]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/process.c
x86/entry: Remap the TSS into the CPU entry area
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / process.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/sched/idle.h>
11 #include <linux/sched/debug.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/init.h>
15 #include <linux/export.h>
16 #include <linux/pm.h>
17 #include <linux/tick.h>
18 #include <linux/random.h>
19 #include <linux/user-return-notifier.h>
20 #include <linux/dmi.h>
21 #include <linux/utsname.h>
22 #include <linux/stackprotector.h>
23 #include <linux/tick.h>
24 #include <linux/cpuidle.h>
25 #include <trace/events/power.h>
26 #include <linux/hw_breakpoint.h>
27 #include <asm/cpu.h>
28 #include <asm/apic.h>
29 #include <asm/syscalls.h>
30 #include <linux/uaccess.h>
31 #include <asm/mwait.h>
32 #include <asm/fpu/internal.h>
33 #include <asm/debugreg.h>
34 #include <asm/nmi.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mce.h>
37 #include <asm/vm86.h>
38 #include <asm/switch_to.h>
39 #include <asm/desc.h>
40 #include <asm/prctl.h>
41
42 /*
43 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
44 * no more per-task TSS's. The TSS size is kept cacheline-aligned
45 * so they are allowed to end up in the .data..cacheline_aligned
46 * section. Since TSS's are completely CPU-local, we want them
47 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
48 */
49 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
50 .x86_tss = {
51 /*
52 * .sp0 is only used when entering ring 0 from a lower
53 * privilege level. Since the init task never runs anything
54 * but ring 0 code, there is no need for a valid value here.
55 * Poison it.
56 */
57 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
58 #ifdef CONFIG_X86_32
59 .ss0 = __KERNEL_DS,
60 .ss1 = __KERNEL_CS,
61 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
62 #endif
63 },
64 #ifdef CONFIG_X86_32
65 /*
66 * Note that the .io_bitmap member must be extra-big. This is because
67 * the CPU will access an additional byte beyond the end of the IO
68 * permission bitmap. The extra byte must be all 1 bits, and must
69 * be within the limit.
70 */
71 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
72 #endif
73 .SYSENTER_stack_canary = STACK_END_MAGIC,
74 };
75 EXPORT_PER_CPU_SYMBOL(cpu_tss);
76
77 DEFINE_PER_CPU(bool, __tss_limit_invalid);
78 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
79
80 /*
81 * this gets called so that we can store lazy state into memory and copy the
82 * current task into the new thread.
83 */
84 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
85 {
86 memcpy(dst, src, arch_task_struct_size);
87 #ifdef CONFIG_VM86
88 dst->thread.vm86 = NULL;
89 #endif
90
91 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
92 }
93
94 /*
95 * Free current thread data structures etc..
96 */
97 void exit_thread(struct task_struct *tsk)
98 {
99 struct thread_struct *t = &tsk->thread;
100 unsigned long *bp = t->io_bitmap_ptr;
101 struct fpu *fpu = &t->fpu;
102
103 if (bp) {
104 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
105
106 t->io_bitmap_ptr = NULL;
107 clear_thread_flag(TIF_IO_BITMAP);
108 /*
109 * Careful, clear this in the TSS too:
110 */
111 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
112 t->io_bitmap_max = 0;
113 put_cpu();
114 kfree(bp);
115 }
116
117 free_vm86(t);
118
119 fpu__drop(fpu);
120 }
121
122 void flush_thread(void)
123 {
124 struct task_struct *tsk = current;
125
126 flush_ptrace_hw_breakpoint(tsk);
127 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
128
129 fpu__clear(&tsk->thread.fpu);
130 }
131
132 void disable_TSC(void)
133 {
134 preempt_disable();
135 if (!test_and_set_thread_flag(TIF_NOTSC))
136 /*
137 * Must flip the CPU state synchronously with
138 * TIF_NOTSC in the current running context.
139 */
140 cr4_set_bits(X86_CR4_TSD);
141 preempt_enable();
142 }
143
144 static void enable_TSC(void)
145 {
146 preempt_disable();
147 if (test_and_clear_thread_flag(TIF_NOTSC))
148 /*
149 * Must flip the CPU state synchronously with
150 * TIF_NOTSC in the current running context.
151 */
152 cr4_clear_bits(X86_CR4_TSD);
153 preempt_enable();
154 }
155
156 int get_tsc_mode(unsigned long adr)
157 {
158 unsigned int val;
159
160 if (test_thread_flag(TIF_NOTSC))
161 val = PR_TSC_SIGSEGV;
162 else
163 val = PR_TSC_ENABLE;
164
165 return put_user(val, (unsigned int __user *)adr);
166 }
167
168 int set_tsc_mode(unsigned int val)
169 {
170 if (val == PR_TSC_SIGSEGV)
171 disable_TSC();
172 else if (val == PR_TSC_ENABLE)
173 enable_TSC();
174 else
175 return -EINVAL;
176
177 return 0;
178 }
179
180 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
181
182 static void set_cpuid_faulting(bool on)
183 {
184 u64 msrval;
185
186 msrval = this_cpu_read(msr_misc_features_shadow);
187 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
188 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
189 this_cpu_write(msr_misc_features_shadow, msrval);
190 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
191 }
192
193 static void disable_cpuid(void)
194 {
195 preempt_disable();
196 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
197 /*
198 * Must flip the CPU state synchronously with
199 * TIF_NOCPUID in the current running context.
200 */
201 set_cpuid_faulting(true);
202 }
203 preempt_enable();
204 }
205
206 static void enable_cpuid(void)
207 {
208 preempt_disable();
209 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
210 /*
211 * Must flip the CPU state synchronously with
212 * TIF_NOCPUID in the current running context.
213 */
214 set_cpuid_faulting(false);
215 }
216 preempt_enable();
217 }
218
219 static int get_cpuid_mode(void)
220 {
221 return !test_thread_flag(TIF_NOCPUID);
222 }
223
224 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
225 {
226 if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
227 return -ENODEV;
228
229 if (cpuid_enabled)
230 enable_cpuid();
231 else
232 disable_cpuid();
233
234 return 0;
235 }
236
237 /*
238 * Called immediately after a successful exec.
239 */
240 void arch_setup_new_exec(void)
241 {
242 /* If cpuid was previously disabled for this task, re-enable it. */
243 if (test_thread_flag(TIF_NOCPUID))
244 enable_cpuid();
245 }
246
247 static inline void switch_to_bitmap(struct tss_struct *tss,
248 struct thread_struct *prev,
249 struct thread_struct *next,
250 unsigned long tifp, unsigned long tifn)
251 {
252 if (tifn & _TIF_IO_BITMAP) {
253 /*
254 * Copy the relevant range of the IO bitmap.
255 * Normally this is 128 bytes or less:
256 */
257 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
258 max(prev->io_bitmap_max, next->io_bitmap_max));
259 /*
260 * Make sure that the TSS limit is correct for the CPU
261 * to notice the IO bitmap.
262 */
263 refresh_tss_limit();
264 } else if (tifp & _TIF_IO_BITMAP) {
265 /*
266 * Clear any possible leftover bits:
267 */
268 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
269 }
270 }
271
272 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
273 struct tss_struct *tss)
274 {
275 struct thread_struct *prev, *next;
276 unsigned long tifp, tifn;
277
278 prev = &prev_p->thread;
279 next = &next_p->thread;
280
281 tifn = READ_ONCE(task_thread_info(next_p)->flags);
282 tifp = READ_ONCE(task_thread_info(prev_p)->flags);
283 switch_to_bitmap(tss, prev, next, tifp, tifn);
284
285 propagate_user_return_notify(prev_p, next_p);
286
287 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
288 arch_has_block_step()) {
289 unsigned long debugctl, msk;
290
291 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
292 debugctl &= ~DEBUGCTLMSR_BTF;
293 msk = tifn & _TIF_BLOCKSTEP;
294 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
295 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
296 }
297
298 if ((tifp ^ tifn) & _TIF_NOTSC)
299 cr4_toggle_bits(X86_CR4_TSD);
300
301 if ((tifp ^ tifn) & _TIF_NOCPUID)
302 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
303 }
304
305 /*
306 * Idle related variables and functions
307 */
308 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
309 EXPORT_SYMBOL(boot_option_idle_override);
310
311 static void (*x86_idle)(void);
312
313 #ifndef CONFIG_SMP
314 static inline void play_dead(void)
315 {
316 BUG();
317 }
318 #endif
319
320 void arch_cpu_idle_enter(void)
321 {
322 tsc_verify_tsc_adjust(false);
323 local_touch_nmi();
324 }
325
326 void arch_cpu_idle_dead(void)
327 {
328 play_dead();
329 }
330
331 /*
332 * Called from the generic idle code.
333 */
334 void arch_cpu_idle(void)
335 {
336 x86_idle();
337 }
338
339 /*
340 * We use this if we don't have any better idle routine..
341 */
342 void __cpuidle default_idle(void)
343 {
344 trace_cpu_idle_rcuidle(1, smp_processor_id());
345 safe_halt();
346 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
347 }
348 #ifdef CONFIG_APM_MODULE
349 EXPORT_SYMBOL(default_idle);
350 #endif
351
352 #ifdef CONFIG_XEN
353 bool xen_set_default_idle(void)
354 {
355 bool ret = !!x86_idle;
356
357 x86_idle = default_idle;
358
359 return ret;
360 }
361 #endif
362 void stop_this_cpu(void *dummy)
363 {
364 local_irq_disable();
365 /*
366 * Remove this CPU:
367 */
368 set_cpu_online(smp_processor_id(), false);
369 disable_local_APIC();
370 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
371
372 for (;;)
373 halt();
374 }
375
376 /*
377 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
378 * states (local apic timer and TSC stop).
379 */
380 static void amd_e400_idle(void)
381 {
382 /*
383 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
384 * gets set after static_cpu_has() places have been converted via
385 * alternatives.
386 */
387 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
388 default_idle();
389 return;
390 }
391
392 tick_broadcast_enter();
393
394 default_idle();
395
396 /*
397 * The switch back from broadcast mode needs to be called with
398 * interrupts disabled.
399 */
400 local_irq_disable();
401 tick_broadcast_exit();
402 local_irq_enable();
403 }
404
405 /*
406 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
407 * We can't rely on cpuidle installing MWAIT, because it will not load
408 * on systems that support only C1 -- so the boot default must be MWAIT.
409 *
410 * Some AMD machines are the opposite, they depend on using HALT.
411 *
412 * So for default C1, which is used during boot until cpuidle loads,
413 * use MWAIT-C1 on Intel HW that has it, else use HALT.
414 */
415 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
416 {
417 if (c->x86_vendor != X86_VENDOR_INTEL)
418 return 0;
419
420 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
421 return 0;
422
423 return 1;
424 }
425
426 /*
427 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
428 * with interrupts enabled and no flags, which is backwards compatible with the
429 * original MWAIT implementation.
430 */
431 static __cpuidle void mwait_idle(void)
432 {
433 if (!current_set_polling_and_test()) {
434 trace_cpu_idle_rcuidle(1, smp_processor_id());
435 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
436 mb(); /* quirk */
437 clflush((void *)&current_thread_info()->flags);
438 mb(); /* quirk */
439 }
440
441 __monitor((void *)&current_thread_info()->flags, 0, 0);
442 if (!need_resched())
443 __sti_mwait(0, 0);
444 else
445 local_irq_enable();
446 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
447 } else {
448 local_irq_enable();
449 }
450 __current_clr_polling();
451 }
452
453 void select_idle_routine(const struct cpuinfo_x86 *c)
454 {
455 #ifdef CONFIG_SMP
456 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
457 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
458 #endif
459 if (x86_idle || boot_option_idle_override == IDLE_POLL)
460 return;
461
462 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
463 pr_info("using AMD E400 aware idle routine\n");
464 x86_idle = amd_e400_idle;
465 } else if (prefer_mwait_c1_over_halt(c)) {
466 pr_info("using mwait in idle threads\n");
467 x86_idle = mwait_idle;
468 } else
469 x86_idle = default_idle;
470 }
471
472 void amd_e400_c1e_apic_setup(void)
473 {
474 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
475 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
476 local_irq_disable();
477 tick_broadcast_force();
478 local_irq_enable();
479 }
480 }
481
482 void __init arch_post_acpi_subsys_init(void)
483 {
484 u32 lo, hi;
485
486 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
487 return;
488
489 /*
490 * AMD E400 detection needs to happen after ACPI has been enabled. If
491 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
492 * MSR_K8_INT_PENDING_MSG.
493 */
494 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
495 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
496 return;
497
498 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
499
500 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
501 mark_tsc_unstable("TSC halt in AMD C1E");
502 pr_info("System has AMD C1E enabled\n");
503 }
504
505 static int __init idle_setup(char *str)
506 {
507 if (!str)
508 return -EINVAL;
509
510 if (!strcmp(str, "poll")) {
511 pr_info("using polling idle threads\n");
512 boot_option_idle_override = IDLE_POLL;
513 cpu_idle_poll_ctrl(true);
514 } else if (!strcmp(str, "halt")) {
515 /*
516 * When the boot option of idle=halt is added, halt is
517 * forced to be used for CPU idle. In such case CPU C2/C3
518 * won't be used again.
519 * To continue to load the CPU idle driver, don't touch
520 * the boot_option_idle_override.
521 */
522 x86_idle = default_idle;
523 boot_option_idle_override = IDLE_HALT;
524 } else if (!strcmp(str, "nomwait")) {
525 /*
526 * If the boot option of "idle=nomwait" is added,
527 * it means that mwait will be disabled for CPU C2/C3
528 * states. In such case it won't touch the variable
529 * of boot_option_idle_override.
530 */
531 boot_option_idle_override = IDLE_NOMWAIT;
532 } else
533 return -1;
534
535 return 0;
536 }
537 early_param("idle", idle_setup);
538
539 unsigned long arch_align_stack(unsigned long sp)
540 {
541 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
542 sp -= get_random_int() % 8192;
543 return sp & ~0xf;
544 }
545
546 unsigned long arch_randomize_brk(struct mm_struct *mm)
547 {
548 return randomize_page(mm->brk, 0x02000000);
549 }
550
551 /*
552 * Called from fs/proc with a reference on @p to find the function
553 * which called into schedule(). This needs to be done carefully
554 * because the task might wake up and we might look at a stack
555 * changing under us.
556 */
557 unsigned long get_wchan(struct task_struct *p)
558 {
559 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
560 int count = 0;
561
562 if (!p || p == current || p->state == TASK_RUNNING)
563 return 0;
564
565 if (!try_get_task_stack(p))
566 return 0;
567
568 start = (unsigned long)task_stack_page(p);
569 if (!start)
570 goto out;
571
572 /*
573 * Layout of the stack page:
574 *
575 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
576 * PADDING
577 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
578 * stack
579 * ----------- bottom = start
580 *
581 * The tasks stack pointer points at the location where the
582 * framepointer is stored. The data on the stack is:
583 * ... IP FP ... IP FP
584 *
585 * We need to read FP and IP, so we need to adjust the upper
586 * bound by another unsigned long.
587 */
588 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
589 top -= 2 * sizeof(unsigned long);
590 bottom = start;
591
592 sp = READ_ONCE(p->thread.sp);
593 if (sp < bottom || sp > top)
594 goto out;
595
596 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
597 do {
598 if (fp < bottom || fp > top)
599 goto out;
600 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
601 if (!in_sched_functions(ip)) {
602 ret = ip;
603 goto out;
604 }
605 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
606 } while (count++ < 16 && p->state != TASK_RUNNING);
607
608 out:
609 put_task_stack(p);
610 return ret;
611 }
612
613 long do_arch_prctl_common(struct task_struct *task, int option,
614 unsigned long cpuid_enabled)
615 {
616 switch (option) {
617 case ARCH_GET_CPUID:
618 return get_cpuid_mode();
619 case ARCH_SET_CPUID:
620 return set_cpuid_mode(task, cpuid_enabled);
621 }
622
623 return -EINVAL;
624 }