]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/process_32.c
Merge commit 'v2.6.29' into timers/core
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / process_32.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
7
8 /*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12 #include <stdarg.h>
13
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/utsname.h>
28 #include <linux/delay.h>
29 #include <linux/reboot.h>
30 #include <linux/init.h>
31 #include <linux/mc146818rtc.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/ptrace.h>
35 #include <linux/random.h>
36 #include <linux/personality.h>
37 #include <linux/tick.h>
38 #include <linux/percpu.h>
39 #include <linux/prctl.h>
40 #include <linux/dmi.h>
41 #include <linux/ftrace.h>
42 #include <linux/uaccess.h>
43 #include <linux/io.h>
44 #include <linux/kdebug.h>
45
46 #include <asm/pgtable.h>
47 #include <asm/system.h>
48 #include <asm/ldt.h>
49 #include <asm/processor.h>
50 #include <asm/i387.h>
51 #include <asm/desc.h>
52 #ifdef CONFIG_MATH_EMULATION
53 #include <asm/math_emu.h>
54 #endif
55
56 #include <linux/err.h>
57
58 #include <asm/tlbflush.h>
59 #include <asm/cpu.h>
60 #include <asm/idle.h>
61 #include <asm/syscalls.h>
62 #include <asm/ds.h>
63
64 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
65
66 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
67 EXPORT_PER_CPU_SYMBOL(current_task);
68
69 DEFINE_PER_CPU(int, cpu_number);
70 EXPORT_PER_CPU_SYMBOL(cpu_number);
71
72 /*
73 * Return saved PC of a blocked thread.
74 */
75 unsigned long thread_saved_pc(struct task_struct *tsk)
76 {
77 return ((unsigned long *)tsk->thread.sp)[3];
78 }
79
80 #ifndef CONFIG_SMP
81 static inline void play_dead(void)
82 {
83 BUG();
84 }
85 #endif
86
87 /*
88 * The idle thread. There's no useful work to be
89 * done, so just try to conserve power and have a
90 * low exit latency (ie sit in a loop waiting for
91 * somebody to say that they'd like to reschedule)
92 */
93 void cpu_idle(void)
94 {
95 int cpu = smp_processor_id();
96
97 current_thread_info()->status |= TS_POLLING;
98
99 /* endless idle loop with no priority at all */
100 while (1) {
101 tick_nohz_stop_sched_tick(1);
102 while (!need_resched()) {
103
104 check_pgt_cache();
105 rmb();
106
107 if (cpu_is_offline(cpu))
108 play_dead();
109
110 local_irq_disable();
111 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
112 /* Don't trace irqs off for idle */
113 stop_critical_timings();
114 pm_idle();
115 start_critical_timings();
116 }
117 tick_nohz_restart_sched_tick();
118 preempt_enable_no_resched();
119 schedule();
120 preempt_disable();
121 }
122 }
123
124 void __show_regs(struct pt_regs *regs, int all)
125 {
126 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
127 unsigned long d0, d1, d2, d3, d6, d7;
128 unsigned long sp;
129 unsigned short ss, gs;
130 const char *board;
131
132 if (user_mode_vm(regs)) {
133 sp = regs->sp;
134 ss = regs->ss & 0xffff;
135 savesegment(gs, gs);
136 } else {
137 sp = (unsigned long) (&regs->sp);
138 savesegment(ss, ss);
139 savesegment(gs, gs);
140 }
141
142 printk("\n");
143
144 board = dmi_get_system_info(DMI_PRODUCT_NAME);
145 if (!board)
146 board = "";
147 printk("Pid: %d, comm: %s %s (%s %.*s) %s\n",
148 task_pid_nr(current), current->comm,
149 print_tainted(), init_utsname()->release,
150 (int)strcspn(init_utsname()->version, " "),
151 init_utsname()->version, board);
152
153 printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
154 (u16)regs->cs, regs->ip, regs->flags,
155 smp_processor_id());
156 print_symbol("EIP is at %s\n", regs->ip);
157
158 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
159 regs->ax, regs->bx, regs->cx, regs->dx);
160 printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
161 regs->si, regs->di, regs->bp, sp);
162 printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
163 (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
164
165 if (!all)
166 return;
167
168 cr0 = read_cr0();
169 cr2 = read_cr2();
170 cr3 = read_cr3();
171 cr4 = read_cr4_safe();
172 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
173 cr0, cr2, cr3, cr4);
174
175 get_debugreg(d0, 0);
176 get_debugreg(d1, 1);
177 get_debugreg(d2, 2);
178 get_debugreg(d3, 3);
179 printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
180 d0, d1, d2, d3);
181
182 get_debugreg(d6, 6);
183 get_debugreg(d7, 7);
184 printk("DR6: %08lx DR7: %08lx\n",
185 d6, d7);
186 }
187
188 void show_regs(struct pt_regs *regs)
189 {
190 __show_regs(regs, 1);
191 show_trace(NULL, regs, &regs->sp, regs->bp);
192 }
193
194 /*
195 * This gets run with %bx containing the
196 * function to call, and %dx containing
197 * the "args".
198 */
199 extern void kernel_thread_helper(void);
200
201 /*
202 * Create a kernel thread
203 */
204 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
205 {
206 struct pt_regs regs;
207
208 memset(&regs, 0, sizeof(regs));
209
210 regs.bx = (unsigned long) fn;
211 regs.dx = (unsigned long) arg;
212
213 regs.ds = __USER_DS;
214 regs.es = __USER_DS;
215 regs.fs = __KERNEL_PERCPU;
216 regs.orig_ax = -1;
217 regs.ip = (unsigned long) kernel_thread_helper;
218 regs.cs = __KERNEL_CS | get_kernel_rpl();
219 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
220
221 /* Ok, create the new process.. */
222 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
223 }
224 EXPORT_SYMBOL(kernel_thread);
225
226 /*
227 * Free current thread data structures etc..
228 */
229 void exit_thread(void)
230 {
231 /* The process may have allocated an io port bitmap... nuke it. */
232 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
233 struct task_struct *tsk = current;
234 struct thread_struct *t = &tsk->thread;
235 int cpu = get_cpu();
236 struct tss_struct *tss = &per_cpu(init_tss, cpu);
237
238 kfree(t->io_bitmap_ptr);
239 t->io_bitmap_ptr = NULL;
240 clear_thread_flag(TIF_IO_BITMAP);
241 /*
242 * Careful, clear this in the TSS too:
243 */
244 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
245 t->io_bitmap_max = 0;
246 tss->io_bitmap_owner = NULL;
247 tss->io_bitmap_max = 0;
248 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
249 put_cpu();
250 }
251
252 ds_exit_thread(current);
253 }
254
255 void flush_thread(void)
256 {
257 struct task_struct *tsk = current;
258
259 tsk->thread.debugreg0 = 0;
260 tsk->thread.debugreg1 = 0;
261 tsk->thread.debugreg2 = 0;
262 tsk->thread.debugreg3 = 0;
263 tsk->thread.debugreg6 = 0;
264 tsk->thread.debugreg7 = 0;
265 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
266 clear_tsk_thread_flag(tsk, TIF_DEBUG);
267 /*
268 * Forget coprocessor state..
269 */
270 tsk->fpu_counter = 0;
271 clear_fpu(tsk);
272 clear_used_math();
273 }
274
275 void release_thread(struct task_struct *dead_task)
276 {
277 BUG_ON(dead_task->mm);
278 release_vm86_irqs(dead_task);
279 }
280
281 /*
282 * This gets called before we allocate a new thread and copy
283 * the current task into it.
284 */
285 void prepare_to_copy(struct task_struct *tsk)
286 {
287 unlazy_fpu(tsk);
288 }
289
290 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
291 unsigned long unused,
292 struct task_struct *p, struct pt_regs *regs)
293 {
294 struct pt_regs *childregs;
295 struct task_struct *tsk;
296 int err;
297
298 childregs = task_pt_regs(p);
299 *childregs = *regs;
300 childregs->ax = 0;
301 childregs->sp = sp;
302
303 p->thread.sp = (unsigned long) childregs;
304 p->thread.sp0 = (unsigned long) (childregs+1);
305
306 p->thread.ip = (unsigned long) ret_from_fork;
307
308 savesegment(gs, p->thread.gs);
309
310 tsk = current;
311 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
312 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
313 IO_BITMAP_BYTES, GFP_KERNEL);
314 if (!p->thread.io_bitmap_ptr) {
315 p->thread.io_bitmap_max = 0;
316 return -ENOMEM;
317 }
318 set_tsk_thread_flag(p, TIF_IO_BITMAP);
319 }
320
321 err = 0;
322
323 /*
324 * Set a new TLS for the child thread?
325 */
326 if (clone_flags & CLONE_SETTLS)
327 err = do_set_thread_area(p, -1,
328 (struct user_desc __user *)childregs->si, 0);
329
330 if (err && p->thread.io_bitmap_ptr) {
331 kfree(p->thread.io_bitmap_ptr);
332 p->thread.io_bitmap_max = 0;
333 }
334
335 ds_copy_thread(p, current);
336
337 clear_tsk_thread_flag(p, TIF_DEBUGCTLMSR);
338 p->thread.debugctlmsr = 0;
339
340 return err;
341 }
342
343 void
344 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
345 {
346 __asm__("movl %0, %%gs" : : "r"(0));
347 regs->fs = 0;
348 set_fs(USER_DS);
349 regs->ds = __USER_DS;
350 regs->es = __USER_DS;
351 regs->ss = __USER_DS;
352 regs->cs = __USER_CS;
353 regs->ip = new_ip;
354 regs->sp = new_sp;
355 /*
356 * Free the old FP and other extended state
357 */
358 free_thread_xstate(current);
359 }
360 EXPORT_SYMBOL_GPL(start_thread);
361
362 static void hard_disable_TSC(void)
363 {
364 write_cr4(read_cr4() | X86_CR4_TSD);
365 }
366
367 void disable_TSC(void)
368 {
369 preempt_disable();
370 if (!test_and_set_thread_flag(TIF_NOTSC))
371 /*
372 * Must flip the CPU state synchronously with
373 * TIF_NOTSC in the current running context.
374 */
375 hard_disable_TSC();
376 preempt_enable();
377 }
378
379 static void hard_enable_TSC(void)
380 {
381 write_cr4(read_cr4() & ~X86_CR4_TSD);
382 }
383
384 static void enable_TSC(void)
385 {
386 preempt_disable();
387 if (test_and_clear_thread_flag(TIF_NOTSC))
388 /*
389 * Must flip the CPU state synchronously with
390 * TIF_NOTSC in the current running context.
391 */
392 hard_enable_TSC();
393 preempt_enable();
394 }
395
396 int get_tsc_mode(unsigned long adr)
397 {
398 unsigned int val;
399
400 if (test_thread_flag(TIF_NOTSC))
401 val = PR_TSC_SIGSEGV;
402 else
403 val = PR_TSC_ENABLE;
404
405 return put_user(val, (unsigned int __user *)adr);
406 }
407
408 int set_tsc_mode(unsigned int val)
409 {
410 if (val == PR_TSC_SIGSEGV)
411 disable_TSC();
412 else if (val == PR_TSC_ENABLE)
413 enable_TSC();
414 else
415 return -EINVAL;
416
417 return 0;
418 }
419
420 static noinline void
421 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
422 struct tss_struct *tss)
423 {
424 struct thread_struct *prev, *next;
425
426 prev = &prev_p->thread;
427 next = &next_p->thread;
428
429 if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
430 test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
431 ds_switch_to(prev_p, next_p);
432 else if (next->debugctlmsr != prev->debugctlmsr)
433 update_debugctlmsr(next->debugctlmsr);
434
435 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
436 set_debugreg(next->debugreg0, 0);
437 set_debugreg(next->debugreg1, 1);
438 set_debugreg(next->debugreg2, 2);
439 set_debugreg(next->debugreg3, 3);
440 /* no 4 and 5 */
441 set_debugreg(next->debugreg6, 6);
442 set_debugreg(next->debugreg7, 7);
443 }
444
445 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
446 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
447 /* prev and next are different */
448 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
449 hard_disable_TSC();
450 else
451 hard_enable_TSC();
452 }
453
454 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
455 /*
456 * Disable the bitmap via an invalid offset. We still cache
457 * the previous bitmap owner and the IO bitmap contents:
458 */
459 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
460 return;
461 }
462
463 if (likely(next == tss->io_bitmap_owner)) {
464 /*
465 * Previous owner of the bitmap (hence the bitmap content)
466 * matches the next task, we dont have to do anything but
467 * to set a valid offset in the TSS:
468 */
469 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
470 return;
471 }
472 /*
473 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
474 * and we let the task to get a GPF in case an I/O instruction
475 * is performed. The handler of the GPF will verify that the
476 * faulting task has a valid I/O bitmap and, it true, does the
477 * real copy and restart the instruction. This will save us
478 * redundant copies when the currently switched task does not
479 * perform any I/O during its timeslice.
480 */
481 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
482 }
483
484 /*
485 * switch_to(x,yn) should switch tasks from x to y.
486 *
487 * We fsave/fwait so that an exception goes off at the right time
488 * (as a call from the fsave or fwait in effect) rather than to
489 * the wrong process. Lazy FP saving no longer makes any sense
490 * with modern CPU's, and this simplifies a lot of things (SMP
491 * and UP become the same).
492 *
493 * NOTE! We used to use the x86 hardware context switching. The
494 * reason for not using it any more becomes apparent when you
495 * try to recover gracefully from saved state that is no longer
496 * valid (stale segment register values in particular). With the
497 * hardware task-switch, there is no way to fix up bad state in
498 * a reasonable manner.
499 *
500 * The fact that Intel documents the hardware task-switching to
501 * be slow is a fairly red herring - this code is not noticeably
502 * faster. However, there _is_ some room for improvement here,
503 * so the performance issues may eventually be a valid point.
504 * More important, however, is the fact that this allows us much
505 * more flexibility.
506 *
507 * The return value (in %ax) will be the "prev" task after
508 * the task-switch, and shows up in ret_from_fork in entry.S,
509 * for example.
510 */
511 __notrace_funcgraph struct task_struct *
512 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
513 {
514 struct thread_struct *prev = &prev_p->thread,
515 *next = &next_p->thread;
516 int cpu = smp_processor_id();
517 struct tss_struct *tss = &per_cpu(init_tss, cpu);
518
519 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
520
521 __unlazy_fpu(prev_p);
522
523
524 /* we're going to use this soon, after a few expensive things */
525 if (next_p->fpu_counter > 5)
526 prefetch(next->xstate);
527
528 /*
529 * Reload esp0.
530 */
531 load_sp0(tss, next);
532
533 /*
534 * Save away %gs. No need to save %fs, as it was saved on the
535 * stack on entry. No need to save %es and %ds, as those are
536 * always kernel segments while inside the kernel. Doing this
537 * before setting the new TLS descriptors avoids the situation
538 * where we temporarily have non-reloadable segments in %fs
539 * and %gs. This could be an issue if the NMI handler ever
540 * used %fs or %gs (it does not today), or if the kernel is
541 * running inside of a hypervisor layer.
542 */
543 savesegment(gs, prev->gs);
544
545 /*
546 * Load the per-thread Thread-Local Storage descriptor.
547 */
548 load_TLS(next, cpu);
549
550 /*
551 * Restore IOPL if needed. In normal use, the flags restore
552 * in the switch assembly will handle this. But if the kernel
553 * is running virtualized at a non-zero CPL, the popf will
554 * not restore flags, so it must be done in a separate step.
555 */
556 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
557 set_iopl_mask(next->iopl);
558
559 /*
560 * Now maybe handle debug registers and/or IO bitmaps
561 */
562 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
563 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
564 __switch_to_xtra(prev_p, next_p, tss);
565
566 /*
567 * Leave lazy mode, flushing any hypercalls made here.
568 * This must be done before restoring TLS segments so
569 * the GDT and LDT are properly updated, and must be
570 * done before math_state_restore, so the TS bit is up
571 * to date.
572 */
573 arch_leave_lazy_cpu_mode();
574
575 /* If the task has used fpu the last 5 timeslices, just do a full
576 * restore of the math state immediately to avoid the trap; the
577 * chances of needing FPU soon are obviously high now
578 *
579 * tsk_used_math() checks prevent calling math_state_restore(),
580 * which can sleep in the case of !tsk_used_math()
581 */
582 if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
583 math_state_restore();
584
585 /*
586 * Restore %gs if needed (which is common)
587 */
588 if (prev->gs | next->gs)
589 loadsegment(gs, next->gs);
590
591 x86_write_percpu(current_task, next_p);
592
593 return prev_p;
594 }
595
596 asmlinkage int sys_fork(struct pt_regs regs)
597 {
598 return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
599 }
600
601 asmlinkage int sys_clone(struct pt_regs regs)
602 {
603 unsigned long clone_flags;
604 unsigned long newsp;
605 int __user *parent_tidptr, *child_tidptr;
606
607 clone_flags = regs.bx;
608 newsp = regs.cx;
609 parent_tidptr = (int __user *)regs.dx;
610 child_tidptr = (int __user *)regs.di;
611 if (!newsp)
612 newsp = regs.sp;
613 return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
614 }
615
616 /*
617 * This is trivial, and on the face of it looks like it
618 * could equally well be done in user mode.
619 *
620 * Not so, for quite unobvious reasons - register pressure.
621 * In user mode vfork() cannot have a stack frame, and if
622 * done by calling the "clone()" system call directly, you
623 * do not have enough call-clobbered registers to hold all
624 * the information you need.
625 */
626 asmlinkage int sys_vfork(struct pt_regs regs)
627 {
628 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
629 }
630
631 /*
632 * sys_execve() executes a new program.
633 */
634 asmlinkage int sys_execve(struct pt_regs regs)
635 {
636 int error;
637 char *filename;
638
639 filename = getname((char __user *) regs.bx);
640 error = PTR_ERR(filename);
641 if (IS_ERR(filename))
642 goto out;
643 error = do_execve(filename,
644 (char __user * __user *) regs.cx,
645 (char __user * __user *) regs.dx,
646 &regs);
647 if (error == 0) {
648 /* Make sure we don't return using sysenter.. */
649 set_thread_flag(TIF_IRET);
650 }
651 putname(filename);
652 out:
653 return error;
654 }
655
656 #define top_esp (THREAD_SIZE - sizeof(unsigned long))
657 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
658
659 unsigned long get_wchan(struct task_struct *p)
660 {
661 unsigned long bp, sp, ip;
662 unsigned long stack_page;
663 int count = 0;
664 if (!p || p == current || p->state == TASK_RUNNING)
665 return 0;
666 stack_page = (unsigned long)task_stack_page(p);
667 sp = p->thread.sp;
668 if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
669 return 0;
670 /* include/asm-i386/system.h:switch_to() pushes bp last. */
671 bp = *(unsigned long *) sp;
672 do {
673 if (bp < stack_page || bp > top_ebp+stack_page)
674 return 0;
675 ip = *(unsigned long *) (bp+4);
676 if (!in_sched_functions(ip))
677 return ip;
678 bp = *(unsigned long *) bp;
679 } while (count++ < 16);
680 return 0;
681 }
682
683 unsigned long arch_align_stack(unsigned long sp)
684 {
685 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
686 sp -= get_random_int() % 8192;
687 return sp & ~0xf;
688 }
689
690 unsigned long arch_randomize_brk(struct mm_struct *mm)
691 {
692 unsigned long range_end = mm->brk + 0x02000000;
693 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
694 }