]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/kernel/process_32.c
Merge branch 'core/topology' of git://git.kernel.org/pub/scm/linux/kernel/git/tip...
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kernel / process_32.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
7
8 /*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12 #include <stdarg.h>
13
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/utsname.h>
28 #include <linux/delay.h>
29 #include <linux/reboot.h>
30 #include <linux/init.h>
31 #include <linux/mc146818rtc.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/ptrace.h>
35 #include <linux/random.h>
36 #include <linux/personality.h>
37 #include <linux/tick.h>
38 #include <linux/percpu.h>
39 #include <linux/prctl.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/pgtable.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/ldt.h>
46 #include <asm/processor.h>
47 #include <asm/i387.h>
48 #include <asm/desc.h>
49 #ifdef CONFIG_MATH_EMULATION
50 #include <asm/math_emu.h>
51 #endif
52
53 #include <linux/err.h>
54
55 #include <asm/tlbflush.h>
56 #include <asm/cpu.h>
57 #include <asm/kdebug.h>
58
59 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
60
61 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
62 EXPORT_PER_CPU_SYMBOL(current_task);
63
64 DEFINE_PER_CPU(int, cpu_number);
65 EXPORT_PER_CPU_SYMBOL(cpu_number);
66
67 /*
68 * Return saved PC of a blocked thread.
69 */
70 unsigned long thread_saved_pc(struct task_struct *tsk)
71 {
72 return ((unsigned long *)tsk->thread.sp)[3];
73 }
74
75 #ifdef CONFIG_HOTPLUG_CPU
76 #include <asm/nmi.h>
77
78 static void cpu_exit_clear(void)
79 {
80 int cpu = raw_smp_processor_id();
81
82 idle_task_exit();
83
84 cpu_uninit();
85 irq_ctx_exit(cpu);
86
87 cpu_clear(cpu, cpu_callout_map);
88 cpu_clear(cpu, cpu_callin_map);
89
90 numa_remove_cpu(cpu);
91 }
92
93 /* We don't actually take CPU down, just spin without interrupts. */
94 static inline void play_dead(void)
95 {
96 /* This must be done before dead CPU ack */
97 cpu_exit_clear();
98 wbinvd();
99 mb();
100 /* Ack it */
101 __get_cpu_var(cpu_state) = CPU_DEAD;
102
103 /*
104 * With physical CPU hotplug, we should halt the cpu
105 */
106 local_irq_disable();
107 while (1)
108 halt();
109 }
110 #else
111 static inline void play_dead(void)
112 {
113 BUG();
114 }
115 #endif /* CONFIG_HOTPLUG_CPU */
116
117 /*
118 * The idle thread. There's no useful work to be
119 * done, so just try to conserve power and have a
120 * low exit latency (ie sit in a loop waiting for
121 * somebody to say that they'd like to reschedule)
122 */
123 void cpu_idle(void)
124 {
125 int cpu = smp_processor_id();
126
127 current_thread_info()->status |= TS_POLLING;
128
129 /* endless idle loop with no priority at all */
130 while (1) {
131 tick_nohz_stop_sched_tick();
132 while (!need_resched()) {
133
134 check_pgt_cache();
135 rmb();
136
137 if (rcu_pending(cpu))
138 rcu_check_callbacks(cpu, 0);
139
140 if (cpu_is_offline(cpu))
141 play_dead();
142
143 local_irq_disable();
144 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
145 /* Don't trace irqs off for idle */
146 stop_critical_timings();
147 pm_idle();
148 start_critical_timings();
149 }
150 tick_nohz_restart_sched_tick();
151 preempt_enable_no_resched();
152 schedule();
153 preempt_disable();
154 }
155 }
156
157 void __show_registers(struct pt_regs *regs, int all)
158 {
159 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
160 unsigned long d0, d1, d2, d3, d6, d7;
161 unsigned long sp;
162 unsigned short ss, gs;
163
164 if (user_mode_vm(regs)) {
165 sp = regs->sp;
166 ss = regs->ss & 0xffff;
167 savesegment(gs, gs);
168 } else {
169 sp = (unsigned long) (&regs->sp);
170 savesegment(ss, ss);
171 savesegment(gs, gs);
172 }
173
174 printk("\n");
175 printk("Pid: %d, comm: %s %s (%s %.*s)\n",
176 task_pid_nr(current), current->comm,
177 print_tainted(), init_utsname()->release,
178 (int)strcspn(init_utsname()->version, " "),
179 init_utsname()->version);
180
181 printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
182 (u16)regs->cs, regs->ip, regs->flags,
183 smp_processor_id());
184 print_symbol("EIP is at %s\n", regs->ip);
185
186 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
187 regs->ax, regs->bx, regs->cx, regs->dx);
188 printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
189 regs->si, regs->di, regs->bp, sp);
190 printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
191 (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
192
193 if (!all)
194 return;
195
196 cr0 = read_cr0();
197 cr2 = read_cr2();
198 cr3 = read_cr3();
199 cr4 = read_cr4_safe();
200 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
201 cr0, cr2, cr3, cr4);
202
203 get_debugreg(d0, 0);
204 get_debugreg(d1, 1);
205 get_debugreg(d2, 2);
206 get_debugreg(d3, 3);
207 printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
208 d0, d1, d2, d3);
209
210 get_debugreg(d6, 6);
211 get_debugreg(d7, 7);
212 printk("DR6: %08lx DR7: %08lx\n",
213 d6, d7);
214 }
215
216 void show_regs(struct pt_regs *regs)
217 {
218 __show_registers(regs, 1);
219 show_trace(NULL, regs, &regs->sp, regs->bp);
220 }
221
222 /*
223 * This gets run with %bx containing the
224 * function to call, and %dx containing
225 * the "args".
226 */
227 extern void kernel_thread_helper(void);
228
229 /*
230 * Create a kernel thread
231 */
232 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
233 {
234 struct pt_regs regs;
235
236 memset(&regs, 0, sizeof(regs));
237
238 regs.bx = (unsigned long) fn;
239 regs.dx = (unsigned long) arg;
240
241 regs.ds = __USER_DS;
242 regs.es = __USER_DS;
243 regs.fs = __KERNEL_PERCPU;
244 regs.orig_ax = -1;
245 regs.ip = (unsigned long) kernel_thread_helper;
246 regs.cs = __KERNEL_CS | get_kernel_rpl();
247 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
248
249 /* Ok, create the new process.. */
250 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
251 }
252 EXPORT_SYMBOL(kernel_thread);
253
254 /*
255 * Free current thread data structures etc..
256 */
257 void exit_thread(void)
258 {
259 /* The process may have allocated an io port bitmap... nuke it. */
260 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
261 struct task_struct *tsk = current;
262 struct thread_struct *t = &tsk->thread;
263 int cpu = get_cpu();
264 struct tss_struct *tss = &per_cpu(init_tss, cpu);
265
266 kfree(t->io_bitmap_ptr);
267 t->io_bitmap_ptr = NULL;
268 clear_thread_flag(TIF_IO_BITMAP);
269 /*
270 * Careful, clear this in the TSS too:
271 */
272 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
273 t->io_bitmap_max = 0;
274 tss->io_bitmap_owner = NULL;
275 tss->io_bitmap_max = 0;
276 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
277 put_cpu();
278 }
279 }
280
281 void flush_thread(void)
282 {
283 struct task_struct *tsk = current;
284
285 tsk->thread.debugreg0 = 0;
286 tsk->thread.debugreg1 = 0;
287 tsk->thread.debugreg2 = 0;
288 tsk->thread.debugreg3 = 0;
289 tsk->thread.debugreg6 = 0;
290 tsk->thread.debugreg7 = 0;
291 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
292 clear_tsk_thread_flag(tsk, TIF_DEBUG);
293 /*
294 * Forget coprocessor state..
295 */
296 tsk->fpu_counter = 0;
297 clear_fpu(tsk);
298 clear_used_math();
299 }
300
301 void release_thread(struct task_struct *dead_task)
302 {
303 BUG_ON(dead_task->mm);
304 release_vm86_irqs(dead_task);
305 }
306
307 /*
308 * This gets called before we allocate a new thread and copy
309 * the current task into it.
310 */
311 void prepare_to_copy(struct task_struct *tsk)
312 {
313 unlazy_fpu(tsk);
314 }
315
316 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
317 unsigned long unused,
318 struct task_struct * p, struct pt_regs * regs)
319 {
320 struct pt_regs * childregs;
321 struct task_struct *tsk;
322 int err;
323
324 childregs = task_pt_regs(p);
325 *childregs = *regs;
326 childregs->ax = 0;
327 childregs->sp = sp;
328
329 p->thread.sp = (unsigned long) childregs;
330 p->thread.sp0 = (unsigned long) (childregs+1);
331
332 p->thread.ip = (unsigned long) ret_from_fork;
333
334 savesegment(gs, p->thread.gs);
335
336 tsk = current;
337 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
338 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
339 IO_BITMAP_BYTES, GFP_KERNEL);
340 if (!p->thread.io_bitmap_ptr) {
341 p->thread.io_bitmap_max = 0;
342 return -ENOMEM;
343 }
344 set_tsk_thread_flag(p, TIF_IO_BITMAP);
345 }
346
347 err = 0;
348
349 /*
350 * Set a new TLS for the child thread?
351 */
352 if (clone_flags & CLONE_SETTLS)
353 err = do_set_thread_area(p, -1,
354 (struct user_desc __user *)childregs->si, 0);
355
356 if (err && p->thread.io_bitmap_ptr) {
357 kfree(p->thread.io_bitmap_ptr);
358 p->thread.io_bitmap_max = 0;
359 }
360 return err;
361 }
362
363 void
364 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
365 {
366 __asm__("movl %0, %%gs" :: "r"(0));
367 regs->fs = 0;
368 set_fs(USER_DS);
369 regs->ds = __USER_DS;
370 regs->es = __USER_DS;
371 regs->ss = __USER_DS;
372 regs->cs = __USER_CS;
373 regs->ip = new_ip;
374 regs->sp = new_sp;
375 /*
376 * Free the old FP and other extended state
377 */
378 free_thread_xstate(current);
379 }
380 EXPORT_SYMBOL_GPL(start_thread);
381
382 static void hard_disable_TSC(void)
383 {
384 write_cr4(read_cr4() | X86_CR4_TSD);
385 }
386
387 void disable_TSC(void)
388 {
389 preempt_disable();
390 if (!test_and_set_thread_flag(TIF_NOTSC))
391 /*
392 * Must flip the CPU state synchronously with
393 * TIF_NOTSC in the current running context.
394 */
395 hard_disable_TSC();
396 preempt_enable();
397 }
398
399 static void hard_enable_TSC(void)
400 {
401 write_cr4(read_cr4() & ~X86_CR4_TSD);
402 }
403
404 static void enable_TSC(void)
405 {
406 preempt_disable();
407 if (test_and_clear_thread_flag(TIF_NOTSC))
408 /*
409 * Must flip the CPU state synchronously with
410 * TIF_NOTSC in the current running context.
411 */
412 hard_enable_TSC();
413 preempt_enable();
414 }
415
416 int get_tsc_mode(unsigned long adr)
417 {
418 unsigned int val;
419
420 if (test_thread_flag(TIF_NOTSC))
421 val = PR_TSC_SIGSEGV;
422 else
423 val = PR_TSC_ENABLE;
424
425 return put_user(val, (unsigned int __user *)adr);
426 }
427
428 int set_tsc_mode(unsigned int val)
429 {
430 if (val == PR_TSC_SIGSEGV)
431 disable_TSC();
432 else if (val == PR_TSC_ENABLE)
433 enable_TSC();
434 else
435 return -EINVAL;
436
437 return 0;
438 }
439
440 static noinline void
441 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
442 struct tss_struct *tss)
443 {
444 struct thread_struct *prev, *next;
445 unsigned long debugctl;
446
447 prev = &prev_p->thread;
448 next = &next_p->thread;
449
450 debugctl = prev->debugctlmsr;
451 if (next->ds_area_msr != prev->ds_area_msr) {
452 /* we clear debugctl to make sure DS
453 * is not in use when we change it */
454 debugctl = 0;
455 update_debugctlmsr(0);
456 wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
457 }
458
459 if (next->debugctlmsr != debugctl)
460 update_debugctlmsr(next->debugctlmsr);
461
462 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
463 set_debugreg(next->debugreg0, 0);
464 set_debugreg(next->debugreg1, 1);
465 set_debugreg(next->debugreg2, 2);
466 set_debugreg(next->debugreg3, 3);
467 /* no 4 and 5 */
468 set_debugreg(next->debugreg6, 6);
469 set_debugreg(next->debugreg7, 7);
470 }
471
472 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
473 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
474 /* prev and next are different */
475 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
476 hard_disable_TSC();
477 else
478 hard_enable_TSC();
479 }
480
481 #ifdef X86_BTS
482 if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
483 ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
484
485 if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
486 ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
487 #endif
488
489
490 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
491 /*
492 * Disable the bitmap via an invalid offset. We still cache
493 * the previous bitmap owner and the IO bitmap contents:
494 */
495 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
496 return;
497 }
498
499 if (likely(next == tss->io_bitmap_owner)) {
500 /*
501 * Previous owner of the bitmap (hence the bitmap content)
502 * matches the next task, we dont have to do anything but
503 * to set a valid offset in the TSS:
504 */
505 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
506 return;
507 }
508 /*
509 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
510 * and we let the task to get a GPF in case an I/O instruction
511 * is performed. The handler of the GPF will verify that the
512 * faulting task has a valid I/O bitmap and, it true, does the
513 * real copy and restart the instruction. This will save us
514 * redundant copies when the currently switched task does not
515 * perform any I/O during its timeslice.
516 */
517 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
518 }
519
520 /*
521 * switch_to(x,yn) should switch tasks from x to y.
522 *
523 * We fsave/fwait so that an exception goes off at the right time
524 * (as a call from the fsave or fwait in effect) rather than to
525 * the wrong process. Lazy FP saving no longer makes any sense
526 * with modern CPU's, and this simplifies a lot of things (SMP
527 * and UP become the same).
528 *
529 * NOTE! We used to use the x86 hardware context switching. The
530 * reason for not using it any more becomes apparent when you
531 * try to recover gracefully from saved state that is no longer
532 * valid (stale segment register values in particular). With the
533 * hardware task-switch, there is no way to fix up bad state in
534 * a reasonable manner.
535 *
536 * The fact that Intel documents the hardware task-switching to
537 * be slow is a fairly red herring - this code is not noticeably
538 * faster. However, there _is_ some room for improvement here,
539 * so the performance issues may eventually be a valid point.
540 * More important, however, is the fact that this allows us much
541 * more flexibility.
542 *
543 * The return value (in %ax) will be the "prev" task after
544 * the task-switch, and shows up in ret_from_fork in entry.S,
545 * for example.
546 */
547 struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
548 {
549 struct thread_struct *prev = &prev_p->thread,
550 *next = &next_p->thread;
551 int cpu = smp_processor_id();
552 struct tss_struct *tss = &per_cpu(init_tss, cpu);
553
554 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
555
556 __unlazy_fpu(prev_p);
557
558
559 /* we're going to use this soon, after a few expensive things */
560 if (next_p->fpu_counter > 5)
561 prefetch(next->xstate);
562
563 /*
564 * Reload esp0.
565 */
566 load_sp0(tss, next);
567
568 /*
569 * Save away %gs. No need to save %fs, as it was saved on the
570 * stack on entry. No need to save %es and %ds, as those are
571 * always kernel segments while inside the kernel. Doing this
572 * before setting the new TLS descriptors avoids the situation
573 * where we temporarily have non-reloadable segments in %fs
574 * and %gs. This could be an issue if the NMI handler ever
575 * used %fs or %gs (it does not today), or if the kernel is
576 * running inside of a hypervisor layer.
577 */
578 savesegment(gs, prev->gs);
579
580 /*
581 * Load the per-thread Thread-Local Storage descriptor.
582 */
583 load_TLS(next, cpu);
584
585 /*
586 * Restore IOPL if needed. In normal use, the flags restore
587 * in the switch assembly will handle this. But if the kernel
588 * is running virtualized at a non-zero CPL, the popf will
589 * not restore flags, so it must be done in a separate step.
590 */
591 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
592 set_iopl_mask(next->iopl);
593
594 /*
595 * Now maybe handle debug registers and/or IO bitmaps
596 */
597 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
598 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
599 __switch_to_xtra(prev_p, next_p, tss);
600
601 /*
602 * Leave lazy mode, flushing any hypercalls made here.
603 * This must be done before restoring TLS segments so
604 * the GDT and LDT are properly updated, and must be
605 * done before math_state_restore, so the TS bit is up
606 * to date.
607 */
608 arch_leave_lazy_cpu_mode();
609
610 /* If the task has used fpu the last 5 timeslices, just do a full
611 * restore of the math state immediately to avoid the trap; the
612 * chances of needing FPU soon are obviously high now
613 *
614 * tsk_used_math() checks prevent calling math_state_restore(),
615 * which can sleep in the case of !tsk_used_math()
616 */
617 if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
618 math_state_restore();
619
620 /*
621 * Restore %gs if needed (which is common)
622 */
623 if (prev->gs | next->gs)
624 loadsegment(gs, next->gs);
625
626 x86_write_percpu(current_task, next_p);
627
628 return prev_p;
629 }
630
631 asmlinkage int sys_fork(struct pt_regs regs)
632 {
633 return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
634 }
635
636 asmlinkage int sys_clone(struct pt_regs regs)
637 {
638 unsigned long clone_flags;
639 unsigned long newsp;
640 int __user *parent_tidptr, *child_tidptr;
641
642 clone_flags = regs.bx;
643 newsp = regs.cx;
644 parent_tidptr = (int __user *)regs.dx;
645 child_tidptr = (int __user *)regs.di;
646 if (!newsp)
647 newsp = regs.sp;
648 return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
649 }
650
651 /*
652 * This is trivial, and on the face of it looks like it
653 * could equally well be done in user mode.
654 *
655 * Not so, for quite unobvious reasons - register pressure.
656 * In user mode vfork() cannot have a stack frame, and if
657 * done by calling the "clone()" system call directly, you
658 * do not have enough call-clobbered registers to hold all
659 * the information you need.
660 */
661 asmlinkage int sys_vfork(struct pt_regs regs)
662 {
663 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
664 }
665
666 /*
667 * sys_execve() executes a new program.
668 */
669 asmlinkage int sys_execve(struct pt_regs regs)
670 {
671 int error;
672 char * filename;
673
674 filename = getname((char __user *) regs.bx);
675 error = PTR_ERR(filename);
676 if (IS_ERR(filename))
677 goto out;
678 error = do_execve(filename,
679 (char __user * __user *) regs.cx,
680 (char __user * __user *) regs.dx,
681 &regs);
682 if (error == 0) {
683 /* Make sure we don't return using sysenter.. */
684 set_thread_flag(TIF_IRET);
685 }
686 putname(filename);
687 out:
688 return error;
689 }
690
691 #define top_esp (THREAD_SIZE - sizeof(unsigned long))
692 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
693
694 unsigned long get_wchan(struct task_struct *p)
695 {
696 unsigned long bp, sp, ip;
697 unsigned long stack_page;
698 int count = 0;
699 if (!p || p == current || p->state == TASK_RUNNING)
700 return 0;
701 stack_page = (unsigned long)task_stack_page(p);
702 sp = p->thread.sp;
703 if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
704 return 0;
705 /* include/asm-i386/system.h:switch_to() pushes bp last. */
706 bp = *(unsigned long *) sp;
707 do {
708 if (bp < stack_page || bp > top_ebp+stack_page)
709 return 0;
710 ip = *(unsigned long *) (bp+4);
711 if (!in_sched_functions(ip))
712 return ip;
713 bp = *(unsigned long *) bp;
714 } while (count++ < 16);
715 return 0;
716 }
717
718 unsigned long arch_align_stack(unsigned long sp)
719 {
720 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
721 sp -= get_random_int() % 8192;
722 return sp & ~0xf;
723 }
724
725 unsigned long arch_randomize_brk(struct mm_struct *mm)
726 {
727 unsigned long range_end = mm->brk + 0x02000000;
728 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
729 }