]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/process.c
x86/arch_prctl: Add controls for dynamic XSTATE components
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / process.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <linux/acpi.h>
26 #include <linux/elf-randomize.h>
27 #include <trace/events/power.h>
28 #include <linux/hw_breakpoint.h>
29 #include <asm/cpu.h>
30 #include <asm/apic.h>
31 #include <linux/uaccess.h>
32 #include <asm/mwait.h>
33 #include <asm/fpu/api.h>
34 #include <asm/fpu/sched.h>
35 #include <asm/debugreg.h>
36 #include <asm/nmi.h>
37 #include <asm/tlbflush.h>
38 #include <asm/mce.h>
39 #include <asm/vm86.h>
40 #include <asm/switch_to.h>
41 #include <asm/desc.h>
42 #include <asm/prctl.h>
43 #include <asm/spec-ctrl.h>
44 #include <asm/io_bitmap.h>
45 #include <asm/proto.h>
46 #include <asm/frame.h>
47
48 #include "process.h"
49
50 /*
51 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
52 * no more per-task TSS's. The TSS size is kept cacheline-aligned
53 * so they are allowed to end up in the .data..cacheline_aligned
54 * section. Since TSS's are completely CPU-local, we want them
55 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
56 */
57 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
58 .x86_tss = {
59 /*
60 * .sp0 is only used when entering ring 0 from a lower
61 * privilege level. Since the init task never runs anything
62 * but ring 0 code, there is no need for a valid value here.
63 * Poison it.
64 */
65 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
66
67 #ifdef CONFIG_X86_32
68 .sp1 = TOP_OF_INIT_STACK,
69
70 .ss0 = __KERNEL_DS,
71 .ss1 = __KERNEL_CS,
72 #endif
73 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID,
74 },
75 };
76 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
77
78 DEFINE_PER_CPU(bool, __tss_limit_invalid);
79 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
80
81 /*
82 * this gets called so that we can store lazy state into memory and copy the
83 * current task into the new thread.
84 */
85 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
86 {
87 memcpy(dst, src, arch_task_struct_size);
88 #ifdef CONFIG_VM86
89 dst->thread.vm86 = NULL;
90 #endif
91 /* Drop the copied pointer to current's fpstate */
92 dst->thread.fpu.fpstate = NULL;
93 return 0;
94 }
95
96 /*
97 * Free thread data structures etc..
98 */
99 void exit_thread(struct task_struct *tsk)
100 {
101 struct thread_struct *t = &tsk->thread;
102 struct fpu *fpu = &t->fpu;
103
104 if (test_thread_flag(TIF_IO_BITMAP))
105 io_bitmap_exit(tsk);
106
107 free_vm86(t);
108
109 fpu__drop(fpu);
110 }
111
112 static int set_new_tls(struct task_struct *p, unsigned long tls)
113 {
114 struct user_desc __user *utls = (struct user_desc __user *)tls;
115
116 if (in_ia32_syscall())
117 return do_set_thread_area(p, -1, utls, 0);
118 else
119 return do_set_thread_area_64(p, ARCH_SET_FS, tls);
120 }
121
122 int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg,
123 struct task_struct *p, unsigned long tls)
124 {
125 struct inactive_task_frame *frame;
126 struct fork_frame *fork_frame;
127 struct pt_regs *childregs;
128 int ret = 0;
129
130 childregs = task_pt_regs(p);
131 fork_frame = container_of(childregs, struct fork_frame, regs);
132 frame = &fork_frame->frame;
133
134 frame->bp = encode_frame_pointer(childregs);
135 frame->ret_addr = (unsigned long) ret_from_fork;
136 p->thread.sp = (unsigned long) fork_frame;
137 p->thread.io_bitmap = NULL;
138 p->thread.iopl_warn = 0;
139 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
140
141 #ifdef CONFIG_X86_64
142 current_save_fsgs();
143 p->thread.fsindex = current->thread.fsindex;
144 p->thread.fsbase = current->thread.fsbase;
145 p->thread.gsindex = current->thread.gsindex;
146 p->thread.gsbase = current->thread.gsbase;
147
148 savesegment(es, p->thread.es);
149 savesegment(ds, p->thread.ds);
150 #else
151 p->thread.sp0 = (unsigned long) (childregs + 1);
152 /*
153 * Clear all status flags including IF and set fixed bit. 64bit
154 * does not have this initialization as the frame does not contain
155 * flags. The flags consistency (especially vs. AC) is there
156 * ensured via objtool, which lacks 32bit support.
157 */
158 frame->flags = X86_EFLAGS_FIXED;
159 #endif
160
161 fpu_clone(p);
162
163 /* Kernel thread ? */
164 if (unlikely(p->flags & PF_KTHREAD)) {
165 p->thread.pkru = pkru_get_init_value();
166 memset(childregs, 0, sizeof(struct pt_regs));
167 kthread_frame_init(frame, sp, arg);
168 return 0;
169 }
170
171 /*
172 * Clone current's PKRU value from hardware. tsk->thread.pkru
173 * is only valid when scheduled out.
174 */
175 p->thread.pkru = read_pkru();
176
177 frame->bx = 0;
178 *childregs = *current_pt_regs();
179 childregs->ax = 0;
180 if (sp)
181 childregs->sp = sp;
182
183 #ifdef CONFIG_X86_32
184 task_user_gs(p) = get_user_gs(current_pt_regs());
185 #endif
186
187 if (unlikely(p->flags & PF_IO_WORKER)) {
188 /*
189 * An IO thread is a user space thread, but it doesn't
190 * return to ret_after_fork().
191 *
192 * In order to indicate that to tools like gdb,
193 * we reset the stack and instruction pointers.
194 *
195 * It does the same kernel frame setup to return to a kernel
196 * function that a kernel thread does.
197 */
198 childregs->sp = 0;
199 childregs->ip = 0;
200 kthread_frame_init(frame, sp, arg);
201 return 0;
202 }
203
204 /* Set a new TLS for the child thread? */
205 if (clone_flags & CLONE_SETTLS)
206 ret = set_new_tls(p, tls);
207
208 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
209 io_bitmap_share(p);
210
211 return ret;
212 }
213
214 static void pkru_flush_thread(void)
215 {
216 /*
217 * If PKRU is enabled the default PKRU value has to be loaded into
218 * the hardware right here (similar to context switch).
219 */
220 pkru_write_default();
221 }
222
223 void flush_thread(void)
224 {
225 struct task_struct *tsk = current;
226
227 flush_ptrace_hw_breakpoint(tsk);
228 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
229
230 fpu_flush_thread();
231 pkru_flush_thread();
232 }
233
234 void disable_TSC(void)
235 {
236 preempt_disable();
237 if (!test_and_set_thread_flag(TIF_NOTSC))
238 /*
239 * Must flip the CPU state synchronously with
240 * TIF_NOTSC in the current running context.
241 */
242 cr4_set_bits(X86_CR4_TSD);
243 preempt_enable();
244 }
245
246 static void enable_TSC(void)
247 {
248 preempt_disable();
249 if (test_and_clear_thread_flag(TIF_NOTSC))
250 /*
251 * Must flip the CPU state synchronously with
252 * TIF_NOTSC in the current running context.
253 */
254 cr4_clear_bits(X86_CR4_TSD);
255 preempt_enable();
256 }
257
258 int get_tsc_mode(unsigned long adr)
259 {
260 unsigned int val;
261
262 if (test_thread_flag(TIF_NOTSC))
263 val = PR_TSC_SIGSEGV;
264 else
265 val = PR_TSC_ENABLE;
266
267 return put_user(val, (unsigned int __user *)adr);
268 }
269
270 int set_tsc_mode(unsigned int val)
271 {
272 if (val == PR_TSC_SIGSEGV)
273 disable_TSC();
274 else if (val == PR_TSC_ENABLE)
275 enable_TSC();
276 else
277 return -EINVAL;
278
279 return 0;
280 }
281
282 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
283
284 static void set_cpuid_faulting(bool on)
285 {
286 u64 msrval;
287
288 msrval = this_cpu_read(msr_misc_features_shadow);
289 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
290 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
291 this_cpu_write(msr_misc_features_shadow, msrval);
292 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
293 }
294
295 static void disable_cpuid(void)
296 {
297 preempt_disable();
298 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
299 /*
300 * Must flip the CPU state synchronously with
301 * TIF_NOCPUID in the current running context.
302 */
303 set_cpuid_faulting(true);
304 }
305 preempt_enable();
306 }
307
308 static void enable_cpuid(void)
309 {
310 preempt_disable();
311 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
312 /*
313 * Must flip the CPU state synchronously with
314 * TIF_NOCPUID in the current running context.
315 */
316 set_cpuid_faulting(false);
317 }
318 preempt_enable();
319 }
320
321 static int get_cpuid_mode(void)
322 {
323 return !test_thread_flag(TIF_NOCPUID);
324 }
325
326 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
327 {
328 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
329 return -ENODEV;
330
331 if (cpuid_enabled)
332 enable_cpuid();
333 else
334 disable_cpuid();
335
336 return 0;
337 }
338
339 /*
340 * Called immediately after a successful exec.
341 */
342 void arch_setup_new_exec(void)
343 {
344 /* If cpuid was previously disabled for this task, re-enable it. */
345 if (test_thread_flag(TIF_NOCPUID))
346 enable_cpuid();
347
348 /*
349 * Don't inherit TIF_SSBD across exec boundary when
350 * PR_SPEC_DISABLE_NOEXEC is used.
351 */
352 if (test_thread_flag(TIF_SSBD) &&
353 task_spec_ssb_noexec(current)) {
354 clear_thread_flag(TIF_SSBD);
355 task_clear_spec_ssb_disable(current);
356 task_clear_spec_ssb_noexec(current);
357 speculation_ctrl_update(task_thread_info(current)->flags);
358 }
359 }
360
361 #ifdef CONFIG_X86_IOPL_IOPERM
362 static inline void switch_to_bitmap(unsigned long tifp)
363 {
364 /*
365 * Invalidate I/O bitmap if the previous task used it. This prevents
366 * any possible leakage of an active I/O bitmap.
367 *
368 * If the next task has an I/O bitmap it will handle it on exit to
369 * user mode.
370 */
371 if (tifp & _TIF_IO_BITMAP)
372 tss_invalidate_io_bitmap();
373 }
374
375 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
376 {
377 /*
378 * Copy at least the byte range of the incoming tasks bitmap which
379 * covers the permitted I/O ports.
380 *
381 * If the previous task which used an I/O bitmap had more bits
382 * permitted, then the copy needs to cover those as well so they
383 * get turned off.
384 */
385 memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
386 max(tss->io_bitmap.prev_max, iobm->max));
387
388 /*
389 * Store the new max and the sequence number of this bitmap
390 * and a pointer to the bitmap itself.
391 */
392 tss->io_bitmap.prev_max = iobm->max;
393 tss->io_bitmap.prev_sequence = iobm->sequence;
394 }
395
396 /**
397 * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode
398 */
399 void native_tss_update_io_bitmap(void)
400 {
401 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
402 struct thread_struct *t = &current->thread;
403 u16 *base = &tss->x86_tss.io_bitmap_base;
404
405 if (!test_thread_flag(TIF_IO_BITMAP)) {
406 native_tss_invalidate_io_bitmap();
407 return;
408 }
409
410 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
411 *base = IO_BITMAP_OFFSET_VALID_ALL;
412 } else {
413 struct io_bitmap *iobm = t->io_bitmap;
414
415 /*
416 * Only copy bitmap data when the sequence number differs. The
417 * update time is accounted to the incoming task.
418 */
419 if (tss->io_bitmap.prev_sequence != iobm->sequence)
420 tss_copy_io_bitmap(tss, iobm);
421
422 /* Enable the bitmap */
423 *base = IO_BITMAP_OFFSET_VALID_MAP;
424 }
425
426 /*
427 * Make sure that the TSS limit is covering the IO bitmap. It might have
428 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
429 * access from user space to trigger a #GP because tbe bitmap is outside
430 * the TSS limit.
431 */
432 refresh_tss_limit();
433 }
434 #else /* CONFIG_X86_IOPL_IOPERM */
435 static inline void switch_to_bitmap(unsigned long tifp) { }
436 #endif
437
438 #ifdef CONFIG_SMP
439
440 struct ssb_state {
441 struct ssb_state *shared_state;
442 raw_spinlock_t lock;
443 unsigned int disable_state;
444 unsigned long local_state;
445 };
446
447 #define LSTATE_SSB 0
448
449 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
450
451 void speculative_store_bypass_ht_init(void)
452 {
453 struct ssb_state *st = this_cpu_ptr(&ssb_state);
454 unsigned int this_cpu = smp_processor_id();
455 unsigned int cpu;
456
457 st->local_state = 0;
458
459 /*
460 * Shared state setup happens once on the first bringup
461 * of the CPU. It's not destroyed on CPU hotunplug.
462 */
463 if (st->shared_state)
464 return;
465
466 raw_spin_lock_init(&st->lock);
467
468 /*
469 * Go over HT siblings and check whether one of them has set up the
470 * shared state pointer already.
471 */
472 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
473 if (cpu == this_cpu)
474 continue;
475
476 if (!per_cpu(ssb_state, cpu).shared_state)
477 continue;
478
479 /* Link it to the state of the sibling: */
480 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
481 return;
482 }
483
484 /*
485 * First HT sibling to come up on the core. Link shared state of
486 * the first HT sibling to itself. The siblings on the same core
487 * which come up later will see the shared state pointer and link
488 * themselves to the state of this CPU.
489 */
490 st->shared_state = st;
491 }
492
493 /*
494 * Logic is: First HT sibling enables SSBD for both siblings in the core
495 * and last sibling to disable it, disables it for the whole core. This how
496 * MSR_SPEC_CTRL works in "hardware":
497 *
498 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
499 */
500 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
501 {
502 struct ssb_state *st = this_cpu_ptr(&ssb_state);
503 u64 msr = x86_amd_ls_cfg_base;
504
505 if (!static_cpu_has(X86_FEATURE_ZEN)) {
506 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
507 wrmsrl(MSR_AMD64_LS_CFG, msr);
508 return;
509 }
510
511 if (tifn & _TIF_SSBD) {
512 /*
513 * Since this can race with prctl(), block reentry on the
514 * same CPU.
515 */
516 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
517 return;
518
519 msr |= x86_amd_ls_cfg_ssbd_mask;
520
521 raw_spin_lock(&st->shared_state->lock);
522 /* First sibling enables SSBD: */
523 if (!st->shared_state->disable_state)
524 wrmsrl(MSR_AMD64_LS_CFG, msr);
525 st->shared_state->disable_state++;
526 raw_spin_unlock(&st->shared_state->lock);
527 } else {
528 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
529 return;
530
531 raw_spin_lock(&st->shared_state->lock);
532 st->shared_state->disable_state--;
533 if (!st->shared_state->disable_state)
534 wrmsrl(MSR_AMD64_LS_CFG, msr);
535 raw_spin_unlock(&st->shared_state->lock);
536 }
537 }
538 #else
539 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
540 {
541 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
542
543 wrmsrl(MSR_AMD64_LS_CFG, msr);
544 }
545 #endif
546
547 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
548 {
549 /*
550 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
551 * so ssbd_tif_to_spec_ctrl() just works.
552 */
553 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
554 }
555
556 /*
557 * Update the MSRs managing speculation control, during context switch.
558 *
559 * tifp: Previous task's thread flags
560 * tifn: Next task's thread flags
561 */
562 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
563 unsigned long tifn)
564 {
565 unsigned long tif_diff = tifp ^ tifn;
566 u64 msr = x86_spec_ctrl_base;
567 bool updmsr = false;
568
569 lockdep_assert_irqs_disabled();
570
571 /* Handle change of TIF_SSBD depending on the mitigation method. */
572 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
573 if (tif_diff & _TIF_SSBD)
574 amd_set_ssb_virt_state(tifn);
575 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
576 if (tif_diff & _TIF_SSBD)
577 amd_set_core_ssb_state(tifn);
578 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
579 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
580 updmsr |= !!(tif_diff & _TIF_SSBD);
581 msr |= ssbd_tif_to_spec_ctrl(tifn);
582 }
583
584 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
585 if (IS_ENABLED(CONFIG_SMP) &&
586 static_branch_unlikely(&switch_to_cond_stibp)) {
587 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
588 msr |= stibp_tif_to_spec_ctrl(tifn);
589 }
590
591 if (updmsr)
592 wrmsrl(MSR_IA32_SPEC_CTRL, msr);
593 }
594
595 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
596 {
597 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
598 if (task_spec_ssb_disable(tsk))
599 set_tsk_thread_flag(tsk, TIF_SSBD);
600 else
601 clear_tsk_thread_flag(tsk, TIF_SSBD);
602
603 if (task_spec_ib_disable(tsk))
604 set_tsk_thread_flag(tsk, TIF_SPEC_IB);
605 else
606 clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
607 }
608 /* Return the updated threadinfo flags*/
609 return task_thread_info(tsk)->flags;
610 }
611
612 void speculation_ctrl_update(unsigned long tif)
613 {
614 unsigned long flags;
615
616 /* Forced update. Make sure all relevant TIF flags are different */
617 local_irq_save(flags);
618 __speculation_ctrl_update(~tif, tif);
619 local_irq_restore(flags);
620 }
621
622 /* Called from seccomp/prctl update */
623 void speculation_ctrl_update_current(void)
624 {
625 preempt_disable();
626 speculation_ctrl_update(speculation_ctrl_update_tif(current));
627 preempt_enable();
628 }
629
630 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
631 {
632 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
633
634 newval = cr4 ^ mask;
635 if (newval != cr4) {
636 this_cpu_write(cpu_tlbstate.cr4, newval);
637 __write_cr4(newval);
638 }
639 }
640
641 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
642 {
643 unsigned long tifp, tifn;
644
645 tifn = READ_ONCE(task_thread_info(next_p)->flags);
646 tifp = READ_ONCE(task_thread_info(prev_p)->flags);
647
648 switch_to_bitmap(tifp);
649
650 propagate_user_return_notify(prev_p, next_p);
651
652 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
653 arch_has_block_step()) {
654 unsigned long debugctl, msk;
655
656 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
657 debugctl &= ~DEBUGCTLMSR_BTF;
658 msk = tifn & _TIF_BLOCKSTEP;
659 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
660 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
661 }
662
663 if ((tifp ^ tifn) & _TIF_NOTSC)
664 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
665
666 if ((tifp ^ tifn) & _TIF_NOCPUID)
667 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
668
669 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
670 __speculation_ctrl_update(tifp, tifn);
671 } else {
672 speculation_ctrl_update_tif(prev_p);
673 tifn = speculation_ctrl_update_tif(next_p);
674
675 /* Enforce MSR update to ensure consistent state */
676 __speculation_ctrl_update(~tifn, tifn);
677 }
678
679 if ((tifp ^ tifn) & _TIF_SLD)
680 switch_to_sld(tifn);
681 }
682
683 /*
684 * Idle related variables and functions
685 */
686 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
687 EXPORT_SYMBOL(boot_option_idle_override);
688
689 static void (*x86_idle)(void);
690
691 #ifndef CONFIG_SMP
692 static inline void play_dead(void)
693 {
694 BUG();
695 }
696 #endif
697
698 void arch_cpu_idle_enter(void)
699 {
700 tsc_verify_tsc_adjust(false);
701 local_touch_nmi();
702 }
703
704 void arch_cpu_idle_dead(void)
705 {
706 play_dead();
707 }
708
709 /*
710 * Called from the generic idle code.
711 */
712 void arch_cpu_idle(void)
713 {
714 x86_idle();
715 }
716
717 /*
718 * We use this if we don't have any better idle routine..
719 */
720 void __cpuidle default_idle(void)
721 {
722 raw_safe_halt();
723 }
724 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
725 EXPORT_SYMBOL(default_idle);
726 #endif
727
728 #ifdef CONFIG_XEN
729 bool xen_set_default_idle(void)
730 {
731 bool ret = !!x86_idle;
732
733 x86_idle = default_idle;
734
735 return ret;
736 }
737 #endif
738
739 void stop_this_cpu(void *dummy)
740 {
741 local_irq_disable();
742 /*
743 * Remove this CPU:
744 */
745 set_cpu_online(smp_processor_id(), false);
746 disable_local_APIC();
747 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
748
749 /*
750 * Use wbinvd on processors that support SME. This provides support
751 * for performing a successful kexec when going from SME inactive
752 * to SME active (or vice-versa). The cache must be cleared so that
753 * if there are entries with the same physical address, both with and
754 * without the encryption bit, they don't race each other when flushed
755 * and potentially end up with the wrong entry being committed to
756 * memory.
757 */
758 if (boot_cpu_has(X86_FEATURE_SME))
759 native_wbinvd();
760 for (;;) {
761 /*
762 * Use native_halt() so that memory contents don't change
763 * (stack usage and variables) after possibly issuing the
764 * native_wbinvd() above.
765 */
766 native_halt();
767 }
768 }
769
770 /*
771 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
772 * states (local apic timer and TSC stop).
773 *
774 * XXX this function is completely buggered vs RCU and tracing.
775 */
776 static void amd_e400_idle(void)
777 {
778 /*
779 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
780 * gets set after static_cpu_has() places have been converted via
781 * alternatives.
782 */
783 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
784 default_idle();
785 return;
786 }
787
788 tick_broadcast_enter();
789
790 default_idle();
791
792 /*
793 * The switch back from broadcast mode needs to be called with
794 * interrupts disabled.
795 */
796 raw_local_irq_disable();
797 tick_broadcast_exit();
798 raw_local_irq_enable();
799 }
800
801 /*
802 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
803 * We can't rely on cpuidle installing MWAIT, because it will not load
804 * on systems that support only C1 -- so the boot default must be MWAIT.
805 *
806 * Some AMD machines are the opposite, they depend on using HALT.
807 *
808 * So for default C1, which is used during boot until cpuidle loads,
809 * use MWAIT-C1 on Intel HW that has it, else use HALT.
810 */
811 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
812 {
813 if (c->x86_vendor != X86_VENDOR_INTEL)
814 return 0;
815
816 if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
817 return 0;
818
819 return 1;
820 }
821
822 /*
823 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
824 * with interrupts enabled and no flags, which is backwards compatible with the
825 * original MWAIT implementation.
826 */
827 static __cpuidle void mwait_idle(void)
828 {
829 if (!current_set_polling_and_test()) {
830 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
831 mb(); /* quirk */
832 clflush((void *)&current_thread_info()->flags);
833 mb(); /* quirk */
834 }
835
836 __monitor((void *)&current_thread_info()->flags, 0, 0);
837 if (!need_resched())
838 __sti_mwait(0, 0);
839 else
840 raw_local_irq_enable();
841 } else {
842 raw_local_irq_enable();
843 }
844 __current_clr_polling();
845 }
846
847 void select_idle_routine(const struct cpuinfo_x86 *c)
848 {
849 #ifdef CONFIG_SMP
850 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
851 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
852 #endif
853 if (x86_idle || boot_option_idle_override == IDLE_POLL)
854 return;
855
856 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
857 pr_info("using AMD E400 aware idle routine\n");
858 x86_idle = amd_e400_idle;
859 } else if (prefer_mwait_c1_over_halt(c)) {
860 pr_info("using mwait in idle threads\n");
861 x86_idle = mwait_idle;
862 } else
863 x86_idle = default_idle;
864 }
865
866 void amd_e400_c1e_apic_setup(void)
867 {
868 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
869 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
870 local_irq_disable();
871 tick_broadcast_force();
872 local_irq_enable();
873 }
874 }
875
876 void __init arch_post_acpi_subsys_init(void)
877 {
878 u32 lo, hi;
879
880 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
881 return;
882
883 /*
884 * AMD E400 detection needs to happen after ACPI has been enabled. If
885 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
886 * MSR_K8_INT_PENDING_MSG.
887 */
888 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
889 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
890 return;
891
892 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
893
894 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
895 mark_tsc_unstable("TSC halt in AMD C1E");
896 pr_info("System has AMD C1E enabled\n");
897 }
898
899 static int __init idle_setup(char *str)
900 {
901 if (!str)
902 return -EINVAL;
903
904 if (!strcmp(str, "poll")) {
905 pr_info("using polling idle threads\n");
906 boot_option_idle_override = IDLE_POLL;
907 cpu_idle_poll_ctrl(true);
908 } else if (!strcmp(str, "halt")) {
909 /*
910 * When the boot option of idle=halt is added, halt is
911 * forced to be used for CPU idle. In such case CPU C2/C3
912 * won't be used again.
913 * To continue to load the CPU idle driver, don't touch
914 * the boot_option_idle_override.
915 */
916 x86_idle = default_idle;
917 boot_option_idle_override = IDLE_HALT;
918 } else if (!strcmp(str, "nomwait")) {
919 /*
920 * If the boot option of "idle=nomwait" is added,
921 * it means that mwait will be disabled for CPU C2/C3
922 * states. In such case it won't touch the variable
923 * of boot_option_idle_override.
924 */
925 boot_option_idle_override = IDLE_NOMWAIT;
926 } else
927 return -1;
928
929 return 0;
930 }
931 early_param("idle", idle_setup);
932
933 unsigned long arch_align_stack(unsigned long sp)
934 {
935 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
936 sp -= get_random_int() % 8192;
937 return sp & ~0xf;
938 }
939
940 unsigned long arch_randomize_brk(struct mm_struct *mm)
941 {
942 return randomize_page(mm->brk, 0x02000000);
943 }
944
945 /*
946 * Called from fs/proc with a reference on @p to find the function
947 * which called into schedule(). This needs to be done carefully
948 * because the task might wake up and we might look at a stack
949 * changing under us.
950 */
951 unsigned long get_wchan(struct task_struct *p)
952 {
953 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
954 int count = 0;
955
956 if (p == current || task_is_running(p))
957 return 0;
958
959 if (!try_get_task_stack(p))
960 return 0;
961
962 start = (unsigned long)task_stack_page(p);
963 if (!start)
964 goto out;
965
966 /*
967 * Layout of the stack page:
968 *
969 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
970 * PADDING
971 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
972 * stack
973 * ----------- bottom = start
974 *
975 * The tasks stack pointer points at the location where the
976 * framepointer is stored. The data on the stack is:
977 * ... IP FP ... IP FP
978 *
979 * We need to read FP and IP, so we need to adjust the upper
980 * bound by another unsigned long.
981 */
982 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
983 top -= 2 * sizeof(unsigned long);
984 bottom = start;
985
986 sp = READ_ONCE(p->thread.sp);
987 if (sp < bottom || sp > top)
988 goto out;
989
990 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
991 do {
992 if (fp < bottom || fp > top)
993 goto out;
994 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
995 if (!in_sched_functions(ip)) {
996 ret = ip;
997 goto out;
998 }
999 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
1000 } while (count++ < 16 && !task_is_running(p));
1001
1002 out:
1003 put_task_stack(p);
1004 return ret;
1005 }
1006
1007 long do_arch_prctl_common(struct task_struct *task, int option,
1008 unsigned long arg2)
1009 {
1010 switch (option) {
1011 case ARCH_GET_CPUID:
1012 return get_cpuid_mode();
1013 case ARCH_SET_CPUID:
1014 return set_cpuid_mode(task, arg2);
1015 case ARCH_GET_XCOMP_SUPP:
1016 case ARCH_GET_XCOMP_PERM:
1017 case ARCH_REQ_XCOMP_PERM:
1018 return fpu_xstate_prctl(task, option, arg2);
1019 }
1020
1021 return -EINVAL;
1022 }