]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/kernel/process_32.c
Merge branch 'x86/numa' into x86/devel
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kernel / process_32.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
7
8 /*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12 #include <stdarg.h>
13
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/utsname.h>
28 #include <linux/delay.h>
29 #include <linux/reboot.h>
30 #include <linux/init.h>
31 #include <linux/mc146818rtc.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/ptrace.h>
35 #include <linux/random.h>
36 #include <linux/personality.h>
37 #include <linux/tick.h>
38 #include <linux/percpu.h>
39 #include <linux/prctl.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/pgtable.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/ldt.h>
46 #include <asm/processor.h>
47 #include <asm/i387.h>
48 #include <asm/desc.h>
49 #ifdef CONFIG_MATH_EMULATION
50 #include <asm/math_emu.h>
51 #endif
52
53 #include <linux/err.h>
54
55 #include <asm/tlbflush.h>
56 #include <asm/cpu.h>
57 #include <asm/kdebug.h>
58
59 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
60
61 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
62 EXPORT_PER_CPU_SYMBOL(current_task);
63
64 DEFINE_PER_CPU(int, cpu_number);
65 EXPORT_PER_CPU_SYMBOL(cpu_number);
66
67 /*
68 * Return saved PC of a blocked thread.
69 */
70 unsigned long thread_saved_pc(struct task_struct *tsk)
71 {
72 return ((unsigned long *)tsk->thread.sp)[3];
73 }
74
75 #ifdef CONFIG_HOTPLUG_CPU
76 #include <asm/nmi.h>
77 /* We don't actually take CPU down, just spin without interrupts. */
78 static inline void play_dead(void)
79 {
80 /* This must be done before dead CPU ack */
81 cpu_exit_clear();
82 wbinvd();
83 mb();
84 /* Ack it */
85 __get_cpu_var(cpu_state) = CPU_DEAD;
86
87 /*
88 * With physical CPU hotplug, we should halt the cpu
89 */
90 local_irq_disable();
91 while (1)
92 halt();
93 }
94 #else
95 static inline void play_dead(void)
96 {
97 BUG();
98 }
99 #endif /* CONFIG_HOTPLUG_CPU */
100
101 /*
102 * The idle thread. There's no useful work to be
103 * done, so just try to conserve power and have a
104 * low exit latency (ie sit in a loop waiting for
105 * somebody to say that they'd like to reschedule)
106 */
107 void cpu_idle(void)
108 {
109 int cpu = smp_processor_id();
110
111 current_thread_info()->status |= TS_POLLING;
112
113 /* endless idle loop with no priority at all */
114 while (1) {
115 tick_nohz_stop_sched_tick();
116 while (!need_resched()) {
117
118 check_pgt_cache();
119 rmb();
120
121 if (rcu_pending(cpu))
122 rcu_check_callbacks(cpu, 0);
123
124 if (cpu_is_offline(cpu))
125 play_dead();
126
127 local_irq_disable();
128 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
129 pm_idle();
130 }
131 tick_nohz_restart_sched_tick();
132 preempt_enable_no_resched();
133 schedule();
134 preempt_disable();
135 }
136 }
137
138 void __show_registers(struct pt_regs *regs, int all)
139 {
140 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
141 unsigned long d0, d1, d2, d3, d6, d7;
142 unsigned long sp;
143 unsigned short ss, gs;
144
145 if (user_mode_vm(regs)) {
146 sp = regs->sp;
147 ss = regs->ss & 0xffff;
148 savesegment(gs, gs);
149 } else {
150 sp = (unsigned long) (&regs->sp);
151 savesegment(ss, ss);
152 savesegment(gs, gs);
153 }
154
155 printk("\n");
156 printk("Pid: %d, comm: %s %s (%s %.*s)\n",
157 task_pid_nr(current), current->comm,
158 print_tainted(), init_utsname()->release,
159 (int)strcspn(init_utsname()->version, " "),
160 init_utsname()->version);
161
162 printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
163 (u16)regs->cs, regs->ip, regs->flags,
164 smp_processor_id());
165 print_symbol("EIP is at %s\n", regs->ip);
166
167 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
168 regs->ax, regs->bx, regs->cx, regs->dx);
169 printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
170 regs->si, regs->di, regs->bp, sp);
171 printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
172 (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
173
174 if (!all)
175 return;
176
177 cr0 = read_cr0();
178 cr2 = read_cr2();
179 cr3 = read_cr3();
180 cr4 = read_cr4_safe();
181 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
182 cr0, cr2, cr3, cr4);
183
184 get_debugreg(d0, 0);
185 get_debugreg(d1, 1);
186 get_debugreg(d2, 2);
187 get_debugreg(d3, 3);
188 printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
189 d0, d1, d2, d3);
190
191 get_debugreg(d6, 6);
192 get_debugreg(d7, 7);
193 printk("DR6: %08lx DR7: %08lx\n",
194 d6, d7);
195 }
196
197 void show_regs(struct pt_regs *regs)
198 {
199 __show_registers(regs, 1);
200 show_trace(NULL, regs, &regs->sp, regs->bp);
201 }
202
203 /*
204 * This gets run with %bx containing the
205 * function to call, and %dx containing
206 * the "args".
207 */
208 extern void kernel_thread_helper(void);
209
210 /*
211 * Create a kernel thread
212 */
213 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
214 {
215 struct pt_regs regs;
216
217 memset(&regs, 0, sizeof(regs));
218
219 regs.bx = (unsigned long) fn;
220 regs.dx = (unsigned long) arg;
221
222 regs.ds = __USER_DS;
223 regs.es = __USER_DS;
224 regs.fs = __KERNEL_PERCPU;
225 regs.orig_ax = -1;
226 regs.ip = (unsigned long) kernel_thread_helper;
227 regs.cs = __KERNEL_CS | get_kernel_rpl();
228 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
229
230 /* Ok, create the new process.. */
231 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
232 }
233 EXPORT_SYMBOL(kernel_thread);
234
235 /*
236 * Free current thread data structures etc..
237 */
238 void exit_thread(void)
239 {
240 /* The process may have allocated an io port bitmap... nuke it. */
241 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
242 struct task_struct *tsk = current;
243 struct thread_struct *t = &tsk->thread;
244 int cpu = get_cpu();
245 struct tss_struct *tss = &per_cpu(init_tss, cpu);
246
247 kfree(t->io_bitmap_ptr);
248 t->io_bitmap_ptr = NULL;
249 clear_thread_flag(TIF_IO_BITMAP);
250 /*
251 * Careful, clear this in the TSS too:
252 */
253 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
254 t->io_bitmap_max = 0;
255 tss->io_bitmap_owner = NULL;
256 tss->io_bitmap_max = 0;
257 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
258 put_cpu();
259 }
260 }
261
262 void flush_thread(void)
263 {
264 struct task_struct *tsk = current;
265
266 tsk->thread.debugreg0 = 0;
267 tsk->thread.debugreg1 = 0;
268 tsk->thread.debugreg2 = 0;
269 tsk->thread.debugreg3 = 0;
270 tsk->thread.debugreg6 = 0;
271 tsk->thread.debugreg7 = 0;
272 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
273 clear_tsk_thread_flag(tsk, TIF_DEBUG);
274 /*
275 * Forget coprocessor state..
276 */
277 tsk->fpu_counter = 0;
278 clear_fpu(tsk);
279 clear_used_math();
280 }
281
282 void release_thread(struct task_struct *dead_task)
283 {
284 BUG_ON(dead_task->mm);
285 release_vm86_irqs(dead_task);
286 }
287
288 /*
289 * This gets called before we allocate a new thread and copy
290 * the current task into it.
291 */
292 void prepare_to_copy(struct task_struct *tsk)
293 {
294 unlazy_fpu(tsk);
295 }
296
297 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
298 unsigned long unused,
299 struct task_struct * p, struct pt_regs * regs)
300 {
301 struct pt_regs * childregs;
302 struct task_struct *tsk;
303 int err;
304
305 childregs = task_pt_regs(p);
306 *childregs = *regs;
307 childregs->ax = 0;
308 childregs->sp = sp;
309
310 p->thread.sp = (unsigned long) childregs;
311 p->thread.sp0 = (unsigned long) (childregs+1);
312
313 p->thread.ip = (unsigned long) ret_from_fork;
314
315 savesegment(gs, p->thread.gs);
316
317 tsk = current;
318 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
319 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
320 IO_BITMAP_BYTES, GFP_KERNEL);
321 if (!p->thread.io_bitmap_ptr) {
322 p->thread.io_bitmap_max = 0;
323 return -ENOMEM;
324 }
325 set_tsk_thread_flag(p, TIF_IO_BITMAP);
326 }
327
328 err = 0;
329
330 /*
331 * Set a new TLS for the child thread?
332 */
333 if (clone_flags & CLONE_SETTLS)
334 err = do_set_thread_area(p, -1,
335 (struct user_desc __user *)childregs->si, 0);
336
337 if (err && p->thread.io_bitmap_ptr) {
338 kfree(p->thread.io_bitmap_ptr);
339 p->thread.io_bitmap_max = 0;
340 }
341 return err;
342 }
343
344 void
345 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
346 {
347 __asm__("movl %0, %%gs" :: "r"(0));
348 regs->fs = 0;
349 set_fs(USER_DS);
350 regs->ds = __USER_DS;
351 regs->es = __USER_DS;
352 regs->ss = __USER_DS;
353 regs->cs = __USER_CS;
354 regs->ip = new_ip;
355 regs->sp = new_sp;
356 /*
357 * Free the old FP and other extended state
358 */
359 free_thread_xstate(current);
360 }
361 EXPORT_SYMBOL_GPL(start_thread);
362
363 static void hard_disable_TSC(void)
364 {
365 write_cr4(read_cr4() | X86_CR4_TSD);
366 }
367
368 void disable_TSC(void)
369 {
370 preempt_disable();
371 if (!test_and_set_thread_flag(TIF_NOTSC))
372 /*
373 * Must flip the CPU state synchronously with
374 * TIF_NOTSC in the current running context.
375 */
376 hard_disable_TSC();
377 preempt_enable();
378 }
379
380 static void hard_enable_TSC(void)
381 {
382 write_cr4(read_cr4() & ~X86_CR4_TSD);
383 }
384
385 static void enable_TSC(void)
386 {
387 preempt_disable();
388 if (test_and_clear_thread_flag(TIF_NOTSC))
389 /*
390 * Must flip the CPU state synchronously with
391 * TIF_NOTSC in the current running context.
392 */
393 hard_enable_TSC();
394 preempt_enable();
395 }
396
397 int get_tsc_mode(unsigned long adr)
398 {
399 unsigned int val;
400
401 if (test_thread_flag(TIF_NOTSC))
402 val = PR_TSC_SIGSEGV;
403 else
404 val = PR_TSC_ENABLE;
405
406 return put_user(val, (unsigned int __user *)adr);
407 }
408
409 int set_tsc_mode(unsigned int val)
410 {
411 if (val == PR_TSC_SIGSEGV)
412 disable_TSC();
413 else if (val == PR_TSC_ENABLE)
414 enable_TSC();
415 else
416 return -EINVAL;
417
418 return 0;
419 }
420
421 static noinline void
422 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
423 struct tss_struct *tss)
424 {
425 struct thread_struct *prev, *next;
426 unsigned long debugctl;
427
428 prev = &prev_p->thread;
429 next = &next_p->thread;
430
431 debugctl = prev->debugctlmsr;
432 if (next->ds_area_msr != prev->ds_area_msr) {
433 /* we clear debugctl to make sure DS
434 * is not in use when we change it */
435 debugctl = 0;
436 update_debugctlmsr(0);
437 wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
438 }
439
440 if (next->debugctlmsr != debugctl)
441 update_debugctlmsr(next->debugctlmsr);
442
443 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
444 set_debugreg(next->debugreg0, 0);
445 set_debugreg(next->debugreg1, 1);
446 set_debugreg(next->debugreg2, 2);
447 set_debugreg(next->debugreg3, 3);
448 /* no 4 and 5 */
449 set_debugreg(next->debugreg6, 6);
450 set_debugreg(next->debugreg7, 7);
451 }
452
453 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
454 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
455 /* prev and next are different */
456 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
457 hard_disable_TSC();
458 else
459 hard_enable_TSC();
460 }
461
462 #ifdef X86_BTS
463 if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
464 ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
465
466 if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
467 ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
468 #endif
469
470
471 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
472 /*
473 * Disable the bitmap via an invalid offset. We still cache
474 * the previous bitmap owner and the IO bitmap contents:
475 */
476 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
477 return;
478 }
479
480 if (likely(next == tss->io_bitmap_owner)) {
481 /*
482 * Previous owner of the bitmap (hence the bitmap content)
483 * matches the next task, we dont have to do anything but
484 * to set a valid offset in the TSS:
485 */
486 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
487 return;
488 }
489 /*
490 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
491 * and we let the task to get a GPF in case an I/O instruction
492 * is performed. The handler of the GPF will verify that the
493 * faulting task has a valid I/O bitmap and, it true, does the
494 * real copy and restart the instruction. This will save us
495 * redundant copies when the currently switched task does not
496 * perform any I/O during its timeslice.
497 */
498 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
499 }
500
501 /*
502 * switch_to(x,yn) should switch tasks from x to y.
503 *
504 * We fsave/fwait so that an exception goes off at the right time
505 * (as a call from the fsave or fwait in effect) rather than to
506 * the wrong process. Lazy FP saving no longer makes any sense
507 * with modern CPU's, and this simplifies a lot of things (SMP
508 * and UP become the same).
509 *
510 * NOTE! We used to use the x86 hardware context switching. The
511 * reason for not using it any more becomes apparent when you
512 * try to recover gracefully from saved state that is no longer
513 * valid (stale segment register values in particular). With the
514 * hardware task-switch, there is no way to fix up bad state in
515 * a reasonable manner.
516 *
517 * The fact that Intel documents the hardware task-switching to
518 * be slow is a fairly red herring - this code is not noticeably
519 * faster. However, there _is_ some room for improvement here,
520 * so the performance issues may eventually be a valid point.
521 * More important, however, is the fact that this allows us much
522 * more flexibility.
523 *
524 * The return value (in %ax) will be the "prev" task after
525 * the task-switch, and shows up in ret_from_fork in entry.S,
526 * for example.
527 */
528 struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
529 {
530 struct thread_struct *prev = &prev_p->thread,
531 *next = &next_p->thread;
532 int cpu = smp_processor_id();
533 struct tss_struct *tss = &per_cpu(init_tss, cpu);
534
535 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
536
537 __unlazy_fpu(prev_p);
538
539
540 /* we're going to use this soon, after a few expensive things */
541 if (next_p->fpu_counter > 5)
542 prefetch(next->xstate);
543
544 /*
545 * Reload esp0.
546 */
547 load_sp0(tss, next);
548
549 /*
550 * Save away %gs. No need to save %fs, as it was saved on the
551 * stack on entry. No need to save %es and %ds, as those are
552 * always kernel segments while inside the kernel. Doing this
553 * before setting the new TLS descriptors avoids the situation
554 * where we temporarily have non-reloadable segments in %fs
555 * and %gs. This could be an issue if the NMI handler ever
556 * used %fs or %gs (it does not today), or if the kernel is
557 * running inside of a hypervisor layer.
558 */
559 savesegment(gs, prev->gs);
560
561 /*
562 * Load the per-thread Thread-Local Storage descriptor.
563 */
564 load_TLS(next, cpu);
565
566 /*
567 * Restore IOPL if needed. In normal use, the flags restore
568 * in the switch assembly will handle this. But if the kernel
569 * is running virtualized at a non-zero CPL, the popf will
570 * not restore flags, so it must be done in a separate step.
571 */
572 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
573 set_iopl_mask(next->iopl);
574
575 /*
576 * Now maybe handle debug registers and/or IO bitmaps
577 */
578 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
579 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
580 __switch_to_xtra(prev_p, next_p, tss);
581
582 /*
583 * Leave lazy mode, flushing any hypercalls made here.
584 * This must be done before restoring TLS segments so
585 * the GDT and LDT are properly updated, and must be
586 * done before math_state_restore, so the TS bit is up
587 * to date.
588 */
589 arch_leave_lazy_cpu_mode();
590
591 /* If the task has used fpu the last 5 timeslices, just do a full
592 * restore of the math state immediately to avoid the trap; the
593 * chances of needing FPU soon are obviously high now
594 *
595 * tsk_used_math() checks prevent calling math_state_restore(),
596 * which can sleep in the case of !tsk_used_math()
597 */
598 if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
599 math_state_restore();
600
601 /*
602 * Restore %gs if needed (which is common)
603 */
604 if (prev->gs | next->gs)
605 loadsegment(gs, next->gs);
606
607 x86_write_percpu(current_task, next_p);
608
609 return prev_p;
610 }
611
612 asmlinkage int sys_fork(struct pt_regs regs)
613 {
614 return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
615 }
616
617 asmlinkage int sys_clone(struct pt_regs regs)
618 {
619 unsigned long clone_flags;
620 unsigned long newsp;
621 int __user *parent_tidptr, *child_tidptr;
622
623 clone_flags = regs.bx;
624 newsp = regs.cx;
625 parent_tidptr = (int __user *)regs.dx;
626 child_tidptr = (int __user *)regs.di;
627 if (!newsp)
628 newsp = regs.sp;
629 return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
630 }
631
632 /*
633 * This is trivial, and on the face of it looks like it
634 * could equally well be done in user mode.
635 *
636 * Not so, for quite unobvious reasons - register pressure.
637 * In user mode vfork() cannot have a stack frame, and if
638 * done by calling the "clone()" system call directly, you
639 * do not have enough call-clobbered registers to hold all
640 * the information you need.
641 */
642 asmlinkage int sys_vfork(struct pt_regs regs)
643 {
644 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
645 }
646
647 /*
648 * sys_execve() executes a new program.
649 */
650 asmlinkage int sys_execve(struct pt_regs regs)
651 {
652 int error;
653 char * filename;
654
655 filename = getname((char __user *) regs.bx);
656 error = PTR_ERR(filename);
657 if (IS_ERR(filename))
658 goto out;
659 error = do_execve(filename,
660 (char __user * __user *) regs.cx,
661 (char __user * __user *) regs.dx,
662 &regs);
663 if (error == 0) {
664 /* Make sure we don't return using sysenter.. */
665 set_thread_flag(TIF_IRET);
666 }
667 putname(filename);
668 out:
669 return error;
670 }
671
672 #define top_esp (THREAD_SIZE - sizeof(unsigned long))
673 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
674
675 unsigned long get_wchan(struct task_struct *p)
676 {
677 unsigned long bp, sp, ip;
678 unsigned long stack_page;
679 int count = 0;
680 if (!p || p == current || p->state == TASK_RUNNING)
681 return 0;
682 stack_page = (unsigned long)task_stack_page(p);
683 sp = p->thread.sp;
684 if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
685 return 0;
686 /* include/asm-i386/system.h:switch_to() pushes bp last. */
687 bp = *(unsigned long *) sp;
688 do {
689 if (bp < stack_page || bp > top_ebp+stack_page)
690 return 0;
691 ip = *(unsigned long *) (bp+4);
692 if (!in_sched_functions(ip))
693 return ip;
694 bp = *(unsigned long *) bp;
695 } while (count++ < 16);
696 return 0;
697 }
698
699 unsigned long arch_align_stack(unsigned long sp)
700 {
701 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
702 sp -= get_random_int() % 8192;
703 return sp & ~0xf;
704 }
705
706 unsigned long arch_randomize_brk(struct mm_struct *mm)
707 {
708 unsigned long range_end = mm->brk + 0x02000000;
709 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
710 }