]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/process_64.c
x86/speculation: Consolidate CPU whitelists
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / process_64.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 *
7 * X86-64 port
8 * Andi Kleen.
9 *
10 * CPU hotplug support - ashok.raj@intel.com
11 */
12
13 /*
14 * This file handles the architecture-dependent parts of process handling..
15 */
16
17 #include <linux/cpu.h>
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/fs.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/elfcore.h>
26 #include <linux/smp.h>
27 #include <linux/slab.h>
28 #include <linux/user.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/export.h>
32 #include <linux/ptrace.h>
33 #include <linux/notifier.h>
34 #include <linux/kprobes.h>
35 #include <linux/kdebug.h>
36 #include <linux/prctl.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/ftrace.h>
40 #include <linux/syscalls.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/processor.h>
44 #include <asm/fpu/internal.h>
45 #include <asm/mmu_context.h>
46 #include <asm/prctl.h>
47 #include <asm/desc.h>
48 #include <asm/proto.h>
49 #include <asm/ia32.h>
50 #include <asm/syscalls.h>
51 #include <asm/debugreg.h>
52 #include <asm/switch_to.h>
53 #include <asm/xen/hypervisor.h>
54 #include <asm/vdso.h>
55 #include <asm/intel_rdt_sched.h>
56 #include <asm/unistd.h>
57 #ifdef CONFIG_IA32_EMULATION
58 /* Not included via unistd.h */
59 #include <asm/unistd_32_ia32.h>
60 #endif
61
62 #include "process.h"
63
64 __visible DEFINE_PER_CPU(unsigned long, rsp_scratch);
65
66 /* Prints also some state that isn't saved in the pt_regs */
67 void __show_regs(struct pt_regs *regs, int all)
68 {
69 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
70 unsigned long d0, d1, d2, d3, d6, d7;
71 unsigned int fsindex, gsindex;
72 unsigned int ds, cs, es;
73
74 show_iret_regs(regs);
75
76 if (regs->orig_ax != -1)
77 pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
78 else
79 pr_cont("\n");
80
81 printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
82 regs->ax, regs->bx, regs->cx);
83 printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
84 regs->dx, regs->si, regs->di);
85 printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
86 regs->bp, regs->r8, regs->r9);
87 printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
88 regs->r10, regs->r11, regs->r12);
89 printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
90 regs->r13, regs->r14, regs->r15);
91
92 if (!all)
93 return;
94
95 asm("movl %%ds,%0" : "=r" (ds));
96 asm("movl %%cs,%0" : "=r" (cs));
97 asm("movl %%es,%0" : "=r" (es));
98 asm("movl %%fs,%0" : "=r" (fsindex));
99 asm("movl %%gs,%0" : "=r" (gsindex));
100
101 rdmsrl(MSR_FS_BASE, fs);
102 rdmsrl(MSR_GS_BASE, gs);
103 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
104
105 cr0 = read_cr0();
106 cr2 = read_cr2();
107 cr3 = __read_cr3();
108 cr4 = __read_cr4();
109
110 printk(KERN_DEFAULT "FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
111 fs, fsindex, gs, gsindex, shadowgs);
112 printk(KERN_DEFAULT "CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
113 es, cr0);
114 printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
115 cr4);
116
117 get_debugreg(d0, 0);
118 get_debugreg(d1, 1);
119 get_debugreg(d2, 2);
120 get_debugreg(d3, 3);
121 get_debugreg(d6, 6);
122 get_debugreg(d7, 7);
123
124 /* Only print out debug registers if they are in their non-default state. */
125 if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
126 (d6 == DR6_RESERVED) && (d7 == 0x400))) {
127 printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n",
128 d0, d1, d2);
129 printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n",
130 d3, d6, d7);
131 }
132
133 if (boot_cpu_has(X86_FEATURE_OSPKE))
134 printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru());
135 }
136
137 void release_thread(struct task_struct *dead_task)
138 {
139 if (dead_task->mm) {
140 #ifdef CONFIG_MODIFY_LDT_SYSCALL
141 if (dead_task->mm->context.ldt) {
142 pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n",
143 dead_task->comm,
144 dead_task->mm->context.ldt->entries,
145 dead_task->mm->context.ldt->nr_entries);
146 BUG();
147 }
148 #endif
149 }
150 }
151
152 enum which_selector {
153 FS,
154 GS
155 };
156
157 /*
158 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
159 * not available. The goal is to be reasonably fast on non-FSGSBASE systems.
160 * It's forcibly inlined because it'll generate better code and this function
161 * is hot.
162 */
163 static __always_inline void save_base_legacy(struct task_struct *prev_p,
164 unsigned short selector,
165 enum which_selector which)
166 {
167 if (likely(selector == 0)) {
168 /*
169 * On Intel (without X86_BUG_NULL_SEG), the segment base could
170 * be the pre-existing saved base or it could be zero. On AMD
171 * (with X86_BUG_NULL_SEG), the segment base could be almost
172 * anything.
173 *
174 * This branch is very hot (it's hit twice on almost every
175 * context switch between 64-bit programs), and avoiding
176 * the RDMSR helps a lot, so we just assume that whatever
177 * value is already saved is correct. This matches historical
178 * Linux behavior, so it won't break existing applications.
179 *
180 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
181 * report that the base is zero, it needs to actually be zero:
182 * see the corresponding logic in load_seg_legacy.
183 */
184 } else {
185 /*
186 * If the selector is 1, 2, or 3, then the base is zero on
187 * !X86_BUG_NULL_SEG CPUs and could be anything on
188 * X86_BUG_NULL_SEG CPUs. In the latter case, Linux
189 * has never attempted to preserve the base across context
190 * switches.
191 *
192 * If selector > 3, then it refers to a real segment, and
193 * saving the base isn't necessary.
194 */
195 if (which == FS)
196 prev_p->thread.fsbase = 0;
197 else
198 prev_p->thread.gsbase = 0;
199 }
200 }
201
202 static __always_inline void save_fsgs(struct task_struct *task)
203 {
204 savesegment(fs, task->thread.fsindex);
205 savesegment(gs, task->thread.gsindex);
206 save_base_legacy(task, task->thread.fsindex, FS);
207 save_base_legacy(task, task->thread.gsindex, GS);
208 }
209
210 static __always_inline void loadseg(enum which_selector which,
211 unsigned short sel)
212 {
213 if (which == FS)
214 loadsegment(fs, sel);
215 else
216 load_gs_index(sel);
217 }
218
219 static __always_inline void load_seg_legacy(unsigned short prev_index,
220 unsigned long prev_base,
221 unsigned short next_index,
222 unsigned long next_base,
223 enum which_selector which)
224 {
225 if (likely(next_index <= 3)) {
226 /*
227 * The next task is using 64-bit TLS, is not using this
228 * segment at all, or is having fun with arcane CPU features.
229 */
230 if (next_base == 0) {
231 /*
232 * Nasty case: on AMD CPUs, we need to forcibly zero
233 * the base.
234 */
235 if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
236 loadseg(which, __USER_DS);
237 loadseg(which, next_index);
238 } else {
239 /*
240 * We could try to exhaustively detect cases
241 * under which we can skip the segment load,
242 * but there's really only one case that matters
243 * for performance: if both the previous and
244 * next states are fully zeroed, we can skip
245 * the load.
246 *
247 * (This assumes that prev_base == 0 has no
248 * false positives. This is the case on
249 * Intel-style CPUs.)
250 */
251 if (likely(prev_index | next_index | prev_base))
252 loadseg(which, next_index);
253 }
254 } else {
255 if (prev_index != next_index)
256 loadseg(which, next_index);
257 wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
258 next_base);
259 }
260 } else {
261 /*
262 * The next task is using a real segment. Loading the selector
263 * is sufficient.
264 */
265 loadseg(which, next_index);
266 }
267 }
268
269 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
270 unsigned long arg, struct task_struct *p, unsigned long tls)
271 {
272 int err;
273 struct pt_regs *childregs;
274 struct fork_frame *fork_frame;
275 struct inactive_task_frame *frame;
276 struct task_struct *me = current;
277
278 childregs = task_pt_regs(p);
279 fork_frame = container_of(childregs, struct fork_frame, regs);
280 frame = &fork_frame->frame;
281 frame->bp = 0;
282 frame->ret_addr = (unsigned long) ret_from_fork;
283 p->thread.sp = (unsigned long) fork_frame;
284 p->thread.io_bitmap_ptr = NULL;
285
286 savesegment(gs, p->thread.gsindex);
287 p->thread.gsbase = p->thread.gsindex ? 0 : me->thread.gsbase;
288 savesegment(fs, p->thread.fsindex);
289 p->thread.fsbase = p->thread.fsindex ? 0 : me->thread.fsbase;
290 savesegment(es, p->thread.es);
291 savesegment(ds, p->thread.ds);
292 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
293
294 if (unlikely(p->flags & PF_KTHREAD)) {
295 /* kernel thread */
296 memset(childregs, 0, sizeof(struct pt_regs));
297 frame->bx = sp; /* function */
298 frame->r12 = arg;
299 return 0;
300 }
301 frame->bx = 0;
302 *childregs = *current_pt_regs();
303
304 childregs->ax = 0;
305 if (sp)
306 childregs->sp = sp;
307
308 err = -ENOMEM;
309 if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
310 p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
311 IO_BITMAP_BYTES, GFP_KERNEL);
312 if (!p->thread.io_bitmap_ptr) {
313 p->thread.io_bitmap_max = 0;
314 return -ENOMEM;
315 }
316 set_tsk_thread_flag(p, TIF_IO_BITMAP);
317 }
318
319 /*
320 * Set a new TLS for the child thread?
321 */
322 if (clone_flags & CLONE_SETTLS) {
323 #ifdef CONFIG_IA32_EMULATION
324 if (in_ia32_syscall())
325 err = do_set_thread_area(p, -1,
326 (struct user_desc __user *)tls, 0);
327 else
328 #endif
329 err = do_arch_prctl_64(p, ARCH_SET_FS, tls);
330 if (err)
331 goto out;
332 }
333 err = 0;
334 out:
335 if (err && p->thread.io_bitmap_ptr) {
336 kfree(p->thread.io_bitmap_ptr);
337 p->thread.io_bitmap_max = 0;
338 }
339
340 return err;
341 }
342
343 static void
344 start_thread_common(struct pt_regs *regs, unsigned long new_ip,
345 unsigned long new_sp,
346 unsigned int _cs, unsigned int _ss, unsigned int _ds)
347 {
348 WARN_ON_ONCE(regs != current_pt_regs());
349
350 if (static_cpu_has(X86_BUG_NULL_SEG)) {
351 /* Loading zero below won't clear the base. */
352 loadsegment(fs, __USER_DS);
353 load_gs_index(__USER_DS);
354 }
355
356 loadsegment(fs, 0);
357 loadsegment(es, _ds);
358 loadsegment(ds, _ds);
359 load_gs_index(0);
360
361 regs->ip = new_ip;
362 regs->sp = new_sp;
363 regs->cs = _cs;
364 regs->ss = _ss;
365 regs->flags = X86_EFLAGS_IF;
366 force_iret();
367 }
368
369 void
370 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
371 {
372 start_thread_common(regs, new_ip, new_sp,
373 __USER_CS, __USER_DS, 0);
374 }
375
376 #ifdef CONFIG_COMPAT
377 void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
378 {
379 start_thread_common(regs, new_ip, new_sp,
380 test_thread_flag(TIF_X32)
381 ? __USER_CS : __USER32_CS,
382 __USER_DS, __USER_DS);
383 }
384 #endif
385
386 /*
387 * switch_to(x,y) should switch tasks from x to y.
388 *
389 * This could still be optimized:
390 * - fold all the options into a flag word and test it with a single test.
391 * - could test fs/gs bitsliced
392 *
393 * Kprobes not supported here. Set the probe on schedule instead.
394 * Function graph tracer not supported too.
395 */
396 __visible __notrace_funcgraph struct task_struct *
397 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
398 {
399 struct thread_struct *prev = &prev_p->thread;
400 struct thread_struct *next = &next_p->thread;
401 struct fpu *prev_fpu = &prev->fpu;
402 struct fpu *next_fpu = &next->fpu;
403 int cpu = smp_processor_id();
404
405 WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
406 this_cpu_read(irq_count) != -1);
407
408 switch_fpu_prepare(prev_fpu, cpu);
409
410 /* We must save %fs and %gs before load_TLS() because
411 * %fs and %gs may be cleared by load_TLS().
412 *
413 * (e.g. xen_load_tls())
414 */
415 save_fsgs(prev_p);
416
417 /*
418 * Load TLS before restoring any segments so that segment loads
419 * reference the correct GDT entries.
420 */
421 load_TLS(next, cpu);
422
423 /*
424 * Leave lazy mode, flushing any hypercalls made here. This
425 * must be done after loading TLS entries in the GDT but before
426 * loading segments that might reference them, and and it must
427 * be done before fpu__restore(), so the TS bit is up to
428 * date.
429 */
430 arch_end_context_switch(next_p);
431
432 /* Switch DS and ES.
433 *
434 * Reading them only returns the selectors, but writing them (if
435 * nonzero) loads the full descriptor from the GDT or LDT. The
436 * LDT for next is loaded in switch_mm, and the GDT is loaded
437 * above.
438 *
439 * We therefore need to write new values to the segment
440 * registers on every context switch unless both the new and old
441 * values are zero.
442 *
443 * Note that we don't need to do anything for CS and SS, as
444 * those are saved and restored as part of pt_regs.
445 */
446 savesegment(es, prev->es);
447 if (unlikely(next->es | prev->es))
448 loadsegment(es, next->es);
449
450 savesegment(ds, prev->ds);
451 if (unlikely(next->ds | prev->ds))
452 loadsegment(ds, next->ds);
453
454 load_seg_legacy(prev->fsindex, prev->fsbase,
455 next->fsindex, next->fsbase, FS);
456 load_seg_legacy(prev->gsindex, prev->gsbase,
457 next->gsindex, next->gsbase, GS);
458
459 switch_fpu_finish(next_fpu, cpu);
460
461 /*
462 * Switch the PDA and FPU contexts.
463 */
464 this_cpu_write(current_task, next_p);
465 this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p));
466
467 /* Reload sp0. */
468 update_task_stack(next_p);
469
470 switch_to_extra(prev_p, next_p);
471
472 #ifdef CONFIG_XEN_PV
473 /*
474 * On Xen PV, IOPL bits in pt_regs->flags have no effect, and
475 * current_pt_regs()->flags may not match the current task's
476 * intended IOPL. We need to switch it manually.
477 */
478 if (unlikely(static_cpu_has(X86_FEATURE_XENPV) &&
479 prev->iopl != next->iopl))
480 xen_set_iopl_mask(next->iopl);
481 #endif
482
483 if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
484 /*
485 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
486 * does not update the cached descriptor. As a result, if we
487 * do SYSRET while SS is NULL, we'll end up in user mode with
488 * SS apparently equal to __USER_DS but actually unusable.
489 *
490 * The straightforward workaround would be to fix it up just
491 * before SYSRET, but that would slow down the system call
492 * fast paths. Instead, we ensure that SS is never NULL in
493 * system call context. We do this by replacing NULL SS
494 * selectors at every context switch. SYSCALL sets up a valid
495 * SS, so the only way to get NULL is to re-enter the kernel
496 * from CPL 3 through an interrupt. Since that can't happen
497 * in the same task as a running syscall, we are guaranteed to
498 * context switch between every interrupt vector entry and a
499 * subsequent SYSRET.
500 *
501 * We read SS first because SS reads are much faster than
502 * writes. Out of caution, we force SS to __KERNEL_DS even if
503 * it previously had a different non-NULL value.
504 */
505 unsigned short ss_sel;
506 savesegment(ss, ss_sel);
507 if (ss_sel != __KERNEL_DS)
508 loadsegment(ss, __KERNEL_DS);
509 }
510
511 /* Load the Intel cache allocation PQR MSR. */
512 intel_rdt_sched_in();
513
514 return prev_p;
515 }
516
517 void set_personality_64bit(void)
518 {
519 /* inherit personality from parent */
520
521 /* Make sure to be in 64bit mode */
522 clear_thread_flag(TIF_IA32);
523 clear_thread_flag(TIF_ADDR32);
524 clear_thread_flag(TIF_X32);
525 /* Pretend that this comes from a 64bit execve */
526 task_pt_regs(current)->orig_ax = __NR_execve;
527 current_thread_info()->status &= ~TS_COMPAT;
528
529 /* Ensure the corresponding mm is not marked. */
530 if (current->mm)
531 current->mm->context.ia32_compat = 0;
532
533 /* TBD: overwrites user setup. Should have two bits.
534 But 64bit processes have always behaved this way,
535 so it's not too bad. The main problem is just that
536 32bit childs are affected again. */
537 current->personality &= ~READ_IMPLIES_EXEC;
538 }
539
540 static void __set_personality_x32(void)
541 {
542 #ifdef CONFIG_X86_X32
543 clear_thread_flag(TIF_IA32);
544 set_thread_flag(TIF_X32);
545 if (current->mm)
546 current->mm->context.ia32_compat = TIF_X32;
547 current->personality &= ~READ_IMPLIES_EXEC;
548 /*
549 * in_compat_syscall() uses the presence of the x32 syscall bit
550 * flag to determine compat status. The x86 mmap() code relies on
551 * the syscall bitness so set x32 syscall bit right here to make
552 * in_compat_syscall() work during exec().
553 *
554 * Pretend to come from a x32 execve.
555 */
556 task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
557 current_thread_info()->status &= ~TS_COMPAT;
558 #endif
559 }
560
561 static void __set_personality_ia32(void)
562 {
563 #ifdef CONFIG_IA32_EMULATION
564 set_thread_flag(TIF_IA32);
565 clear_thread_flag(TIF_X32);
566 if (current->mm)
567 current->mm->context.ia32_compat = TIF_IA32;
568 current->personality |= force_personality32;
569 /* Prepare the first "return" to user space */
570 task_pt_regs(current)->orig_ax = __NR_ia32_execve;
571 current_thread_info()->status |= TS_COMPAT;
572 #endif
573 }
574
575 void set_personality_ia32(bool x32)
576 {
577 /* Make sure to be in 32bit mode */
578 set_thread_flag(TIF_ADDR32);
579
580 if (x32)
581 __set_personality_x32();
582 else
583 __set_personality_ia32();
584 }
585 EXPORT_SYMBOL_GPL(set_personality_ia32);
586
587 #ifdef CONFIG_CHECKPOINT_RESTORE
588 static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
589 {
590 int ret;
591
592 ret = map_vdso_once(image, addr);
593 if (ret)
594 return ret;
595
596 return (long)image->size;
597 }
598 #endif
599
600 long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
601 {
602 int ret = 0;
603 int doit = task == current;
604 int cpu;
605
606 switch (option) {
607 case ARCH_SET_GS:
608 if (arg2 >= TASK_SIZE_MAX)
609 return -EPERM;
610 cpu = get_cpu();
611 task->thread.gsindex = 0;
612 task->thread.gsbase = arg2;
613 if (doit) {
614 load_gs_index(0);
615 ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, arg2);
616 }
617 put_cpu();
618 break;
619 case ARCH_SET_FS:
620 /* Not strictly needed for fs, but do it for symmetry
621 with gs */
622 if (arg2 >= TASK_SIZE_MAX)
623 return -EPERM;
624 cpu = get_cpu();
625 task->thread.fsindex = 0;
626 task->thread.fsbase = arg2;
627 if (doit) {
628 /* set the selector to 0 to not confuse __switch_to */
629 loadsegment(fs, 0);
630 ret = wrmsrl_safe(MSR_FS_BASE, arg2);
631 }
632 put_cpu();
633 break;
634 case ARCH_GET_FS: {
635 unsigned long base;
636
637 if (doit)
638 rdmsrl(MSR_FS_BASE, base);
639 else
640 base = task->thread.fsbase;
641 ret = put_user(base, (unsigned long __user *)arg2);
642 break;
643 }
644 case ARCH_GET_GS: {
645 unsigned long base;
646
647 if (doit)
648 rdmsrl(MSR_KERNEL_GS_BASE, base);
649 else
650 base = task->thread.gsbase;
651 ret = put_user(base, (unsigned long __user *)arg2);
652 break;
653 }
654
655 #ifdef CONFIG_CHECKPOINT_RESTORE
656 # ifdef CONFIG_X86_X32_ABI
657 case ARCH_MAP_VDSO_X32:
658 return prctl_map_vdso(&vdso_image_x32, arg2);
659 # endif
660 # if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
661 case ARCH_MAP_VDSO_32:
662 return prctl_map_vdso(&vdso_image_32, arg2);
663 # endif
664 case ARCH_MAP_VDSO_64:
665 return prctl_map_vdso(&vdso_image_64, arg2);
666 #endif
667
668 default:
669 ret = -EINVAL;
670 break;
671 }
672
673 return ret;
674 }
675
676 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
677 {
678 long ret;
679
680 ret = do_arch_prctl_64(current, option, arg2);
681 if (ret == -EINVAL)
682 ret = do_arch_prctl_common(current, option, arg2);
683
684 return ret;
685 }
686
687 #ifdef CONFIG_IA32_EMULATION
688 COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
689 {
690 return do_arch_prctl_common(current, option, arg2);
691 }
692 #endif
693
694 unsigned long KSTK_ESP(struct task_struct *task)
695 {
696 return task_pt_regs(task)->sp;
697 }