]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/process_32.c
x86/fpu: Rename fpu-internal.h to fpu/internal.h
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / process_32.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
7
8 /*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12 #include <linux/cpu.h>
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/fs.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/elfcore.h>
19 #include <linux/smp.h>
20 #include <linux/stddef.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/user.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/mc146818rtc.h>
28 #include <linux/module.h>
29 #include <linux/kallsyms.h>
30 #include <linux/ptrace.h>
31 #include <linux/personality.h>
32 #include <linux/percpu.h>
33 #include <linux/prctl.h>
34 #include <linux/ftrace.h>
35 #include <linux/uaccess.h>
36 #include <linux/io.h>
37 #include <linux/kdebug.h>
38
39 #include <asm/pgtable.h>
40 #include <asm/ldt.h>
41 #include <asm/processor.h>
42 #include <asm/fpu/internal.h>
43 #include <asm/desc.h>
44 #ifdef CONFIG_MATH_EMULATION
45 #include <asm/math_emu.h>
46 #endif
47
48 #include <linux/err.h>
49
50 #include <asm/tlbflush.h>
51 #include <asm/cpu.h>
52 #include <asm/idle.h>
53 #include <asm/syscalls.h>
54 #include <asm/debugreg.h>
55 #include <asm/switch_to.h>
56
57 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
58 asmlinkage void ret_from_kernel_thread(void) __asm__("ret_from_kernel_thread");
59
60 /*
61 * Return saved PC of a blocked thread.
62 */
63 unsigned long thread_saved_pc(struct task_struct *tsk)
64 {
65 return ((unsigned long *)tsk->thread.sp)[3];
66 }
67
68 void __show_regs(struct pt_regs *regs, int all)
69 {
70 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
71 unsigned long d0, d1, d2, d3, d6, d7;
72 unsigned long sp;
73 unsigned short ss, gs;
74
75 if (user_mode(regs)) {
76 sp = regs->sp;
77 ss = regs->ss & 0xffff;
78 gs = get_user_gs(regs);
79 } else {
80 sp = kernel_stack_pointer(regs);
81 savesegment(ss, ss);
82 savesegment(gs, gs);
83 }
84
85 printk(KERN_DEFAULT "EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
86 (u16)regs->cs, regs->ip, regs->flags,
87 smp_processor_id());
88 print_symbol("EIP is at %s\n", regs->ip);
89
90 printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
91 regs->ax, regs->bx, regs->cx, regs->dx);
92 printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
93 regs->si, regs->di, regs->bp, sp);
94 printk(KERN_DEFAULT " DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
95 (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
96
97 if (!all)
98 return;
99
100 cr0 = read_cr0();
101 cr2 = read_cr2();
102 cr3 = read_cr3();
103 cr4 = __read_cr4_safe();
104 printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
105 cr0, cr2, cr3, cr4);
106
107 get_debugreg(d0, 0);
108 get_debugreg(d1, 1);
109 get_debugreg(d2, 2);
110 get_debugreg(d3, 3);
111 get_debugreg(d6, 6);
112 get_debugreg(d7, 7);
113
114 /* Only print out debug registers if they are in their non-default state. */
115 if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
116 (d6 == DR6_RESERVED) && (d7 == 0x400))
117 return;
118
119 printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
120 d0, d1, d2, d3);
121 printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
122 d6, d7);
123 }
124
125 void release_thread(struct task_struct *dead_task)
126 {
127 BUG_ON(dead_task->mm);
128 release_vm86_irqs(dead_task);
129 }
130
131 int copy_thread(unsigned long clone_flags, unsigned long sp,
132 unsigned long arg, struct task_struct *p)
133 {
134 struct pt_regs *childregs = task_pt_regs(p);
135 struct task_struct *tsk;
136 int err;
137
138 p->thread.sp = (unsigned long) childregs;
139 p->thread.sp0 = (unsigned long) (childregs+1);
140 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
141
142 if (unlikely(p->flags & PF_KTHREAD)) {
143 /* kernel thread */
144 memset(childregs, 0, sizeof(struct pt_regs));
145 p->thread.ip = (unsigned long) ret_from_kernel_thread;
146 task_user_gs(p) = __KERNEL_STACK_CANARY;
147 childregs->ds = __USER_DS;
148 childregs->es = __USER_DS;
149 childregs->fs = __KERNEL_PERCPU;
150 childregs->bx = sp; /* function */
151 childregs->bp = arg;
152 childregs->orig_ax = -1;
153 childregs->cs = __KERNEL_CS | get_kernel_rpl();
154 childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
155 p->thread.io_bitmap_ptr = NULL;
156 return 0;
157 }
158 *childregs = *current_pt_regs();
159 childregs->ax = 0;
160 if (sp)
161 childregs->sp = sp;
162
163 p->thread.ip = (unsigned long) ret_from_fork;
164 task_user_gs(p) = get_user_gs(current_pt_regs());
165
166 p->thread.io_bitmap_ptr = NULL;
167 tsk = current;
168 err = -ENOMEM;
169
170 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
171 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
172 IO_BITMAP_BYTES, GFP_KERNEL);
173 if (!p->thread.io_bitmap_ptr) {
174 p->thread.io_bitmap_max = 0;
175 return -ENOMEM;
176 }
177 set_tsk_thread_flag(p, TIF_IO_BITMAP);
178 }
179
180 err = 0;
181
182 /*
183 * Set a new TLS for the child thread?
184 */
185 if (clone_flags & CLONE_SETTLS)
186 err = do_set_thread_area(p, -1,
187 (struct user_desc __user *)childregs->si, 0);
188
189 if (err && p->thread.io_bitmap_ptr) {
190 kfree(p->thread.io_bitmap_ptr);
191 p->thread.io_bitmap_max = 0;
192 }
193 return err;
194 }
195
196 void
197 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
198 {
199 set_user_gs(regs, 0);
200 regs->fs = 0;
201 regs->ds = __USER_DS;
202 regs->es = __USER_DS;
203 regs->ss = __USER_DS;
204 regs->cs = __USER_CS;
205 regs->ip = new_ip;
206 regs->sp = new_sp;
207 regs->flags = X86_EFLAGS_IF;
208 force_iret();
209 }
210 EXPORT_SYMBOL_GPL(start_thread);
211
212
213 /*
214 * switch_to(x,y) should switch tasks from x to y.
215 *
216 * We fsave/fwait so that an exception goes off at the right time
217 * (as a call from the fsave or fwait in effect) rather than to
218 * the wrong process. Lazy FP saving no longer makes any sense
219 * with modern CPU's, and this simplifies a lot of things (SMP
220 * and UP become the same).
221 *
222 * NOTE! We used to use the x86 hardware context switching. The
223 * reason for not using it any more becomes apparent when you
224 * try to recover gracefully from saved state that is no longer
225 * valid (stale segment register values in particular). With the
226 * hardware task-switch, there is no way to fix up bad state in
227 * a reasonable manner.
228 *
229 * The fact that Intel documents the hardware task-switching to
230 * be slow is a fairly red herring - this code is not noticeably
231 * faster. However, there _is_ some room for improvement here,
232 * so the performance issues may eventually be a valid point.
233 * More important, however, is the fact that this allows us much
234 * more flexibility.
235 *
236 * The return value (in %ax) will be the "prev" task after
237 * the task-switch, and shows up in ret_from_fork in entry.S,
238 * for example.
239 */
240 __visible __notrace_funcgraph struct task_struct *
241 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
242 {
243 struct thread_struct *prev = &prev_p->thread,
244 *next = &next_p->thread;
245 struct fpu *prev_fpu = &prev->fpu;
246 struct fpu *next_fpu = &next->fpu;
247 int cpu = smp_processor_id();
248 struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
249 fpu_switch_t fpu_switch;
250
251 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
252
253 fpu_switch = switch_fpu_prepare(prev_fpu, next_fpu, cpu);
254
255 /*
256 * Save away %gs. No need to save %fs, as it was saved on the
257 * stack on entry. No need to save %es and %ds, as those are
258 * always kernel segments while inside the kernel. Doing this
259 * before setting the new TLS descriptors avoids the situation
260 * where we temporarily have non-reloadable segments in %fs
261 * and %gs. This could be an issue if the NMI handler ever
262 * used %fs or %gs (it does not today), or if the kernel is
263 * running inside of a hypervisor layer.
264 */
265 lazy_save_gs(prev->gs);
266
267 /*
268 * Load the per-thread Thread-Local Storage descriptor.
269 */
270 load_TLS(next, cpu);
271
272 /*
273 * Restore IOPL if needed. In normal use, the flags restore
274 * in the switch assembly will handle this. But if the kernel
275 * is running virtualized at a non-zero CPL, the popf will
276 * not restore flags, so it must be done in a separate step.
277 */
278 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
279 set_iopl_mask(next->iopl);
280
281 /*
282 * If it were not for PREEMPT_ACTIVE we could guarantee that the
283 * preempt_count of all tasks was equal here and this would not be
284 * needed.
285 */
286 task_thread_info(prev_p)->saved_preempt_count = this_cpu_read(__preempt_count);
287 this_cpu_write(__preempt_count, task_thread_info(next_p)->saved_preempt_count);
288
289 /*
290 * Now maybe handle debug registers and/or IO bitmaps
291 */
292 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
293 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
294 __switch_to_xtra(prev_p, next_p, tss);
295
296 /*
297 * Leave lazy mode, flushing any hypercalls made here.
298 * This must be done before restoring TLS segments so
299 * the GDT and LDT are properly updated, and must be
300 * done before fpu__restore(), so the TS bit is up
301 * to date.
302 */
303 arch_end_context_switch(next_p);
304
305 /*
306 * Reload esp0, kernel_stack, and current_top_of_stack. This changes
307 * current_thread_info().
308 */
309 load_sp0(tss, next);
310 this_cpu_write(kernel_stack,
311 (unsigned long)task_stack_page(next_p) +
312 THREAD_SIZE);
313 this_cpu_write(cpu_current_top_of_stack,
314 (unsigned long)task_stack_page(next_p) +
315 THREAD_SIZE);
316
317 /*
318 * Restore %gs if needed (which is common)
319 */
320 if (prev->gs | next->gs)
321 lazy_load_gs(next->gs);
322
323 switch_fpu_finish(next_fpu, fpu_switch);
324
325 this_cpu_write(current_task, next_p);
326
327 return prev_p;
328 }
329
330 #define top_esp (THREAD_SIZE - sizeof(unsigned long))
331 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
332
333 unsigned long get_wchan(struct task_struct *p)
334 {
335 unsigned long bp, sp, ip;
336 unsigned long stack_page;
337 int count = 0;
338 if (!p || p == current || p->state == TASK_RUNNING)
339 return 0;
340 stack_page = (unsigned long)task_stack_page(p);
341 sp = p->thread.sp;
342 if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
343 return 0;
344 /* include/asm-i386/system.h:switch_to() pushes bp last. */
345 bp = *(unsigned long *) sp;
346 do {
347 if (bp < stack_page || bp > top_ebp+stack_page)
348 return 0;
349 ip = *(unsigned long *) (bp+4);
350 if (!in_sched_functions(ip))
351 return ip;
352 bp = *(unsigned long *) bp;
353 } while (count++ < 16);
354 return 0;
355 }
356