]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/process.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / process.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/sched/idle.h>
11 #include <linux/sched/debug.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/init.h>
15 #include <linux/export.h>
16 #include <linux/pm.h>
17 #include <linux/tick.h>
18 #include <linux/random.h>
19 #include <linux/user-return-notifier.h>
20 #include <linux/dmi.h>
21 #include <linux/utsname.h>
22 #include <linux/stackprotector.h>
23 #include <linux/tick.h>
24 #include <linux/cpuidle.h>
25 #include <trace/events/power.h>
26 #include <linux/hw_breakpoint.h>
27 #include <asm/cpu.h>
28 #include <asm/apic.h>
29 #include <asm/syscalls.h>
30 #include <linux/uaccess.h>
31 #include <asm/mwait.h>
32 #include <asm/fpu/internal.h>
33 #include <asm/debugreg.h>
34 #include <asm/nmi.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mce.h>
37 #include <asm/vm86.h>
38 #include <asm/switch_to.h>
39 #include <asm/desc.h>
40 #include <asm/prctl.h>
41 #include <asm/spec-ctrl.h>
42
43 /*
44 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
45 * no more per-task TSS's. The TSS size is kept cacheline-aligned
46 * so they are allowed to end up in the .data..cacheline_aligned
47 * section. Since TSS's are completely CPU-local, we want them
48 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
49 */
50 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
51 .x86_tss = {
52 /*
53 * .sp0 is only used when entering ring 0 from a lower
54 * privilege level. Since the init task never runs anything
55 * but ring 0 code, there is no need for a valid value here.
56 * Poison it.
57 */
58 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
59
60 #ifdef CONFIG_X86_64
61 /*
62 * .sp1 is cpu_current_top_of_stack. The init task never
63 * runs user code, but cpu_current_top_of_stack should still
64 * be well defined before the first context switch.
65 */
66 .sp1 = TOP_OF_INIT_STACK,
67 #endif
68
69 #ifdef CONFIG_X86_32
70 .ss0 = __KERNEL_DS,
71 .ss1 = __KERNEL_CS,
72 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
73 #endif
74 },
75 #ifdef CONFIG_X86_32
76 /*
77 * Note that the .io_bitmap member must be extra-big. This is because
78 * the CPU will access an additional byte beyond the end of the IO
79 * permission bitmap. The extra byte must be all 1 bits, and must
80 * be within the limit.
81 */
82 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
83 #endif
84 };
85 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
86
87 DEFINE_PER_CPU(bool, __tss_limit_invalid);
88 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
89
90 /*
91 * this gets called so that we can store lazy state into memory and copy the
92 * current task into the new thread.
93 */
94 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
95 {
96 memcpy(dst, src, arch_task_struct_size);
97 #ifdef CONFIG_VM86
98 dst->thread.vm86 = NULL;
99 #endif
100
101 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
102 }
103
104 /*
105 * Free current thread data structures etc..
106 */
107 void exit_thread(struct task_struct *tsk)
108 {
109 struct thread_struct *t = &tsk->thread;
110 unsigned long *bp = t->io_bitmap_ptr;
111 struct fpu *fpu = &t->fpu;
112
113 if (bp) {
114 struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
115
116 t->io_bitmap_ptr = NULL;
117 clear_thread_flag(TIF_IO_BITMAP);
118 /*
119 * Careful, clear this in the TSS too:
120 */
121 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
122 t->io_bitmap_max = 0;
123 put_cpu();
124 kfree(bp);
125 }
126
127 free_vm86(t);
128
129 fpu__drop(fpu);
130 }
131
132 void flush_thread(void)
133 {
134 struct task_struct *tsk = current;
135
136 flush_ptrace_hw_breakpoint(tsk);
137 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
138
139 fpu__clear(&tsk->thread.fpu);
140 }
141
142 void disable_TSC(void)
143 {
144 preempt_disable();
145 if (!test_and_set_thread_flag(TIF_NOTSC))
146 /*
147 * Must flip the CPU state synchronously with
148 * TIF_NOTSC in the current running context.
149 */
150 cr4_set_bits(X86_CR4_TSD);
151 preempt_enable();
152 }
153
154 static void enable_TSC(void)
155 {
156 preempt_disable();
157 if (test_and_clear_thread_flag(TIF_NOTSC))
158 /*
159 * Must flip the CPU state synchronously with
160 * TIF_NOTSC in the current running context.
161 */
162 cr4_clear_bits(X86_CR4_TSD);
163 preempt_enable();
164 }
165
166 int get_tsc_mode(unsigned long adr)
167 {
168 unsigned int val;
169
170 if (test_thread_flag(TIF_NOTSC))
171 val = PR_TSC_SIGSEGV;
172 else
173 val = PR_TSC_ENABLE;
174
175 return put_user(val, (unsigned int __user *)adr);
176 }
177
178 int set_tsc_mode(unsigned int val)
179 {
180 if (val == PR_TSC_SIGSEGV)
181 disable_TSC();
182 else if (val == PR_TSC_ENABLE)
183 enable_TSC();
184 else
185 return -EINVAL;
186
187 return 0;
188 }
189
190 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
191
192 static void set_cpuid_faulting(bool on)
193 {
194 u64 msrval;
195
196 msrval = this_cpu_read(msr_misc_features_shadow);
197 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
198 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
199 this_cpu_write(msr_misc_features_shadow, msrval);
200 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
201 }
202
203 static void disable_cpuid(void)
204 {
205 preempt_disable();
206 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
207 /*
208 * Must flip the CPU state synchronously with
209 * TIF_NOCPUID in the current running context.
210 */
211 set_cpuid_faulting(true);
212 }
213 preempt_enable();
214 }
215
216 static void enable_cpuid(void)
217 {
218 preempt_disable();
219 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
220 /*
221 * Must flip the CPU state synchronously with
222 * TIF_NOCPUID in the current running context.
223 */
224 set_cpuid_faulting(false);
225 }
226 preempt_enable();
227 }
228
229 static int get_cpuid_mode(void)
230 {
231 return !test_thread_flag(TIF_NOCPUID);
232 }
233
234 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
235 {
236 if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
237 return -ENODEV;
238
239 if (cpuid_enabled)
240 enable_cpuid();
241 else
242 disable_cpuid();
243
244 return 0;
245 }
246
247 /*
248 * Called immediately after a successful exec.
249 */
250 void arch_setup_new_exec(void)
251 {
252 /* If cpuid was previously disabled for this task, re-enable it. */
253 if (test_thread_flag(TIF_NOCPUID))
254 enable_cpuid();
255 }
256
257 static inline void switch_to_bitmap(struct tss_struct *tss,
258 struct thread_struct *prev,
259 struct thread_struct *next,
260 unsigned long tifp, unsigned long tifn)
261 {
262 if (tifn & _TIF_IO_BITMAP) {
263 /*
264 * Copy the relevant range of the IO bitmap.
265 * Normally this is 128 bytes or less:
266 */
267 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
268 max(prev->io_bitmap_max, next->io_bitmap_max));
269 /*
270 * Make sure that the TSS limit is correct for the CPU
271 * to notice the IO bitmap.
272 */
273 refresh_tss_limit();
274 } else if (tifp & _TIF_IO_BITMAP) {
275 /*
276 * Clear any possible leftover bits:
277 */
278 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
279 }
280 }
281
282 #ifdef CONFIG_SMP
283
284 struct ssb_state {
285 struct ssb_state *shared_state;
286 raw_spinlock_t lock;
287 unsigned int disable_state;
288 unsigned long local_state;
289 };
290
291 #define LSTATE_SSB 0
292
293 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
294
295 void speculative_store_bypass_ht_init(void)
296 {
297 struct ssb_state *st = this_cpu_ptr(&ssb_state);
298 unsigned int this_cpu = smp_processor_id();
299 unsigned int cpu;
300
301 st->local_state = 0;
302
303 /*
304 * Shared state setup happens once on the first bringup
305 * of the CPU. It's not destroyed on CPU hotunplug.
306 */
307 if (st->shared_state)
308 return;
309
310 raw_spin_lock_init(&st->lock);
311
312 /*
313 * Go over HT siblings and check whether one of them has set up the
314 * shared state pointer already.
315 */
316 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
317 if (cpu == this_cpu)
318 continue;
319
320 if (!per_cpu(ssb_state, cpu).shared_state)
321 continue;
322
323 /* Link it to the state of the sibling: */
324 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
325 return;
326 }
327
328 /*
329 * First HT sibling to come up on the core. Link shared state of
330 * the first HT sibling to itself. The siblings on the same core
331 * which come up later will see the shared state pointer and link
332 * themself to the state of this CPU.
333 */
334 st->shared_state = st;
335 }
336
337 /*
338 * Logic is: First HT sibling enables SSBD for both siblings in the core
339 * and last sibling to disable it, disables it for the whole core. This how
340 * MSR_SPEC_CTRL works in "hardware":
341 *
342 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
343 */
344 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
345 {
346 struct ssb_state *st = this_cpu_ptr(&ssb_state);
347 u64 msr = x86_amd_ls_cfg_base;
348
349 if (!static_cpu_has(X86_FEATURE_ZEN)) {
350 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
351 wrmsrl(MSR_AMD64_LS_CFG, msr);
352 return;
353 }
354
355 if (tifn & _TIF_SSBD) {
356 /*
357 * Since this can race with prctl(), block reentry on the
358 * same CPU.
359 */
360 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
361 return;
362
363 msr |= x86_amd_ls_cfg_ssbd_mask;
364
365 raw_spin_lock(&st->shared_state->lock);
366 /* First sibling enables SSBD: */
367 if (!st->shared_state->disable_state)
368 wrmsrl(MSR_AMD64_LS_CFG, msr);
369 st->shared_state->disable_state++;
370 raw_spin_unlock(&st->shared_state->lock);
371 } else {
372 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
373 return;
374
375 raw_spin_lock(&st->shared_state->lock);
376 st->shared_state->disable_state--;
377 if (!st->shared_state->disable_state)
378 wrmsrl(MSR_AMD64_LS_CFG, msr);
379 raw_spin_unlock(&st->shared_state->lock);
380 }
381 }
382 #else
383 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
384 {
385 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
386
387 wrmsrl(MSR_AMD64_LS_CFG, msr);
388 }
389 #endif
390
391 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
392 {
393 /*
394 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
395 * so ssbd_tif_to_spec_ctrl() just works.
396 */
397 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
398 }
399
400 static __always_inline void intel_set_ssb_state(unsigned long tifn)
401 {
402 u64 msr = x86_spec_ctrl_base | ssbd_tif_to_spec_ctrl(tifn);
403
404 wrmsrl(MSR_IA32_SPEC_CTRL, msr);
405 }
406
407 static __always_inline void __speculative_store_bypass_update(unsigned long tifn)
408 {
409 if (static_cpu_has(X86_FEATURE_VIRT_SSBD))
410 amd_set_ssb_virt_state(tifn);
411 else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD))
412 amd_set_core_ssb_state(tifn);
413 else
414 intel_set_ssb_state(tifn);
415 }
416
417 void speculative_store_bypass_update(unsigned long tif)
418 {
419 preempt_disable();
420 __speculative_store_bypass_update(tif);
421 preempt_enable();
422 }
423
424 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
425 struct tss_struct *tss)
426 {
427 struct thread_struct *prev, *next;
428 unsigned long tifp, tifn;
429
430 prev = &prev_p->thread;
431 next = &next_p->thread;
432
433 tifn = READ_ONCE(task_thread_info(next_p)->flags);
434 tifp = READ_ONCE(task_thread_info(prev_p)->flags);
435 switch_to_bitmap(tss, prev, next, tifp, tifn);
436
437 propagate_user_return_notify(prev_p, next_p);
438
439 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
440 arch_has_block_step()) {
441 unsigned long debugctl, msk;
442
443 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
444 debugctl &= ~DEBUGCTLMSR_BTF;
445 msk = tifn & _TIF_BLOCKSTEP;
446 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
447 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
448 }
449
450 if ((tifp ^ tifn) & _TIF_NOTSC)
451 cr4_toggle_bits(X86_CR4_TSD);
452
453 if ((tifp ^ tifn) & _TIF_NOCPUID)
454 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
455
456 if ((tifp ^ tifn) & _TIF_SSBD)
457 __speculative_store_bypass_update(tifn);
458 }
459
460 /*
461 * Idle related variables and functions
462 */
463 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
464 EXPORT_SYMBOL(boot_option_idle_override);
465
466 static void (*x86_idle)(void);
467
468 #ifndef CONFIG_SMP
469 static inline void play_dead(void)
470 {
471 BUG();
472 }
473 #endif
474
475 void arch_cpu_idle_enter(void)
476 {
477 tsc_verify_tsc_adjust(false);
478 local_touch_nmi();
479 }
480
481 void arch_cpu_idle_dead(void)
482 {
483 play_dead();
484 }
485
486 /*
487 * Called from the generic idle code.
488 */
489 void arch_cpu_idle(void)
490 {
491 x86_idle();
492 }
493
494 /*
495 * We use this if we don't have any better idle routine..
496 */
497 void __cpuidle default_idle(void)
498 {
499 trace_cpu_idle_rcuidle(1, smp_processor_id());
500 safe_halt();
501 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
502 }
503 #ifdef CONFIG_APM_MODULE
504 EXPORT_SYMBOL(default_idle);
505 #endif
506
507 #ifdef CONFIG_XEN
508 bool xen_set_default_idle(void)
509 {
510 bool ret = !!x86_idle;
511
512 x86_idle = default_idle;
513
514 return ret;
515 }
516 #endif
517 void stop_this_cpu(void *dummy)
518 {
519 local_irq_disable();
520 /*
521 * Remove this CPU:
522 */
523 set_cpu_online(smp_processor_id(), false);
524 disable_local_APIC();
525 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
526
527 for (;;)
528 halt();
529 }
530
531 /*
532 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
533 * states (local apic timer and TSC stop).
534 */
535 static void amd_e400_idle(void)
536 {
537 /*
538 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
539 * gets set after static_cpu_has() places have been converted via
540 * alternatives.
541 */
542 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
543 default_idle();
544 return;
545 }
546
547 tick_broadcast_enter();
548
549 default_idle();
550
551 /*
552 * The switch back from broadcast mode needs to be called with
553 * interrupts disabled.
554 */
555 local_irq_disable();
556 tick_broadcast_exit();
557 local_irq_enable();
558 }
559
560 /*
561 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
562 * We can't rely on cpuidle installing MWAIT, because it will not load
563 * on systems that support only C1 -- so the boot default must be MWAIT.
564 *
565 * Some AMD machines are the opposite, they depend on using HALT.
566 *
567 * So for default C1, which is used during boot until cpuidle loads,
568 * use MWAIT-C1 on Intel HW that has it, else use HALT.
569 */
570 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
571 {
572 if (c->x86_vendor != X86_VENDOR_INTEL)
573 return 0;
574
575 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
576 return 0;
577
578 return 1;
579 }
580
581 /*
582 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
583 * with interrupts enabled and no flags, which is backwards compatible with the
584 * original MWAIT implementation.
585 */
586 static __cpuidle void mwait_idle(void)
587 {
588 if (!current_set_polling_and_test()) {
589 trace_cpu_idle_rcuidle(1, smp_processor_id());
590 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
591 mb(); /* quirk */
592 clflush((void *)&current_thread_info()->flags);
593 mb(); /* quirk */
594 }
595
596 if (ibrs_inuse)
597 native_wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
598
599 __monitor((void *)&current_thread_info()->flags, 0, 0);
600 if (!need_resched()) {
601 __sti_mwait(0, 0);
602 if (ibrs_inuse)
603 native_wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base | SPEC_CTRL_IBRS);
604 } else {
605 if (ibrs_inuse)
606 native_wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base | SPEC_CTRL_IBRS);
607 local_irq_enable();
608 }
609 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
610 } else {
611 local_irq_enable();
612 }
613 __current_clr_polling();
614 }
615
616 void select_idle_routine(const struct cpuinfo_x86 *c)
617 {
618 #ifdef CONFIG_SMP
619 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
620 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
621 #endif
622 if (x86_idle || boot_option_idle_override == IDLE_POLL)
623 return;
624
625 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
626 pr_info("using AMD E400 aware idle routine\n");
627 x86_idle = amd_e400_idle;
628 } else if (prefer_mwait_c1_over_halt(c)) {
629 pr_info("using mwait in idle threads\n");
630 x86_idle = mwait_idle;
631 } else
632 x86_idle = default_idle;
633 }
634
635 void amd_e400_c1e_apic_setup(void)
636 {
637 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
638 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
639 local_irq_disable();
640 tick_broadcast_force();
641 local_irq_enable();
642 }
643 }
644
645 void __init arch_post_acpi_subsys_init(void)
646 {
647 u32 lo, hi;
648
649 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
650 return;
651
652 /*
653 * AMD E400 detection needs to happen after ACPI has been enabled. If
654 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
655 * MSR_K8_INT_PENDING_MSG.
656 */
657 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
658 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
659 return;
660
661 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
662
663 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
664 mark_tsc_unstable("TSC halt in AMD C1E");
665 pr_info("System has AMD C1E enabled\n");
666 }
667
668 static int __init idle_setup(char *str)
669 {
670 if (!str)
671 return -EINVAL;
672
673 if (!strcmp(str, "poll")) {
674 pr_info("using polling idle threads\n");
675 boot_option_idle_override = IDLE_POLL;
676 cpu_idle_poll_ctrl(true);
677 } else if (!strcmp(str, "halt")) {
678 /*
679 * When the boot option of idle=halt is added, halt is
680 * forced to be used for CPU idle. In such case CPU C2/C3
681 * won't be used again.
682 * To continue to load the CPU idle driver, don't touch
683 * the boot_option_idle_override.
684 */
685 x86_idle = default_idle;
686 boot_option_idle_override = IDLE_HALT;
687 } else if (!strcmp(str, "nomwait")) {
688 /*
689 * If the boot option of "idle=nomwait" is added,
690 * it means that mwait will be disabled for CPU C2/C3
691 * states. In such case it won't touch the variable
692 * of boot_option_idle_override.
693 */
694 boot_option_idle_override = IDLE_NOMWAIT;
695 } else
696 return -1;
697
698 return 0;
699 }
700 early_param("idle", idle_setup);
701
702 unsigned long arch_align_stack(unsigned long sp)
703 {
704 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
705 sp -= get_random_int() % 8192;
706 return sp & ~0xf;
707 }
708
709 unsigned long arch_randomize_brk(struct mm_struct *mm)
710 {
711 return randomize_page(mm->brk, 0x02000000);
712 }
713
714 /*
715 * Called from fs/proc with a reference on @p to find the function
716 * which called into schedule(). This needs to be done carefully
717 * because the task might wake up and we might look at a stack
718 * changing under us.
719 */
720 unsigned long get_wchan(struct task_struct *p)
721 {
722 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
723 int count = 0;
724
725 if (!p || p == current || p->state == TASK_RUNNING)
726 return 0;
727
728 if (!try_get_task_stack(p))
729 return 0;
730
731 start = (unsigned long)task_stack_page(p);
732 if (!start)
733 goto out;
734
735 /*
736 * Layout of the stack page:
737 *
738 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
739 * PADDING
740 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
741 * stack
742 * ----------- bottom = start
743 *
744 * The tasks stack pointer points at the location where the
745 * framepointer is stored. The data on the stack is:
746 * ... IP FP ... IP FP
747 *
748 * We need to read FP and IP, so we need to adjust the upper
749 * bound by another unsigned long.
750 */
751 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
752 top -= 2 * sizeof(unsigned long);
753 bottom = start;
754
755 sp = READ_ONCE(p->thread.sp);
756 if (sp < bottom || sp > top)
757 goto out;
758
759 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
760 do {
761 if (fp < bottom || fp > top)
762 goto out;
763 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
764 if (!in_sched_functions(ip)) {
765 ret = ip;
766 goto out;
767 }
768 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
769 } while (count++ < 16 && p->state != TASK_RUNNING);
770
771 out:
772 put_task_stack(p);
773 return ret;
774 }
775
776 long do_arch_prctl_common(struct task_struct *task, int option,
777 unsigned long cpuid_enabled)
778 {
779 switch (option) {
780 case ARCH_GET_CPUID:
781 return get_cpuid_mode();
782 case ARCH_SET_CPUID:
783 return set_cpuid_mode(task, cpuid_enabled);
784 }
785
786 return -EINVAL;
787 }