]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/process.c
x86/iopl: Restrict iopl() permission scope
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / process.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <linux/acpi.h>
26 #include <linux/elf-randomize.h>
27 #include <trace/events/power.h>
28 #include <linux/hw_breakpoint.h>
29 #include <asm/cpu.h>
30 #include <asm/apic.h>
31 #include <asm/syscalls.h>
32 #include <linux/uaccess.h>
33 #include <asm/mwait.h>
34 #include <asm/fpu/internal.h>
35 #include <asm/debugreg.h>
36 #include <asm/nmi.h>
37 #include <asm/tlbflush.h>
38 #include <asm/mce.h>
39 #include <asm/vm86.h>
40 #include <asm/switch_to.h>
41 #include <asm/desc.h>
42 #include <asm/prctl.h>
43 #include <asm/spec-ctrl.h>
44 #include <asm/io_bitmap.h>
45 #include <asm/proto.h>
46
47 #include "process.h"
48
49 /*
50 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
51 * no more per-task TSS's. The TSS size is kept cacheline-aligned
52 * so they are allowed to end up in the .data..cacheline_aligned
53 * section. Since TSS's are completely CPU-local, we want them
54 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
55 */
56 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
57 .x86_tss = {
58 /*
59 * .sp0 is only used when entering ring 0 from a lower
60 * privilege level. Since the init task never runs anything
61 * but ring 0 code, there is no need for a valid value here.
62 * Poison it.
63 */
64 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
65
66 /*
67 * .sp1 is cpu_current_top_of_stack. The init task never
68 * runs user code, but cpu_current_top_of_stack should still
69 * be well defined before the first context switch.
70 */
71 .sp1 = TOP_OF_INIT_STACK,
72
73 #ifdef CONFIG_X86_32
74 .ss0 = __KERNEL_DS,
75 .ss1 = __KERNEL_CS,
76 #endif
77 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID,
78 },
79 };
80 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
81
82 DEFINE_PER_CPU(bool, __tss_limit_invalid);
83 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
84
85 /*
86 * this gets called so that we can store lazy state into memory and copy the
87 * current task into the new thread.
88 */
89 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
90 {
91 memcpy(dst, src, arch_task_struct_size);
92 #ifdef CONFIG_VM86
93 dst->thread.vm86 = NULL;
94 #endif
95
96 return fpu__copy(dst, src);
97 }
98
99 /*
100 * Free current thread data structures etc..
101 */
102 void exit_thread(struct task_struct *tsk)
103 {
104 struct thread_struct *t = &tsk->thread;
105 struct fpu *fpu = &t->fpu;
106
107 if (test_thread_flag(TIF_IO_BITMAP))
108 io_bitmap_exit();
109
110 free_vm86(t);
111
112 fpu__drop(fpu);
113 }
114
115 static int set_new_tls(struct task_struct *p, unsigned long tls)
116 {
117 struct user_desc __user *utls = (struct user_desc __user *)tls;
118
119 if (in_ia32_syscall())
120 return do_set_thread_area(p, -1, utls, 0);
121 else
122 return do_set_thread_area_64(p, ARCH_SET_FS, tls);
123 }
124
125 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
126 unsigned long arg, struct task_struct *p, unsigned long tls)
127 {
128 struct inactive_task_frame *frame;
129 struct fork_frame *fork_frame;
130 struct pt_regs *childregs;
131 int ret = 0;
132
133 childregs = task_pt_regs(p);
134 fork_frame = container_of(childregs, struct fork_frame, regs);
135 frame = &fork_frame->frame;
136
137 frame->bp = 0;
138 frame->ret_addr = (unsigned long) ret_from_fork;
139 p->thread.sp = (unsigned long) fork_frame;
140 p->thread.io_bitmap = NULL;
141 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
142
143 #ifdef CONFIG_X86_64
144 savesegment(gs, p->thread.gsindex);
145 p->thread.gsbase = p->thread.gsindex ? 0 : current->thread.gsbase;
146 savesegment(fs, p->thread.fsindex);
147 p->thread.fsbase = p->thread.fsindex ? 0 : current->thread.fsbase;
148 savesegment(es, p->thread.es);
149 savesegment(ds, p->thread.ds);
150 #else
151 p->thread.sp0 = (unsigned long) (childregs + 1);
152 /*
153 * Clear all status flags including IF and set fixed bit. 64bit
154 * does not have this initialization as the frame does not contain
155 * flags. The flags consistency (especially vs. AC) is there
156 * ensured via objtool, which lacks 32bit support.
157 */
158 frame->flags = X86_EFLAGS_FIXED;
159 #endif
160
161 /* Kernel thread ? */
162 if (unlikely(p->flags & PF_KTHREAD)) {
163 memset(childregs, 0, sizeof(struct pt_regs));
164 kthread_frame_init(frame, sp, arg);
165 return 0;
166 }
167
168 frame->bx = 0;
169 *childregs = *current_pt_regs();
170 childregs->ax = 0;
171 if (sp)
172 childregs->sp = sp;
173
174 #ifdef CONFIG_X86_32
175 task_user_gs(p) = get_user_gs(current_pt_regs());
176 #endif
177
178 /* Set a new TLS for the child thread? */
179 if (clone_flags & CLONE_SETTLS)
180 ret = set_new_tls(p, tls);
181
182 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
183 io_bitmap_share(p);
184
185 return ret;
186 }
187
188 void flush_thread(void)
189 {
190 struct task_struct *tsk = current;
191
192 flush_ptrace_hw_breakpoint(tsk);
193 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
194
195 fpu__clear(&tsk->thread.fpu);
196 }
197
198 void disable_TSC(void)
199 {
200 preempt_disable();
201 if (!test_and_set_thread_flag(TIF_NOTSC))
202 /*
203 * Must flip the CPU state synchronously with
204 * TIF_NOTSC in the current running context.
205 */
206 cr4_set_bits(X86_CR4_TSD);
207 preempt_enable();
208 }
209
210 static void enable_TSC(void)
211 {
212 preempt_disable();
213 if (test_and_clear_thread_flag(TIF_NOTSC))
214 /*
215 * Must flip the CPU state synchronously with
216 * TIF_NOTSC in the current running context.
217 */
218 cr4_clear_bits(X86_CR4_TSD);
219 preempt_enable();
220 }
221
222 int get_tsc_mode(unsigned long adr)
223 {
224 unsigned int val;
225
226 if (test_thread_flag(TIF_NOTSC))
227 val = PR_TSC_SIGSEGV;
228 else
229 val = PR_TSC_ENABLE;
230
231 return put_user(val, (unsigned int __user *)adr);
232 }
233
234 int set_tsc_mode(unsigned int val)
235 {
236 if (val == PR_TSC_SIGSEGV)
237 disable_TSC();
238 else if (val == PR_TSC_ENABLE)
239 enable_TSC();
240 else
241 return -EINVAL;
242
243 return 0;
244 }
245
246 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
247
248 static void set_cpuid_faulting(bool on)
249 {
250 u64 msrval;
251
252 msrval = this_cpu_read(msr_misc_features_shadow);
253 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
254 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
255 this_cpu_write(msr_misc_features_shadow, msrval);
256 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
257 }
258
259 static void disable_cpuid(void)
260 {
261 preempt_disable();
262 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
263 /*
264 * Must flip the CPU state synchronously with
265 * TIF_NOCPUID in the current running context.
266 */
267 set_cpuid_faulting(true);
268 }
269 preempt_enable();
270 }
271
272 static void enable_cpuid(void)
273 {
274 preempt_disable();
275 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
276 /*
277 * Must flip the CPU state synchronously with
278 * TIF_NOCPUID in the current running context.
279 */
280 set_cpuid_faulting(false);
281 }
282 preempt_enable();
283 }
284
285 static int get_cpuid_mode(void)
286 {
287 return !test_thread_flag(TIF_NOCPUID);
288 }
289
290 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
291 {
292 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
293 return -ENODEV;
294
295 if (cpuid_enabled)
296 enable_cpuid();
297 else
298 disable_cpuid();
299
300 return 0;
301 }
302
303 /*
304 * Called immediately after a successful exec.
305 */
306 void arch_setup_new_exec(void)
307 {
308 /* If cpuid was previously disabled for this task, re-enable it. */
309 if (test_thread_flag(TIF_NOCPUID))
310 enable_cpuid();
311
312 /*
313 * Don't inherit TIF_SSBD across exec boundary when
314 * PR_SPEC_DISABLE_NOEXEC is used.
315 */
316 if (test_thread_flag(TIF_SSBD) &&
317 task_spec_ssb_noexec(current)) {
318 clear_thread_flag(TIF_SSBD);
319 task_clear_spec_ssb_disable(current);
320 task_clear_spec_ssb_noexec(current);
321 speculation_ctrl_update(task_thread_info(current)->flags);
322 }
323 }
324
325 static inline void tss_invalidate_io_bitmap(struct tss_struct *tss)
326 {
327 /*
328 * Invalidate the I/O bitmap by moving io_bitmap_base outside the
329 * TSS limit so any subsequent I/O access from user space will
330 * trigger a #GP.
331 *
332 * This is correct even when VMEXIT rewrites the TSS limit
333 * to 0x67 as the only requirement is that the base points
334 * outside the limit.
335 */
336 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
337 }
338
339 static inline void switch_to_bitmap(unsigned long tifp)
340 {
341 /*
342 * Invalidate I/O bitmap if the previous task used it. This prevents
343 * any possible leakage of an active I/O bitmap.
344 *
345 * If the next task has an I/O bitmap it will handle it on exit to
346 * user mode.
347 */
348 if (tifp & _TIF_IO_BITMAP)
349 tss_invalidate_io_bitmap(this_cpu_ptr(&cpu_tss_rw));
350 }
351
352 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
353 {
354 /*
355 * Copy at least the byte range of the incoming tasks bitmap which
356 * covers the permitted I/O ports.
357 *
358 * If the previous task which used an I/O bitmap had more bits
359 * permitted, then the copy needs to cover those as well so they
360 * get turned off.
361 */
362 memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
363 max(tss->io_bitmap.prev_max, iobm->max));
364
365 /*
366 * Store the new max and the sequence number of this bitmap
367 * and a pointer to the bitmap itself.
368 */
369 tss->io_bitmap.prev_max = iobm->max;
370 tss->io_bitmap.prev_sequence = iobm->sequence;
371 }
372
373 /**
374 * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode
375 */
376 void tss_update_io_bitmap(void)
377 {
378 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
379 u16 *base = &tss->x86_tss.io_bitmap_base;
380
381 if (test_thread_flag(TIF_IO_BITMAP)) {
382 struct thread_struct *t = &current->thread;
383
384 if (IS_ENABLED(CONFIG_X86_IOPL_EMULATION) &&
385 t->iopl_emul == 3) {
386 *base = IO_BITMAP_OFFSET_VALID_ALL;
387 } else {
388 struct io_bitmap *iobm = t->io_bitmap;
389 /*
390 * Only copy bitmap data when the sequence number
391 * differs. The update time is accounted to the
392 * incoming task.
393 */
394 if (tss->io_bitmap.prev_sequence != iobm->sequence)
395 tss_copy_io_bitmap(tss, iobm);
396
397 /* Enable the bitmap */
398 *base = IO_BITMAP_OFFSET_VALID_MAP;
399 }
400 /*
401 * Make sure that the TSS limit is covering the io bitmap.
402 * It might have been cut down by a VMEXIT to 0x67 which
403 * would cause a subsequent I/O access from user space to
404 * trigger a #GP because tbe bitmap is outside the TSS
405 * limit.
406 */
407 refresh_tss_limit();
408 } else {
409 tss_invalidate_io_bitmap(tss);
410 }
411 }
412
413 #ifdef CONFIG_SMP
414
415 struct ssb_state {
416 struct ssb_state *shared_state;
417 raw_spinlock_t lock;
418 unsigned int disable_state;
419 unsigned long local_state;
420 };
421
422 #define LSTATE_SSB 0
423
424 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
425
426 void speculative_store_bypass_ht_init(void)
427 {
428 struct ssb_state *st = this_cpu_ptr(&ssb_state);
429 unsigned int this_cpu = smp_processor_id();
430 unsigned int cpu;
431
432 st->local_state = 0;
433
434 /*
435 * Shared state setup happens once on the first bringup
436 * of the CPU. It's not destroyed on CPU hotunplug.
437 */
438 if (st->shared_state)
439 return;
440
441 raw_spin_lock_init(&st->lock);
442
443 /*
444 * Go over HT siblings and check whether one of them has set up the
445 * shared state pointer already.
446 */
447 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
448 if (cpu == this_cpu)
449 continue;
450
451 if (!per_cpu(ssb_state, cpu).shared_state)
452 continue;
453
454 /* Link it to the state of the sibling: */
455 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
456 return;
457 }
458
459 /*
460 * First HT sibling to come up on the core. Link shared state of
461 * the first HT sibling to itself. The siblings on the same core
462 * which come up later will see the shared state pointer and link
463 * themself to the state of this CPU.
464 */
465 st->shared_state = st;
466 }
467
468 /*
469 * Logic is: First HT sibling enables SSBD for both siblings in the core
470 * and last sibling to disable it, disables it for the whole core. This how
471 * MSR_SPEC_CTRL works in "hardware":
472 *
473 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
474 */
475 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
476 {
477 struct ssb_state *st = this_cpu_ptr(&ssb_state);
478 u64 msr = x86_amd_ls_cfg_base;
479
480 if (!static_cpu_has(X86_FEATURE_ZEN)) {
481 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
482 wrmsrl(MSR_AMD64_LS_CFG, msr);
483 return;
484 }
485
486 if (tifn & _TIF_SSBD) {
487 /*
488 * Since this can race with prctl(), block reentry on the
489 * same CPU.
490 */
491 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
492 return;
493
494 msr |= x86_amd_ls_cfg_ssbd_mask;
495
496 raw_spin_lock(&st->shared_state->lock);
497 /* First sibling enables SSBD: */
498 if (!st->shared_state->disable_state)
499 wrmsrl(MSR_AMD64_LS_CFG, msr);
500 st->shared_state->disable_state++;
501 raw_spin_unlock(&st->shared_state->lock);
502 } else {
503 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
504 return;
505
506 raw_spin_lock(&st->shared_state->lock);
507 st->shared_state->disable_state--;
508 if (!st->shared_state->disable_state)
509 wrmsrl(MSR_AMD64_LS_CFG, msr);
510 raw_spin_unlock(&st->shared_state->lock);
511 }
512 }
513 #else
514 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
515 {
516 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
517
518 wrmsrl(MSR_AMD64_LS_CFG, msr);
519 }
520 #endif
521
522 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
523 {
524 /*
525 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
526 * so ssbd_tif_to_spec_ctrl() just works.
527 */
528 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
529 }
530
531 /*
532 * Update the MSRs managing speculation control, during context switch.
533 *
534 * tifp: Previous task's thread flags
535 * tifn: Next task's thread flags
536 */
537 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
538 unsigned long tifn)
539 {
540 unsigned long tif_diff = tifp ^ tifn;
541 u64 msr = x86_spec_ctrl_base;
542 bool updmsr = false;
543
544 lockdep_assert_irqs_disabled();
545
546 /*
547 * If TIF_SSBD is different, select the proper mitigation
548 * method. Note that if SSBD mitigation is disabled or permanentely
549 * enabled this branch can't be taken because nothing can set
550 * TIF_SSBD.
551 */
552 if (tif_diff & _TIF_SSBD) {
553 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
554 amd_set_ssb_virt_state(tifn);
555 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
556 amd_set_core_ssb_state(tifn);
557 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
558 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
559 msr |= ssbd_tif_to_spec_ctrl(tifn);
560 updmsr = true;
561 }
562 }
563
564 /*
565 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled,
566 * otherwise avoid the MSR write.
567 */
568 if (IS_ENABLED(CONFIG_SMP) &&
569 static_branch_unlikely(&switch_to_cond_stibp)) {
570 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
571 msr |= stibp_tif_to_spec_ctrl(tifn);
572 }
573
574 if (updmsr)
575 wrmsrl(MSR_IA32_SPEC_CTRL, msr);
576 }
577
578 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
579 {
580 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
581 if (task_spec_ssb_disable(tsk))
582 set_tsk_thread_flag(tsk, TIF_SSBD);
583 else
584 clear_tsk_thread_flag(tsk, TIF_SSBD);
585
586 if (task_spec_ib_disable(tsk))
587 set_tsk_thread_flag(tsk, TIF_SPEC_IB);
588 else
589 clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
590 }
591 /* Return the updated threadinfo flags*/
592 return task_thread_info(tsk)->flags;
593 }
594
595 void speculation_ctrl_update(unsigned long tif)
596 {
597 unsigned long flags;
598
599 /* Forced update. Make sure all relevant TIF flags are different */
600 local_irq_save(flags);
601 __speculation_ctrl_update(~tif, tif);
602 local_irq_restore(flags);
603 }
604
605 /* Called from seccomp/prctl update */
606 void speculation_ctrl_update_current(void)
607 {
608 preempt_disable();
609 speculation_ctrl_update(speculation_ctrl_update_tif(current));
610 preempt_enable();
611 }
612
613 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
614 {
615 struct thread_struct *prev, *next;
616 unsigned long tifp, tifn;
617
618 prev = &prev_p->thread;
619 next = &next_p->thread;
620
621 tifn = READ_ONCE(task_thread_info(next_p)->flags);
622 tifp = READ_ONCE(task_thread_info(prev_p)->flags);
623
624 switch_to_bitmap(tifp);
625
626 propagate_user_return_notify(prev_p, next_p);
627
628 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
629 arch_has_block_step()) {
630 unsigned long debugctl, msk;
631
632 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
633 debugctl &= ~DEBUGCTLMSR_BTF;
634 msk = tifn & _TIF_BLOCKSTEP;
635 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
636 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
637 }
638
639 if ((tifp ^ tifn) & _TIF_NOTSC)
640 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
641
642 if ((tifp ^ tifn) & _TIF_NOCPUID)
643 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
644
645 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
646 __speculation_ctrl_update(tifp, tifn);
647 } else {
648 speculation_ctrl_update_tif(prev_p);
649 tifn = speculation_ctrl_update_tif(next_p);
650
651 /* Enforce MSR update to ensure consistent state */
652 __speculation_ctrl_update(~tifn, tifn);
653 }
654 }
655
656 /*
657 * Idle related variables and functions
658 */
659 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
660 EXPORT_SYMBOL(boot_option_idle_override);
661
662 static void (*x86_idle)(void);
663
664 #ifndef CONFIG_SMP
665 static inline void play_dead(void)
666 {
667 BUG();
668 }
669 #endif
670
671 void arch_cpu_idle_enter(void)
672 {
673 tsc_verify_tsc_adjust(false);
674 local_touch_nmi();
675 }
676
677 void arch_cpu_idle_dead(void)
678 {
679 play_dead();
680 }
681
682 /*
683 * Called from the generic idle code.
684 */
685 void arch_cpu_idle(void)
686 {
687 x86_idle();
688 }
689
690 /*
691 * We use this if we don't have any better idle routine..
692 */
693 void __cpuidle default_idle(void)
694 {
695 trace_cpu_idle_rcuidle(1, smp_processor_id());
696 safe_halt();
697 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
698 }
699 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
700 EXPORT_SYMBOL(default_idle);
701 #endif
702
703 #ifdef CONFIG_XEN
704 bool xen_set_default_idle(void)
705 {
706 bool ret = !!x86_idle;
707
708 x86_idle = default_idle;
709
710 return ret;
711 }
712 #endif
713
714 void stop_this_cpu(void *dummy)
715 {
716 local_irq_disable();
717 /*
718 * Remove this CPU:
719 */
720 set_cpu_online(smp_processor_id(), false);
721 disable_local_APIC();
722 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
723
724 /*
725 * Use wbinvd on processors that support SME. This provides support
726 * for performing a successful kexec when going from SME inactive
727 * to SME active (or vice-versa). The cache must be cleared so that
728 * if there are entries with the same physical address, both with and
729 * without the encryption bit, they don't race each other when flushed
730 * and potentially end up with the wrong entry being committed to
731 * memory.
732 */
733 if (boot_cpu_has(X86_FEATURE_SME))
734 native_wbinvd();
735 for (;;) {
736 /*
737 * Use native_halt() so that memory contents don't change
738 * (stack usage and variables) after possibly issuing the
739 * native_wbinvd() above.
740 */
741 native_halt();
742 }
743 }
744
745 /*
746 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
747 * states (local apic timer and TSC stop).
748 */
749 static void amd_e400_idle(void)
750 {
751 /*
752 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
753 * gets set after static_cpu_has() places have been converted via
754 * alternatives.
755 */
756 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
757 default_idle();
758 return;
759 }
760
761 tick_broadcast_enter();
762
763 default_idle();
764
765 /*
766 * The switch back from broadcast mode needs to be called with
767 * interrupts disabled.
768 */
769 local_irq_disable();
770 tick_broadcast_exit();
771 local_irq_enable();
772 }
773
774 /*
775 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
776 * We can't rely on cpuidle installing MWAIT, because it will not load
777 * on systems that support only C1 -- so the boot default must be MWAIT.
778 *
779 * Some AMD machines are the opposite, they depend on using HALT.
780 *
781 * So for default C1, which is used during boot until cpuidle loads,
782 * use MWAIT-C1 on Intel HW that has it, else use HALT.
783 */
784 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
785 {
786 if (c->x86_vendor != X86_VENDOR_INTEL)
787 return 0;
788
789 if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
790 return 0;
791
792 return 1;
793 }
794
795 /*
796 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
797 * with interrupts enabled and no flags, which is backwards compatible with the
798 * original MWAIT implementation.
799 */
800 static __cpuidle void mwait_idle(void)
801 {
802 if (!current_set_polling_and_test()) {
803 trace_cpu_idle_rcuidle(1, smp_processor_id());
804 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
805 mb(); /* quirk */
806 clflush((void *)&current_thread_info()->flags);
807 mb(); /* quirk */
808 }
809
810 __monitor((void *)&current_thread_info()->flags, 0, 0);
811 if (!need_resched())
812 __sti_mwait(0, 0);
813 else
814 local_irq_enable();
815 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
816 } else {
817 local_irq_enable();
818 }
819 __current_clr_polling();
820 }
821
822 void select_idle_routine(const struct cpuinfo_x86 *c)
823 {
824 #ifdef CONFIG_SMP
825 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
826 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
827 #endif
828 if (x86_idle || boot_option_idle_override == IDLE_POLL)
829 return;
830
831 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
832 pr_info("using AMD E400 aware idle routine\n");
833 x86_idle = amd_e400_idle;
834 } else if (prefer_mwait_c1_over_halt(c)) {
835 pr_info("using mwait in idle threads\n");
836 x86_idle = mwait_idle;
837 } else
838 x86_idle = default_idle;
839 }
840
841 void amd_e400_c1e_apic_setup(void)
842 {
843 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
844 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
845 local_irq_disable();
846 tick_broadcast_force();
847 local_irq_enable();
848 }
849 }
850
851 void __init arch_post_acpi_subsys_init(void)
852 {
853 u32 lo, hi;
854
855 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
856 return;
857
858 /*
859 * AMD E400 detection needs to happen after ACPI has been enabled. If
860 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
861 * MSR_K8_INT_PENDING_MSG.
862 */
863 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
864 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
865 return;
866
867 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
868
869 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
870 mark_tsc_unstable("TSC halt in AMD C1E");
871 pr_info("System has AMD C1E enabled\n");
872 }
873
874 static int __init idle_setup(char *str)
875 {
876 if (!str)
877 return -EINVAL;
878
879 if (!strcmp(str, "poll")) {
880 pr_info("using polling idle threads\n");
881 boot_option_idle_override = IDLE_POLL;
882 cpu_idle_poll_ctrl(true);
883 } else if (!strcmp(str, "halt")) {
884 /*
885 * When the boot option of idle=halt is added, halt is
886 * forced to be used for CPU idle. In such case CPU C2/C3
887 * won't be used again.
888 * To continue to load the CPU idle driver, don't touch
889 * the boot_option_idle_override.
890 */
891 x86_idle = default_idle;
892 boot_option_idle_override = IDLE_HALT;
893 } else if (!strcmp(str, "nomwait")) {
894 /*
895 * If the boot option of "idle=nomwait" is added,
896 * it means that mwait will be disabled for CPU C2/C3
897 * states. In such case it won't touch the variable
898 * of boot_option_idle_override.
899 */
900 boot_option_idle_override = IDLE_NOMWAIT;
901 } else
902 return -1;
903
904 return 0;
905 }
906 early_param("idle", idle_setup);
907
908 unsigned long arch_align_stack(unsigned long sp)
909 {
910 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
911 sp -= get_random_int() % 8192;
912 return sp & ~0xf;
913 }
914
915 unsigned long arch_randomize_brk(struct mm_struct *mm)
916 {
917 return randomize_page(mm->brk, 0x02000000);
918 }
919
920 /*
921 * Called from fs/proc with a reference on @p to find the function
922 * which called into schedule(). This needs to be done carefully
923 * because the task might wake up and we might look at a stack
924 * changing under us.
925 */
926 unsigned long get_wchan(struct task_struct *p)
927 {
928 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
929 int count = 0;
930
931 if (p == current || p->state == TASK_RUNNING)
932 return 0;
933
934 if (!try_get_task_stack(p))
935 return 0;
936
937 start = (unsigned long)task_stack_page(p);
938 if (!start)
939 goto out;
940
941 /*
942 * Layout of the stack page:
943 *
944 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
945 * PADDING
946 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
947 * stack
948 * ----------- bottom = start
949 *
950 * The tasks stack pointer points at the location where the
951 * framepointer is stored. The data on the stack is:
952 * ... IP FP ... IP FP
953 *
954 * We need to read FP and IP, so we need to adjust the upper
955 * bound by another unsigned long.
956 */
957 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
958 top -= 2 * sizeof(unsigned long);
959 bottom = start;
960
961 sp = READ_ONCE(p->thread.sp);
962 if (sp < bottom || sp > top)
963 goto out;
964
965 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
966 do {
967 if (fp < bottom || fp > top)
968 goto out;
969 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
970 if (!in_sched_functions(ip)) {
971 ret = ip;
972 goto out;
973 }
974 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
975 } while (count++ < 16 && p->state != TASK_RUNNING);
976
977 out:
978 put_task_stack(p);
979 return ret;
980 }
981
982 long do_arch_prctl_common(struct task_struct *task, int option,
983 unsigned long cpuid_enabled)
984 {
985 switch (option) {
986 case ARCH_GET_CPUID:
987 return get_cpuid_mode();
988 case ARCH_SET_CPUID:
989 return set_cpuid_mode(task, cpuid_enabled);
990 }
991
992 return -EINVAL;
993 }