]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/process.c
Merge branch 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / process.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/tick.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/mwait.h>
28 #include <asm/i387.h>
29 #include <asm/fpu-internal.h>
30 #include <asm/debugreg.h>
31 #include <asm/nmi.h>
32 #include <asm/tlbflush.h>
33
34 /*
35 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
36 * no more per-task TSS's. The TSS size is kept cacheline-aligned
37 * so they are allowed to end up in the .data..cacheline_aligned
38 * section. Since TSS's are completely CPU-local, we want them
39 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
40 */
41 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
42 .x86_tss = {
43 .sp0 = TOP_OF_INIT_STACK,
44 #ifdef CONFIG_X86_32
45 .ss0 = __KERNEL_DS,
46 .ss1 = __KERNEL_CS,
47 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
48 #endif
49 },
50 #ifdef CONFIG_X86_32
51 /*
52 * Note that the .io_bitmap member must be extra-big. This is because
53 * the CPU will access an additional byte beyond the end of the IO
54 * permission bitmap. The extra byte must be all 1 bits, and must
55 * be within the limit.
56 */
57 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
58 #endif
59 };
60 EXPORT_PER_CPU_SYMBOL_GPL(cpu_tss);
61
62 #ifdef CONFIG_X86_64
63 static DEFINE_PER_CPU(unsigned char, is_idle);
64 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
65
66 void idle_notifier_register(struct notifier_block *n)
67 {
68 atomic_notifier_chain_register(&idle_notifier, n);
69 }
70 EXPORT_SYMBOL_GPL(idle_notifier_register);
71
72 void idle_notifier_unregister(struct notifier_block *n)
73 {
74 atomic_notifier_chain_unregister(&idle_notifier, n);
75 }
76 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
77 #endif
78
79 struct kmem_cache *task_xstate_cachep;
80 EXPORT_SYMBOL_GPL(task_xstate_cachep);
81
82 /*
83 * this gets called so that we can store lazy state into memory and copy the
84 * current task into the new thread.
85 */
86 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
87 {
88 *dst = *src;
89
90 dst->thread.fpu_counter = 0;
91 dst->thread.fpu.has_fpu = 0;
92 dst->thread.fpu.last_cpu = ~0;
93 dst->thread.fpu.state = NULL;
94 if (tsk_used_math(src)) {
95 int err = fpu_alloc(&dst->thread.fpu);
96 if (err)
97 return err;
98 fpu_copy(dst, src);
99 }
100 return 0;
101 }
102
103 void free_thread_xstate(struct task_struct *tsk)
104 {
105 fpu_free(&tsk->thread.fpu);
106 }
107
108 void arch_release_task_struct(struct task_struct *tsk)
109 {
110 free_thread_xstate(tsk);
111 }
112
113 void arch_task_cache_init(void)
114 {
115 task_xstate_cachep =
116 kmem_cache_create("task_xstate", xstate_size,
117 __alignof__(union thread_xstate),
118 SLAB_PANIC | SLAB_NOTRACK, NULL);
119 setup_xstate_comp();
120 }
121
122 /*
123 * Free current thread data structures etc..
124 */
125 void exit_thread(void)
126 {
127 struct task_struct *me = current;
128 struct thread_struct *t = &me->thread;
129 unsigned long *bp = t->io_bitmap_ptr;
130
131 if (bp) {
132 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
133
134 t->io_bitmap_ptr = NULL;
135 clear_thread_flag(TIF_IO_BITMAP);
136 /*
137 * Careful, clear this in the TSS too:
138 */
139 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
140 t->io_bitmap_max = 0;
141 put_cpu();
142 kfree(bp);
143 }
144
145 drop_fpu(me);
146 }
147
148 void flush_thread(void)
149 {
150 struct task_struct *tsk = current;
151
152 flush_ptrace_hw_breakpoint(tsk);
153 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
154 drop_init_fpu(tsk);
155 /*
156 * Free the FPU state for non xsave platforms. They get reallocated
157 * lazily at the first use.
158 */
159 if (!use_eager_fpu())
160 free_thread_xstate(tsk);
161 }
162
163 static void hard_disable_TSC(void)
164 {
165 cr4_set_bits(X86_CR4_TSD);
166 }
167
168 void disable_TSC(void)
169 {
170 preempt_disable();
171 if (!test_and_set_thread_flag(TIF_NOTSC))
172 /*
173 * Must flip the CPU state synchronously with
174 * TIF_NOTSC in the current running context.
175 */
176 hard_disable_TSC();
177 preempt_enable();
178 }
179
180 static void hard_enable_TSC(void)
181 {
182 cr4_clear_bits(X86_CR4_TSD);
183 }
184
185 static void enable_TSC(void)
186 {
187 preempt_disable();
188 if (test_and_clear_thread_flag(TIF_NOTSC))
189 /*
190 * Must flip the CPU state synchronously with
191 * TIF_NOTSC in the current running context.
192 */
193 hard_enable_TSC();
194 preempt_enable();
195 }
196
197 int get_tsc_mode(unsigned long adr)
198 {
199 unsigned int val;
200
201 if (test_thread_flag(TIF_NOTSC))
202 val = PR_TSC_SIGSEGV;
203 else
204 val = PR_TSC_ENABLE;
205
206 return put_user(val, (unsigned int __user *)adr);
207 }
208
209 int set_tsc_mode(unsigned int val)
210 {
211 if (val == PR_TSC_SIGSEGV)
212 disable_TSC();
213 else if (val == PR_TSC_ENABLE)
214 enable_TSC();
215 else
216 return -EINVAL;
217
218 return 0;
219 }
220
221 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
222 struct tss_struct *tss)
223 {
224 struct thread_struct *prev, *next;
225
226 prev = &prev_p->thread;
227 next = &next_p->thread;
228
229 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
230 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
231 unsigned long debugctl = get_debugctlmsr();
232
233 debugctl &= ~DEBUGCTLMSR_BTF;
234 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
235 debugctl |= DEBUGCTLMSR_BTF;
236
237 update_debugctlmsr(debugctl);
238 }
239
240 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
241 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
242 /* prev and next are different */
243 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
244 hard_disable_TSC();
245 else
246 hard_enable_TSC();
247 }
248
249 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
250 /*
251 * Copy the relevant range of the IO bitmap.
252 * Normally this is 128 bytes or less:
253 */
254 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
255 max(prev->io_bitmap_max, next->io_bitmap_max));
256 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
257 /*
258 * Clear any possible leftover bits:
259 */
260 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
261 }
262 propagate_user_return_notify(prev_p, next_p);
263 }
264
265 /*
266 * Idle related variables and functions
267 */
268 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
269 EXPORT_SYMBOL(boot_option_idle_override);
270
271 static void (*x86_idle)(void);
272
273 #ifndef CONFIG_SMP
274 static inline void play_dead(void)
275 {
276 BUG();
277 }
278 #endif
279
280 #ifdef CONFIG_X86_64
281 void enter_idle(void)
282 {
283 this_cpu_write(is_idle, 1);
284 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
285 }
286
287 static void __exit_idle(void)
288 {
289 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
290 return;
291 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
292 }
293
294 /* Called from interrupts to signify idle end */
295 void exit_idle(void)
296 {
297 /* idle loop has pid 0 */
298 if (current->pid)
299 return;
300 __exit_idle();
301 }
302 #endif
303
304 void arch_cpu_idle_enter(void)
305 {
306 local_touch_nmi();
307 enter_idle();
308 }
309
310 void arch_cpu_idle_exit(void)
311 {
312 __exit_idle();
313 }
314
315 void arch_cpu_idle_dead(void)
316 {
317 play_dead();
318 }
319
320 /*
321 * Called from the generic idle code.
322 */
323 void arch_cpu_idle(void)
324 {
325 x86_idle();
326 }
327
328 /*
329 * We use this if we don't have any better idle routine..
330 */
331 void default_idle(void)
332 {
333 trace_cpu_idle_rcuidle(1, smp_processor_id());
334 safe_halt();
335 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
336 }
337 #ifdef CONFIG_APM_MODULE
338 EXPORT_SYMBOL(default_idle);
339 #endif
340
341 #ifdef CONFIG_XEN
342 bool xen_set_default_idle(void)
343 {
344 bool ret = !!x86_idle;
345
346 x86_idle = default_idle;
347
348 return ret;
349 }
350 #endif
351 void stop_this_cpu(void *dummy)
352 {
353 local_irq_disable();
354 /*
355 * Remove this CPU:
356 */
357 set_cpu_online(smp_processor_id(), false);
358 disable_local_APIC();
359
360 for (;;)
361 halt();
362 }
363
364 bool amd_e400_c1e_detected;
365 EXPORT_SYMBOL(amd_e400_c1e_detected);
366
367 static cpumask_var_t amd_e400_c1e_mask;
368
369 void amd_e400_remove_cpu(int cpu)
370 {
371 if (amd_e400_c1e_mask != NULL)
372 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
373 }
374
375 /*
376 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
377 * pending message MSR. If we detect C1E, then we handle it the same
378 * way as C3 power states (local apic timer and TSC stop)
379 */
380 static void amd_e400_idle(void)
381 {
382 if (!amd_e400_c1e_detected) {
383 u32 lo, hi;
384
385 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
386
387 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
388 amd_e400_c1e_detected = true;
389 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
390 mark_tsc_unstable("TSC halt in AMD C1E");
391 pr_info("System has AMD C1E enabled\n");
392 }
393 }
394
395 if (amd_e400_c1e_detected) {
396 int cpu = smp_processor_id();
397
398 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
399 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
400 /* Force broadcast so ACPI can not interfere. */
401 tick_broadcast_force();
402 pr_info("Switch to broadcast mode on CPU%d\n", cpu);
403 }
404 tick_broadcast_enter();
405
406 default_idle();
407
408 /*
409 * The switch back from broadcast mode needs to be
410 * called with interrupts disabled.
411 */
412 local_irq_disable();
413 tick_broadcast_exit();
414 local_irq_enable();
415 } else
416 default_idle();
417 }
418
419 /*
420 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
421 * We can't rely on cpuidle installing MWAIT, because it will not load
422 * on systems that support only C1 -- so the boot default must be MWAIT.
423 *
424 * Some AMD machines are the opposite, they depend on using HALT.
425 *
426 * So for default C1, which is used during boot until cpuidle loads,
427 * use MWAIT-C1 on Intel HW that has it, else use HALT.
428 */
429 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
430 {
431 if (c->x86_vendor != X86_VENDOR_INTEL)
432 return 0;
433
434 if (!cpu_has(c, X86_FEATURE_MWAIT))
435 return 0;
436
437 return 1;
438 }
439
440 /*
441 * MONITOR/MWAIT with no hints, used for default default C1 state.
442 * This invokes MWAIT with interrutps enabled and no flags,
443 * which is backwards compatible with the original MWAIT implementation.
444 */
445
446 static void mwait_idle(void)
447 {
448 if (!current_set_polling_and_test()) {
449 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
450 smp_mb(); /* quirk */
451 clflush((void *)&current_thread_info()->flags);
452 smp_mb(); /* quirk */
453 }
454
455 __monitor((void *)&current_thread_info()->flags, 0, 0);
456 if (!need_resched())
457 __sti_mwait(0, 0);
458 else
459 local_irq_enable();
460 } else {
461 local_irq_enable();
462 }
463 __current_clr_polling();
464 }
465
466 void select_idle_routine(const struct cpuinfo_x86 *c)
467 {
468 #ifdef CONFIG_SMP
469 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
470 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
471 #endif
472 if (x86_idle || boot_option_idle_override == IDLE_POLL)
473 return;
474
475 if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
476 /* E400: APIC timer interrupt does not wake up CPU from C1e */
477 pr_info("using AMD E400 aware idle routine\n");
478 x86_idle = amd_e400_idle;
479 } else if (prefer_mwait_c1_over_halt(c)) {
480 pr_info("using mwait in idle threads\n");
481 x86_idle = mwait_idle;
482 } else
483 x86_idle = default_idle;
484 }
485
486 void __init init_amd_e400_c1e_mask(void)
487 {
488 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
489 if (x86_idle == amd_e400_idle)
490 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
491 }
492
493 static int __init idle_setup(char *str)
494 {
495 if (!str)
496 return -EINVAL;
497
498 if (!strcmp(str, "poll")) {
499 pr_info("using polling idle threads\n");
500 boot_option_idle_override = IDLE_POLL;
501 cpu_idle_poll_ctrl(true);
502 } else if (!strcmp(str, "halt")) {
503 /*
504 * When the boot option of idle=halt is added, halt is
505 * forced to be used for CPU idle. In such case CPU C2/C3
506 * won't be used again.
507 * To continue to load the CPU idle driver, don't touch
508 * the boot_option_idle_override.
509 */
510 x86_idle = default_idle;
511 boot_option_idle_override = IDLE_HALT;
512 } else if (!strcmp(str, "nomwait")) {
513 /*
514 * If the boot option of "idle=nomwait" is added,
515 * it means that mwait will be disabled for CPU C2/C3
516 * states. In such case it won't touch the variable
517 * of boot_option_idle_override.
518 */
519 boot_option_idle_override = IDLE_NOMWAIT;
520 } else
521 return -1;
522
523 return 0;
524 }
525 early_param("idle", idle_setup);
526
527 unsigned long arch_align_stack(unsigned long sp)
528 {
529 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
530 sp -= get_random_int() % 8192;
531 return sp & ~0xf;
532 }
533
534 unsigned long arch_randomize_brk(struct mm_struct *mm)
535 {
536 unsigned long range_end = mm->brk + 0x02000000;
537 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
538 }
539