]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/process.c
Merge branch 'x86-ras-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / process.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/tick.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/mwait.h>
28 #include <asm/i387.h>
29 #include <asm/fpu-internal.h>
30 #include <asm/debugreg.h>
31 #include <asm/nmi.h>
32 #include <asm/tlbflush.h>
33
34 /*
35 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
36 * no more per-task TSS's. The TSS size is kept cacheline-aligned
37 * so they are allowed to end up in the .data..cacheline_aligned
38 * section. Since TSS's are completely CPU-local, we want them
39 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
40 */
41 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
42 .x86_tss = {
43 .sp0 = TOP_OF_INIT_STACK,
44 #ifdef CONFIG_X86_32
45 .ss0 = __KERNEL_DS,
46 .ss1 = __KERNEL_CS,
47 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
48 #endif
49 },
50 #ifdef CONFIG_X86_32
51 /*
52 * Note that the .io_bitmap member must be extra-big. This is because
53 * the CPU will access an additional byte beyond the end of the IO
54 * permission bitmap. The extra byte must be all 1 bits, and must
55 * be within the limit.
56 */
57 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
58 #endif
59 };
60 EXPORT_PER_CPU_SYMBOL_GPL(cpu_tss);
61
62 #ifdef CONFIG_X86_64
63 static DEFINE_PER_CPU(unsigned char, is_idle);
64 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
65
66 void idle_notifier_register(struct notifier_block *n)
67 {
68 atomic_notifier_chain_register(&idle_notifier, n);
69 }
70 EXPORT_SYMBOL_GPL(idle_notifier_register);
71
72 void idle_notifier_unregister(struct notifier_block *n)
73 {
74 atomic_notifier_chain_unregister(&idle_notifier, n);
75 }
76 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
77 #endif
78
79 struct kmem_cache *task_xstate_cachep;
80 EXPORT_SYMBOL_GPL(task_xstate_cachep);
81
82 /*
83 * this gets called so that we can store lazy state into memory and copy the
84 * current task into the new thread.
85 */
86 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
87 {
88 *dst = *src;
89
90 dst->thread.fpu_counter = 0;
91 dst->thread.fpu.has_fpu = 0;
92 dst->thread.fpu.state = NULL;
93 task_disable_lazy_fpu_restore(dst);
94 if (tsk_used_math(src)) {
95 int err = fpu_alloc(&dst->thread.fpu);
96 if (err)
97 return err;
98 fpu_copy(dst, src);
99 }
100 return 0;
101 }
102
103 void free_thread_xstate(struct task_struct *tsk)
104 {
105 fpu_free(&tsk->thread.fpu);
106 }
107
108 void arch_release_task_struct(struct task_struct *tsk)
109 {
110 free_thread_xstate(tsk);
111 }
112
113 void arch_task_cache_init(void)
114 {
115 task_xstate_cachep =
116 kmem_cache_create("task_xstate", xstate_size,
117 __alignof__(union thread_xstate),
118 SLAB_PANIC | SLAB_NOTRACK, NULL);
119 setup_xstate_comp();
120 }
121
122 /*
123 * Free current thread data structures etc..
124 */
125 void exit_thread(void)
126 {
127 struct task_struct *me = current;
128 struct thread_struct *t = &me->thread;
129 unsigned long *bp = t->io_bitmap_ptr;
130
131 if (bp) {
132 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
133
134 t->io_bitmap_ptr = NULL;
135 clear_thread_flag(TIF_IO_BITMAP);
136 /*
137 * Careful, clear this in the TSS too:
138 */
139 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
140 t->io_bitmap_max = 0;
141 put_cpu();
142 kfree(bp);
143 }
144
145 drop_fpu(me);
146 }
147
148 void flush_thread(void)
149 {
150 struct task_struct *tsk = current;
151
152 flush_ptrace_hw_breakpoint(tsk);
153 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
154
155 if (!use_eager_fpu()) {
156 /* FPU state will be reallocated lazily at the first use. */
157 drop_fpu(tsk);
158 free_thread_xstate(tsk);
159 } else if (!used_math()) {
160 /* kthread execs. TODO: cleanup this horror. */
161 if (WARN_ON(init_fpu(tsk)))
162 force_sig(SIGKILL, tsk);
163 user_fpu_begin();
164 restore_init_xstate();
165 }
166 }
167
168 static void hard_disable_TSC(void)
169 {
170 cr4_set_bits(X86_CR4_TSD);
171 }
172
173 void disable_TSC(void)
174 {
175 preempt_disable();
176 if (!test_and_set_thread_flag(TIF_NOTSC))
177 /*
178 * Must flip the CPU state synchronously with
179 * TIF_NOTSC in the current running context.
180 */
181 hard_disable_TSC();
182 preempt_enable();
183 }
184
185 static void hard_enable_TSC(void)
186 {
187 cr4_clear_bits(X86_CR4_TSD);
188 }
189
190 static void enable_TSC(void)
191 {
192 preempt_disable();
193 if (test_and_clear_thread_flag(TIF_NOTSC))
194 /*
195 * Must flip the CPU state synchronously with
196 * TIF_NOTSC in the current running context.
197 */
198 hard_enable_TSC();
199 preempt_enable();
200 }
201
202 int get_tsc_mode(unsigned long adr)
203 {
204 unsigned int val;
205
206 if (test_thread_flag(TIF_NOTSC))
207 val = PR_TSC_SIGSEGV;
208 else
209 val = PR_TSC_ENABLE;
210
211 return put_user(val, (unsigned int __user *)adr);
212 }
213
214 int set_tsc_mode(unsigned int val)
215 {
216 if (val == PR_TSC_SIGSEGV)
217 disable_TSC();
218 else if (val == PR_TSC_ENABLE)
219 enable_TSC();
220 else
221 return -EINVAL;
222
223 return 0;
224 }
225
226 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
227 struct tss_struct *tss)
228 {
229 struct thread_struct *prev, *next;
230
231 prev = &prev_p->thread;
232 next = &next_p->thread;
233
234 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
235 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
236 unsigned long debugctl = get_debugctlmsr();
237
238 debugctl &= ~DEBUGCTLMSR_BTF;
239 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
240 debugctl |= DEBUGCTLMSR_BTF;
241
242 update_debugctlmsr(debugctl);
243 }
244
245 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
246 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
247 /* prev and next are different */
248 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
249 hard_disable_TSC();
250 else
251 hard_enable_TSC();
252 }
253
254 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
255 /*
256 * Copy the relevant range of the IO bitmap.
257 * Normally this is 128 bytes or less:
258 */
259 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
260 max(prev->io_bitmap_max, next->io_bitmap_max));
261 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
262 /*
263 * Clear any possible leftover bits:
264 */
265 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
266 }
267 propagate_user_return_notify(prev_p, next_p);
268 }
269
270 /*
271 * Idle related variables and functions
272 */
273 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
274 EXPORT_SYMBOL(boot_option_idle_override);
275
276 static void (*x86_idle)(void);
277
278 #ifndef CONFIG_SMP
279 static inline void play_dead(void)
280 {
281 BUG();
282 }
283 #endif
284
285 #ifdef CONFIG_X86_64
286 void enter_idle(void)
287 {
288 this_cpu_write(is_idle, 1);
289 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
290 }
291
292 static void __exit_idle(void)
293 {
294 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
295 return;
296 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
297 }
298
299 /* Called from interrupts to signify idle end */
300 void exit_idle(void)
301 {
302 /* idle loop has pid 0 */
303 if (current->pid)
304 return;
305 __exit_idle();
306 }
307 #endif
308
309 void arch_cpu_idle_enter(void)
310 {
311 local_touch_nmi();
312 enter_idle();
313 }
314
315 void arch_cpu_idle_exit(void)
316 {
317 __exit_idle();
318 }
319
320 void arch_cpu_idle_dead(void)
321 {
322 play_dead();
323 }
324
325 /*
326 * Called from the generic idle code.
327 */
328 void arch_cpu_idle(void)
329 {
330 x86_idle();
331 }
332
333 /*
334 * We use this if we don't have any better idle routine..
335 */
336 void default_idle(void)
337 {
338 trace_cpu_idle_rcuidle(1, smp_processor_id());
339 safe_halt();
340 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
341 }
342 #ifdef CONFIG_APM_MODULE
343 EXPORT_SYMBOL(default_idle);
344 #endif
345
346 #ifdef CONFIG_XEN
347 bool xen_set_default_idle(void)
348 {
349 bool ret = !!x86_idle;
350
351 x86_idle = default_idle;
352
353 return ret;
354 }
355 #endif
356 void stop_this_cpu(void *dummy)
357 {
358 local_irq_disable();
359 /*
360 * Remove this CPU:
361 */
362 set_cpu_online(smp_processor_id(), false);
363 disable_local_APIC();
364
365 for (;;)
366 halt();
367 }
368
369 bool amd_e400_c1e_detected;
370 EXPORT_SYMBOL(amd_e400_c1e_detected);
371
372 static cpumask_var_t amd_e400_c1e_mask;
373
374 void amd_e400_remove_cpu(int cpu)
375 {
376 if (amd_e400_c1e_mask != NULL)
377 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
378 }
379
380 /*
381 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
382 * pending message MSR. If we detect C1E, then we handle it the same
383 * way as C3 power states (local apic timer and TSC stop)
384 */
385 static void amd_e400_idle(void)
386 {
387 if (!amd_e400_c1e_detected) {
388 u32 lo, hi;
389
390 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
391
392 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
393 amd_e400_c1e_detected = true;
394 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
395 mark_tsc_unstable("TSC halt in AMD C1E");
396 pr_info("System has AMD C1E enabled\n");
397 }
398 }
399
400 if (amd_e400_c1e_detected) {
401 int cpu = smp_processor_id();
402
403 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
404 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
405 /* Force broadcast so ACPI can not interfere. */
406 tick_broadcast_force();
407 pr_info("Switch to broadcast mode on CPU%d\n", cpu);
408 }
409 tick_broadcast_enter();
410
411 default_idle();
412
413 /*
414 * The switch back from broadcast mode needs to be
415 * called with interrupts disabled.
416 */
417 local_irq_disable();
418 tick_broadcast_exit();
419 local_irq_enable();
420 } else
421 default_idle();
422 }
423
424 /*
425 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
426 * We can't rely on cpuidle installing MWAIT, because it will not load
427 * on systems that support only C1 -- so the boot default must be MWAIT.
428 *
429 * Some AMD machines are the opposite, they depend on using HALT.
430 *
431 * So for default C1, which is used during boot until cpuidle loads,
432 * use MWAIT-C1 on Intel HW that has it, else use HALT.
433 */
434 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
435 {
436 if (c->x86_vendor != X86_VENDOR_INTEL)
437 return 0;
438
439 if (!cpu_has(c, X86_FEATURE_MWAIT))
440 return 0;
441
442 return 1;
443 }
444
445 /*
446 * MONITOR/MWAIT with no hints, used for default default C1 state.
447 * This invokes MWAIT with interrutps enabled and no flags,
448 * which is backwards compatible with the original MWAIT implementation.
449 */
450
451 static void mwait_idle(void)
452 {
453 if (!current_set_polling_and_test()) {
454 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
455 smp_mb(); /* quirk */
456 clflush((void *)&current_thread_info()->flags);
457 smp_mb(); /* quirk */
458 }
459
460 __monitor((void *)&current_thread_info()->flags, 0, 0);
461 if (!need_resched())
462 __sti_mwait(0, 0);
463 else
464 local_irq_enable();
465 } else {
466 local_irq_enable();
467 }
468 __current_clr_polling();
469 }
470
471 void select_idle_routine(const struct cpuinfo_x86 *c)
472 {
473 #ifdef CONFIG_SMP
474 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
475 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
476 #endif
477 if (x86_idle || boot_option_idle_override == IDLE_POLL)
478 return;
479
480 if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
481 /* E400: APIC timer interrupt does not wake up CPU from C1e */
482 pr_info("using AMD E400 aware idle routine\n");
483 x86_idle = amd_e400_idle;
484 } else if (prefer_mwait_c1_over_halt(c)) {
485 pr_info("using mwait in idle threads\n");
486 x86_idle = mwait_idle;
487 } else
488 x86_idle = default_idle;
489 }
490
491 void __init init_amd_e400_c1e_mask(void)
492 {
493 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
494 if (x86_idle == amd_e400_idle)
495 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
496 }
497
498 static int __init idle_setup(char *str)
499 {
500 if (!str)
501 return -EINVAL;
502
503 if (!strcmp(str, "poll")) {
504 pr_info("using polling idle threads\n");
505 boot_option_idle_override = IDLE_POLL;
506 cpu_idle_poll_ctrl(true);
507 } else if (!strcmp(str, "halt")) {
508 /*
509 * When the boot option of idle=halt is added, halt is
510 * forced to be used for CPU idle. In such case CPU C2/C3
511 * won't be used again.
512 * To continue to load the CPU idle driver, don't touch
513 * the boot_option_idle_override.
514 */
515 x86_idle = default_idle;
516 boot_option_idle_override = IDLE_HALT;
517 } else if (!strcmp(str, "nomwait")) {
518 /*
519 * If the boot option of "idle=nomwait" is added,
520 * it means that mwait will be disabled for CPU C2/C3
521 * states. In such case it won't touch the variable
522 * of boot_option_idle_override.
523 */
524 boot_option_idle_override = IDLE_NOMWAIT;
525 } else
526 return -1;
527
528 return 0;
529 }
530 early_param("idle", idle_setup);
531
532 unsigned long arch_align_stack(unsigned long sp)
533 {
534 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
535 sp -= get_random_int() % 8192;
536 return sp & ~0xf;
537 }
538
539 unsigned long arch_randomize_brk(struct mm_struct *mm)
540 {
541 unsigned long range_end = mm->brk + 0x02000000;
542 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
543 }
544