correct for the CPU
263 * to notice the IO bitmap.
264 */
265 refresh_tss_limit();
266 } else if (tifp & _TIF_IO_BITMAP) {
267 /*
268 * Clear any possible leftover bits:
269 */
270 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
271 }
272 }
273
274 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
275 struct tss_struct *tss)
276 {
277 struct thread_struct *prev, *next;
278 unsigned long tifp, tifn;
279
280 prev = &prev_p->thread;
281 next = &next_p->thread;
282
283 tifn = READ_ONCE(task_thread_info(next_p)->flags);
284 tifp = READ_ONCE(task_thread_info(prev_p)->flags);
285 switch_to_bitmap(tss, prev, next, tifp, tifn);
286
287 propagate_user_return_notify(prev_p, next_p);
288
289 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
290 arch_has_block_step()) {
291 unsigned long debugctl, msk;
292
293 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
294 debugctl &= ~DEBUGCTLMSR_BTF;
295 msk = tifn & _TIF_BLOCKSTEP;
296 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
297 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
298 }
299
300 if ((tifp ^ tifn) & _TIF_NOTSC)
301 cr4_toggle_bits(X86_CR4_TSD);
302
303 if ((tifp ^ tifn) & _TIF_NOCPUID)
304 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
305 }
306
307 /*
308 * Idle related variables and functions
309 */
310 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
311 EXPORT_SYMBOL(boot_option_idle_override);
312
313 static void (*x86_idle)(void);
314
315 #ifndef CONFIG_SMP
316 static inline void play_dead(void)
317 {
318 BUG();
319 }
320 #endif
321
322 void arch_cpu_idle_enter(void)
323 {
324 tsc_verify_tsc_adjust(false);
325 local_touch_nmi();
326 }
327
328 void arch_cpu_idle_dead(void)
329 {
330 play_dead();
331 }
332
333 /*
334 * Called from the generic idle code.
335 */
336 void arch_cpu_idle(void)
337 {
338 x86_idle();
339 }
340
341 /*
342 * We use this if we don't have any better idle routine..
343 */
344 void __cpuidle default_idle(void)
345 {
346 trace_cpu_idle_rcuidle(1, smp_processor_id());
347 safe_halt();
348 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
349 }
350 #ifdef CONFIG_APM_MODULE
351 EXPORT_SYMBOL(default_idle);
352 #endif
353
354 #ifdef CONFIG_XEN
355 bool xen_set_default_idle(void)
356 {
357 bool ret = !!x86_idle;
358
359 x86_idle = default_idle;
360
361 return ret;
362 }
363 #endif
364 void stop_this_cpu(void *dummy)
365 {
366 local_irq_disable();
367 /*
368 * Remove this CPU:
369 */
370 set_cpu_online(smp_processor_id(), false);
371 disable_local_APIC();
372 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
373
374 for (;;)
375 halt();
376 }
377
378 /*
379 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
380 * states (local apic timer and TSC stop).
381 */
382 static void amd_e400_idle(void)
383 {
384 /*
385 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
386 * gets set after static_cpu_has() places have been converted via
387 * alternatives.
388 */
389 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
390 default_idle();
391 return;
392 }
393
394 tick_broadcast_enter();
395
396 default_idle();
397
398 /*
399 * The switch back from broadcast mode needs to be called with
400 * interrupts disabled.
401 */
402 local_irq_disable();
403 tick_broadcast_exit();
404 local_irq_enable();
405 }
406
407 /*
408 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
409 * We can't rely on cpuidle installing MWAIT, because it will not load
410 * on systems that support only C1 -- so the boot default must be MWAIT.
411 *
412 * Some AMD machines are the opposite, they depend on using HALT.
413 *
414 * So for default C1, which is used during boot until cpuidle loads,
415 * use MWAIT-C1 on Intel HW that has it, else use HALT.
416 */
417 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
418 {
419 if (c->x86_vendor != X86_VENDOR_INTEL)
420 return 0;
421
422 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
423 return 0;
424
425 return 1;
426 }
427
428 /*
429 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
430 * with interrupts enabled and no flags, which is backwards compatible with the
431 * original MWAIT implementation.
432 */
433 static __cpuidle void mwait_idle(void)
434 {
435 if (!current_set_polling_and_test()) {
436 trace_cpu_idle_rcuidle(1, smp_processor_id());
437 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
438 mb(); /* quirk */
439 clflush((void *)&current_thread_info()->flags);
440 mb(); /* quirk */
441 }
442
443 __monitor((void *)&current_thread_info()->flags, 0, 0);
444 if (!need_resched())
445 __sti_mwait(0, 0);
446 else
447 local_irq_enable();
448 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
449 } else {
450 local_irq_enable();
451 }
452 __current_clr_polling();
453 }
454
455 void select_idle_routine(const struct cpuinfo_x86 *c)
456 {
457 #ifdef CONFIG_SMP
458 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
459 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
460 #endif
461 if (x86_idle || boot_option_idle_override == IDLE_POLL)
462 return;
463
464 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
465 pr_info("using AMD E400 aware idle routine\n");
466 x86_idle = amd_e400_idle;
467 } else if (prefer_mwait_c1_over_halt(c)) {
468 pr_info("using mwait in idle threads\n");
469 x86_idle = mwait_idle;
470 } else
471 x86_idle = default_idle;
472 }
473
474 void amd_e400_c1e_apic_setup(void)
475 {
476 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
477 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
478 local_irq_disable();
479 tick_broadcast_force();
480 local_irq_enable();
481 }
482 }
483
484 void __init arch_post_acpi_subsys_init(void)
485 {
486 u32 lo, hi;
487
488 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
489 return;
490
491 /*
492 * AMD E400 detection needs to happen after ACPI has been enabled. If
493 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
494 * MSR_K8_INT_PENDING_MSG.
495 */
496 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
497 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
498 return;
499
500 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
501
502 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
503 mark_tsc_unstable("TSC halt in AMD C1E");
504 pr_info("System has AMD C1E enabled\n");
505 }
506
507 static int __init idle_setup(char *str)
508 {
509 if (!str)
510 return -EINVAL;
511
512 if (!strcmp(str, "poll")) {
513 pr_info("using polling idle threads\n");
514 boot_option_idle_override = IDLE_POLL;
515 cpu_idle_poll_ctrl(true);
516 } else if (!strcmp(str, "halt")) {
517 /*
518 * When the boot option of idle=halt is added, halt is
519 * forced to be used for CPU idle. In such case CPU C2/C3
520 * won't be used again.
521 * To continue to load the CPU idle driver, don't touch
522 * the boot_option_idle_override.
523 */
524 x86_idle = default_idle;
525 boot_option_idle_override = IDLE_HALT;
526 } else if (!strcmp(str, "nomwait")) {
527 /*
528 * If the boot option of "idle=nomwait" is added,
529 * it means that mwait will be disabled for CPU C2/C3
530 * states. In such case it won't touch the variable
531 * of boot_option_idle_override.
532 */
533 boot_option_idle_override = IDLE_NOMWAIT;
534 } else
535 return -1;
536
537 return 0;
538 }
539 early_param("idle", idle_setup);
540
541 unsigned long arch_align_stack(unsigned long sp)
542 {
543 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
544 sp -= get_random_int() % 8192;
545 return sp & ~0xf;
546 }
547
548 unsigned long arch_randomize_brk(struct mm_struct *mm)
549 {
550 return randomize_page(mm->brk, 0x02000000);
551 }
552
553 /*
554 * Called from fs/proc with a reference on @p to find the function
555 * which called into schedule(). This needs to be done carefully
556 * because the task might wake up and we might look at a stack
557 * changing under us.
558 */
559 unsigned long get_wchan(struct task_struct *p)
560 {
561 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
562 int count = 0;
563
564 if (!p || p == current || p->state == TASK_RUNNING)
565 return 0;
566
567 if (!try_get_task_stack(p))
568 return 0;
569
570 start = (unsigned long)task_stack_page(p);
571 if (!start)
572 goto out;
573
574 /*
575 * Layout of the stack page:
576 *
577 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
578 * PADDING
579 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
580 * stack
581 * ----------- bottom = start
582 *
583 * The tasks stack pointer points at the location where the
584 * framepointer is stored. The data on the stack is:
585 * ... IP FP ... IP FP
586 *
587 * We need to read FP and IP, so we need to adjust the upper
588 * bound by another unsigned long.
589 */
590 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
591 top -= 2 * sizeof(unsigned long);
592 bottom = start;
593
594 sp = READ_ONCE(p->thread.sp);
595 if (sp < bottom || sp > top)
596 goto out;
597
598 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
599 do {
600 if (fp < bottom || fp > top)
601 goto out;
602 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
603 if (!in_sched_functions(ip)) {
604 ret = ip;
605 goto out;
606 }
607 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
608 } while (count++ < 16 && p->state != TASK_RUNNING);
609
610 out:
611 put_task_stack(p);
612 return ret;
613 }
614
615 long do_arch_prctl_common(struct task_struct *task, int option,
616 unsigned long cpuid_enabled)
617 {
618 switch (option) {
619 case ARCH_GET_CPUID:
620 return get_cpuid_mode();
621 case ARCH_SET_CPUID:
622 return set_cpuid_mode(task, cpuid_enabled);
623 }
624
625 return -EINVAL;
626 }