]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/process.c
Merge remote-tracking branch 'asoc/fix/intel' into asoc-linus
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / process.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/clockchips.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/i387.h>
28 #include <asm/fpu-internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31 #include <asm/tlbflush.h>
32
33 /*
34 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
35 * no more per-task TSS's. The TSS size is kept cacheline-aligned
36 * so they are allowed to end up in the .data..cacheline_aligned
37 * section. Since TSS's are completely CPU-local, we want them
38 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
39 */
40 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
41
42 #ifdef CONFIG_X86_64
43 static DEFINE_PER_CPU(unsigned char, is_idle);
44 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
45
46 void idle_notifier_register(struct notifier_block *n)
47 {
48 atomic_notifier_chain_register(&idle_notifier, n);
49 }
50 EXPORT_SYMBOL_GPL(idle_notifier_register);
51
52 void idle_notifier_unregister(struct notifier_block *n)
53 {
54 atomic_notifier_chain_unregister(&idle_notifier, n);
55 }
56 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
57 #endif
58
59 struct kmem_cache *task_xstate_cachep;
60 EXPORT_SYMBOL_GPL(task_xstate_cachep);
61
62 /*
63 * this gets called so that we can store lazy state into memory and copy the
64 * current task into the new thread.
65 */
66 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
67 {
68 *dst = *src;
69
70 dst->thread.fpu_counter = 0;
71 dst->thread.fpu.has_fpu = 0;
72 dst->thread.fpu.last_cpu = ~0;
73 dst->thread.fpu.state = NULL;
74 if (tsk_used_math(src)) {
75 int err = fpu_alloc(&dst->thread.fpu);
76 if (err)
77 return err;
78 fpu_copy(dst, src);
79 }
80 return 0;
81 }
82
83 void free_thread_xstate(struct task_struct *tsk)
84 {
85 fpu_free(&tsk->thread.fpu);
86 }
87
88 void arch_release_task_struct(struct task_struct *tsk)
89 {
90 free_thread_xstate(tsk);
91 }
92
93 void arch_task_cache_init(void)
94 {
95 task_xstate_cachep =
96 kmem_cache_create("task_xstate", xstate_size,
97 __alignof__(union thread_xstate),
98 SLAB_PANIC | SLAB_NOTRACK, NULL);
99 setup_xstate_comp();
100 }
101
102 /*
103 * Free current thread data structures etc..
104 */
105 void exit_thread(void)
106 {
107 struct task_struct *me = current;
108 struct thread_struct *t = &me->thread;
109 unsigned long *bp = t->io_bitmap_ptr;
110
111 if (bp) {
112 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
113
114 t->io_bitmap_ptr = NULL;
115 clear_thread_flag(TIF_IO_BITMAP);
116 /*
117 * Careful, clear this in the TSS too:
118 */
119 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
120 t->io_bitmap_max = 0;
121 put_cpu();
122 kfree(bp);
123 }
124
125 drop_fpu(me);
126 }
127
128 void flush_thread(void)
129 {
130 struct task_struct *tsk = current;
131
132 flush_ptrace_hw_breakpoint(tsk);
133 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
134 drop_init_fpu(tsk);
135 /*
136 * Free the FPU state for non xsave platforms. They get reallocated
137 * lazily at the first use.
138 */
139 if (!use_eager_fpu())
140 free_thread_xstate(tsk);
141 }
142
143 static void hard_disable_TSC(void)
144 {
145 cr4_set_bits(X86_CR4_TSD);
146 }
147
148 void disable_TSC(void)
149 {
150 preempt_disable();
151 if (!test_and_set_thread_flag(TIF_NOTSC))
152 /*
153 * Must flip the CPU state synchronously with
154 * TIF_NOTSC in the current running context.
155 */
156 hard_disable_TSC();
157 preempt_enable();
158 }
159
160 static void hard_enable_TSC(void)
161 {
162 cr4_clear_bits(X86_CR4_TSD);
163 }
164
165 static void enable_TSC(void)
166 {
167 preempt_disable();
168 if (test_and_clear_thread_flag(TIF_NOTSC))
169 /*
170 * Must flip the CPU state synchronously with
171 * TIF_NOTSC in the current running context.
172 */
173 hard_enable_TSC();
174 preempt_enable();
175 }
176
177 int get_tsc_mode(unsigned long adr)
178 {
179 unsigned int val;
180
181 if (test_thread_flag(TIF_NOTSC))
182 val = PR_TSC_SIGSEGV;
183 else
184 val = PR_TSC_ENABLE;
185
186 return put_user(val, (unsigned int __user *)adr);
187 }
188
189 int set_tsc_mode(unsigned int val)
190 {
191 if (val == PR_TSC_SIGSEGV)
192 disable_TSC();
193 else if (val == PR_TSC_ENABLE)
194 enable_TSC();
195 else
196 return -EINVAL;
197
198 return 0;
199 }
200
201 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
202 struct tss_struct *tss)
203 {
204 struct thread_struct *prev, *next;
205
206 prev = &prev_p->thread;
207 next = &next_p->thread;
208
209 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
210 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
211 unsigned long debugctl = get_debugctlmsr();
212
213 debugctl &= ~DEBUGCTLMSR_BTF;
214 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
215 debugctl |= DEBUGCTLMSR_BTF;
216
217 update_debugctlmsr(debugctl);
218 }
219
220 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
221 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
222 /* prev and next are different */
223 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
224 hard_disable_TSC();
225 else
226 hard_enable_TSC();
227 }
228
229 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
230 /*
231 * Copy the relevant range of the IO bitmap.
232 * Normally this is 128 bytes or less:
233 */
234 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
235 max(prev->io_bitmap_max, next->io_bitmap_max));
236 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
237 /*
238 * Clear any possible leftover bits:
239 */
240 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
241 }
242 propagate_user_return_notify(prev_p, next_p);
243 }
244
245 /*
246 * Idle related variables and functions
247 */
248 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
249 EXPORT_SYMBOL(boot_option_idle_override);
250
251 static void (*x86_idle)(void);
252
253 #ifndef CONFIG_SMP
254 static inline void play_dead(void)
255 {
256 BUG();
257 }
258 #endif
259
260 #ifdef CONFIG_X86_64
261 void enter_idle(void)
262 {
263 this_cpu_write(is_idle, 1);
264 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
265 }
266
267 static void __exit_idle(void)
268 {
269 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
270 return;
271 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
272 }
273
274 /* Called from interrupts to signify idle end */
275 void exit_idle(void)
276 {
277 /* idle loop has pid 0 */
278 if (current->pid)
279 return;
280 __exit_idle();
281 }
282 #endif
283
284 void arch_cpu_idle_enter(void)
285 {
286 local_touch_nmi();
287 enter_idle();
288 }
289
290 void arch_cpu_idle_exit(void)
291 {
292 __exit_idle();
293 }
294
295 void arch_cpu_idle_dead(void)
296 {
297 play_dead();
298 }
299
300 /*
301 * Called from the generic idle code.
302 */
303 void arch_cpu_idle(void)
304 {
305 x86_idle();
306 }
307
308 /*
309 * We use this if we don't have any better idle routine..
310 */
311 void default_idle(void)
312 {
313 trace_cpu_idle_rcuidle(1, smp_processor_id());
314 safe_halt();
315 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
316 }
317 #ifdef CONFIG_APM_MODULE
318 EXPORT_SYMBOL(default_idle);
319 #endif
320
321 #ifdef CONFIG_XEN
322 bool xen_set_default_idle(void)
323 {
324 bool ret = !!x86_idle;
325
326 x86_idle = default_idle;
327
328 return ret;
329 }
330 #endif
331 void stop_this_cpu(void *dummy)
332 {
333 local_irq_disable();
334 /*
335 * Remove this CPU:
336 */
337 set_cpu_online(smp_processor_id(), false);
338 disable_local_APIC();
339
340 for (;;)
341 halt();
342 }
343
344 bool amd_e400_c1e_detected;
345 EXPORT_SYMBOL(amd_e400_c1e_detected);
346
347 static cpumask_var_t amd_e400_c1e_mask;
348
349 void amd_e400_remove_cpu(int cpu)
350 {
351 if (amd_e400_c1e_mask != NULL)
352 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
353 }
354
355 /*
356 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
357 * pending message MSR. If we detect C1E, then we handle it the same
358 * way as C3 power states (local apic timer and TSC stop)
359 */
360 static void amd_e400_idle(void)
361 {
362 if (!amd_e400_c1e_detected) {
363 u32 lo, hi;
364
365 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
366
367 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
368 amd_e400_c1e_detected = true;
369 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
370 mark_tsc_unstable("TSC halt in AMD C1E");
371 pr_info("System has AMD C1E enabled\n");
372 }
373 }
374
375 if (amd_e400_c1e_detected) {
376 int cpu = smp_processor_id();
377
378 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
379 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
380 /*
381 * Force broadcast so ACPI can not interfere.
382 */
383 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
384 &cpu);
385 pr_info("Switch to broadcast mode on CPU%d\n", cpu);
386 }
387 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
388
389 default_idle();
390
391 /*
392 * The switch back from broadcast mode needs to be
393 * called with interrupts disabled.
394 */
395 local_irq_disable();
396 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
397 local_irq_enable();
398 } else
399 default_idle();
400 }
401
402 void select_idle_routine(const struct cpuinfo_x86 *c)
403 {
404 #ifdef CONFIG_SMP
405 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
406 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
407 #endif
408 if (x86_idle || boot_option_idle_override == IDLE_POLL)
409 return;
410
411 if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
412 /* E400: APIC timer interrupt does not wake up CPU from C1e */
413 pr_info("using AMD E400 aware idle routine\n");
414 x86_idle = amd_e400_idle;
415 } else
416 x86_idle = default_idle;
417 }
418
419 void __init init_amd_e400_c1e_mask(void)
420 {
421 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
422 if (x86_idle == amd_e400_idle)
423 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
424 }
425
426 static int __init idle_setup(char *str)
427 {
428 if (!str)
429 return -EINVAL;
430
431 if (!strcmp(str, "poll")) {
432 pr_info("using polling idle threads\n");
433 boot_option_idle_override = IDLE_POLL;
434 cpu_idle_poll_ctrl(true);
435 } else if (!strcmp(str, "halt")) {
436 /*
437 * When the boot option of idle=halt is added, halt is
438 * forced to be used for CPU idle. In such case CPU C2/C3
439 * won't be used again.
440 * To continue to load the CPU idle driver, don't touch
441 * the boot_option_idle_override.
442 */
443 x86_idle = default_idle;
444 boot_option_idle_override = IDLE_HALT;
445 } else if (!strcmp(str, "nomwait")) {
446 /*
447 * If the boot option of "idle=nomwait" is added,
448 * it means that mwait will be disabled for CPU C2/C3
449 * states. In such case it won't touch the variable
450 * of boot_option_idle_override.
451 */
452 boot_option_idle_override = IDLE_NOMWAIT;
453 } else
454 return -1;
455
456 return 0;
457 }
458 early_param("idle", idle_setup);
459
460 unsigned long arch_align_stack(unsigned long sp)
461 {
462 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
463 sp -= get_random_int() % 8192;
464 return sp & ~0xf;
465 }
466
467 unsigned long arch_randomize_brk(struct mm_struct *mm)
468 {
469 unsigned long range_end = mm->brk + 0x02000000;
470 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
471 }
472