]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/kernel/process_64.c
Merge 4.2-rc6 into usb-next
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / kernel / process_64.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 *
7 * X86-64 port
8 * Andi Kleen.
9 *
10 * CPU hotplug support - ashok.raj@intel.com
11 */
12
13 /*
14 * This file handles the architecture-dependent parts of process handling..
15 */
16
17 #include <linux/cpu.h>
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/fs.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/elfcore.h>
24 #include <linux/smp.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/module.h>
30 #include <linux/ptrace.h>
31 #include <linux/notifier.h>
32 #include <linux/kprobes.h>
33 #include <linux/kdebug.h>
34 #include <linux/prctl.h>
35 #include <linux/uaccess.h>
36 #include <linux/io.h>
37 #include <linux/ftrace.h>
38
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41 #include <asm/fpu/internal.h>
42 #include <asm/mmu_context.h>
43 #include <asm/prctl.h>
44 #include <asm/desc.h>
45 #include <asm/proto.h>
46 #include <asm/ia32.h>
47 #include <asm/idle.h>
48 #include <asm/syscalls.h>
49 #include <asm/debugreg.h>
50 #include <asm/switch_to.h>
51
52 asmlinkage extern void ret_from_fork(void);
53
54 __visible DEFINE_PER_CPU(unsigned long, rsp_scratch);
55
56 /* Prints also some state that isn't saved in the pt_regs */
57 void __show_regs(struct pt_regs *regs, int all)
58 {
59 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
60 unsigned long d0, d1, d2, d3, d6, d7;
61 unsigned int fsindex, gsindex;
62 unsigned int ds, cs, es;
63
64 printk(KERN_DEFAULT "RIP: %04lx:[<%016lx>] ", regs->cs & 0xffff, regs->ip);
65 printk_address(regs->ip);
66 printk(KERN_DEFAULT "RSP: %04lx:%016lx EFLAGS: %08lx\n", regs->ss,
67 regs->sp, regs->flags);
68 printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
69 regs->ax, regs->bx, regs->cx);
70 printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
71 regs->dx, regs->si, regs->di);
72 printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
73 regs->bp, regs->r8, regs->r9);
74 printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
75 regs->r10, regs->r11, regs->r12);
76 printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
77 regs->r13, regs->r14, regs->r15);
78
79 asm("movl %%ds,%0" : "=r" (ds));
80 asm("movl %%cs,%0" : "=r" (cs));
81 asm("movl %%es,%0" : "=r" (es));
82 asm("movl %%fs,%0" : "=r" (fsindex));
83 asm("movl %%gs,%0" : "=r" (gsindex));
84
85 rdmsrl(MSR_FS_BASE, fs);
86 rdmsrl(MSR_GS_BASE, gs);
87 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
88
89 if (!all)
90 return;
91
92 cr0 = read_cr0();
93 cr2 = read_cr2();
94 cr3 = read_cr3();
95 cr4 = __read_cr4();
96
97 printk(KERN_DEFAULT "FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
98 fs, fsindex, gs, gsindex, shadowgs);
99 printk(KERN_DEFAULT "CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
100 es, cr0);
101 printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
102 cr4);
103
104 get_debugreg(d0, 0);
105 get_debugreg(d1, 1);
106 get_debugreg(d2, 2);
107 get_debugreg(d3, 3);
108 get_debugreg(d6, 6);
109 get_debugreg(d7, 7);
110
111 /* Only print out debug registers if they are in their non-default state. */
112 if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
113 (d6 == DR6_RESERVED) && (d7 == 0x400))
114 return;
115
116 printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n", d0, d1, d2);
117 printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n", d3, d6, d7);
118
119 }
120
121 void release_thread(struct task_struct *dead_task)
122 {
123 if (dead_task->mm) {
124 if (dead_task->mm->context.ldt) {
125 pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n",
126 dead_task->comm,
127 dead_task->mm->context.ldt,
128 dead_task->mm->context.ldt->size);
129 BUG();
130 }
131 }
132 }
133
134 static inline void set_32bit_tls(struct task_struct *t, int tls, u32 addr)
135 {
136 struct user_desc ud = {
137 .base_addr = addr,
138 .limit = 0xfffff,
139 .seg_32bit = 1,
140 .limit_in_pages = 1,
141 .useable = 1,
142 };
143 struct desc_struct *desc = t->thread.tls_array;
144 desc += tls;
145 fill_ldt(desc, &ud);
146 }
147
148 static inline u32 read_32bit_tls(struct task_struct *t, int tls)
149 {
150 return get_desc_base(&t->thread.tls_array[tls]);
151 }
152
153 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
154 unsigned long arg, struct task_struct *p, unsigned long tls)
155 {
156 int err;
157 struct pt_regs *childregs;
158 struct task_struct *me = current;
159
160 p->thread.sp0 = (unsigned long)task_stack_page(p) + THREAD_SIZE;
161 childregs = task_pt_regs(p);
162 p->thread.sp = (unsigned long) childregs;
163 set_tsk_thread_flag(p, TIF_FORK);
164 p->thread.io_bitmap_ptr = NULL;
165
166 savesegment(gs, p->thread.gsindex);
167 p->thread.gs = p->thread.gsindex ? 0 : me->thread.gs;
168 savesegment(fs, p->thread.fsindex);
169 p->thread.fs = p->thread.fsindex ? 0 : me->thread.fs;
170 savesegment(es, p->thread.es);
171 savesegment(ds, p->thread.ds);
172 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
173
174 if (unlikely(p->flags & PF_KTHREAD)) {
175 /* kernel thread */
176 memset(childregs, 0, sizeof(struct pt_regs));
177 childregs->sp = (unsigned long)childregs;
178 childregs->ss = __KERNEL_DS;
179 childregs->bx = sp; /* function */
180 childregs->bp = arg;
181 childregs->orig_ax = -1;
182 childregs->cs = __KERNEL_CS | get_kernel_rpl();
183 childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
184 return 0;
185 }
186 *childregs = *current_pt_regs();
187
188 childregs->ax = 0;
189 if (sp)
190 childregs->sp = sp;
191
192 err = -ENOMEM;
193 if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
194 p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
195 IO_BITMAP_BYTES, GFP_KERNEL);
196 if (!p->thread.io_bitmap_ptr) {
197 p->thread.io_bitmap_max = 0;
198 return -ENOMEM;
199 }
200 set_tsk_thread_flag(p, TIF_IO_BITMAP);
201 }
202
203 /*
204 * Set a new TLS for the child thread?
205 */
206 if (clone_flags & CLONE_SETTLS) {
207 #ifdef CONFIG_IA32_EMULATION
208 if (is_ia32_task())
209 err = do_set_thread_area(p, -1,
210 (struct user_desc __user *)tls, 0);
211 else
212 #endif
213 err = do_arch_prctl(p, ARCH_SET_FS, tls);
214 if (err)
215 goto out;
216 }
217 err = 0;
218 out:
219 if (err && p->thread.io_bitmap_ptr) {
220 kfree(p->thread.io_bitmap_ptr);
221 p->thread.io_bitmap_max = 0;
222 }
223
224 return err;
225 }
226
227 static void
228 start_thread_common(struct pt_regs *regs, unsigned long new_ip,
229 unsigned long new_sp,
230 unsigned int _cs, unsigned int _ss, unsigned int _ds)
231 {
232 loadsegment(fs, 0);
233 loadsegment(es, _ds);
234 loadsegment(ds, _ds);
235 load_gs_index(0);
236 regs->ip = new_ip;
237 regs->sp = new_sp;
238 regs->cs = _cs;
239 regs->ss = _ss;
240 regs->flags = X86_EFLAGS_IF;
241 force_iret();
242 }
243
244 void
245 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
246 {
247 start_thread_common(regs, new_ip, new_sp,
248 __USER_CS, __USER_DS, 0);
249 }
250
251 #ifdef CONFIG_IA32_EMULATION
252 void start_thread_ia32(struct pt_regs *regs, u32 new_ip, u32 new_sp)
253 {
254 start_thread_common(regs, new_ip, new_sp,
255 test_thread_flag(TIF_X32)
256 ? __USER_CS : __USER32_CS,
257 __USER_DS, __USER_DS);
258 }
259 #endif
260
261 /*
262 * switch_to(x,y) should switch tasks from x to y.
263 *
264 * This could still be optimized:
265 * - fold all the options into a flag word and test it with a single test.
266 * - could test fs/gs bitsliced
267 *
268 * Kprobes not supported here. Set the probe on schedule instead.
269 * Function graph tracer not supported too.
270 */
271 __visible __notrace_funcgraph struct task_struct *
272 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
273 {
274 struct thread_struct *prev = &prev_p->thread;
275 struct thread_struct *next = &next_p->thread;
276 struct fpu *prev_fpu = &prev->fpu;
277 struct fpu *next_fpu = &next->fpu;
278 int cpu = smp_processor_id();
279 struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
280 unsigned fsindex, gsindex;
281 fpu_switch_t fpu_switch;
282
283 fpu_switch = switch_fpu_prepare(prev_fpu, next_fpu, cpu);
284
285 /* We must save %fs and %gs before load_TLS() because
286 * %fs and %gs may be cleared by load_TLS().
287 *
288 * (e.g. xen_load_tls())
289 */
290 savesegment(fs, fsindex);
291 savesegment(gs, gsindex);
292
293 /*
294 * Load TLS before restoring any segments so that segment loads
295 * reference the correct GDT entries.
296 */
297 load_TLS(next, cpu);
298
299 /*
300 * Leave lazy mode, flushing any hypercalls made here. This
301 * must be done after loading TLS entries in the GDT but before
302 * loading segments that might reference them, and and it must
303 * be done before fpu__restore(), so the TS bit is up to
304 * date.
305 */
306 arch_end_context_switch(next_p);
307
308 /* Switch DS and ES.
309 *
310 * Reading them only returns the selectors, but writing them (if
311 * nonzero) loads the full descriptor from the GDT or LDT. The
312 * LDT for next is loaded in switch_mm, and the GDT is loaded
313 * above.
314 *
315 * We therefore need to write new values to the segment
316 * registers on every context switch unless both the new and old
317 * values are zero.
318 *
319 * Note that we don't need to do anything for CS and SS, as
320 * those are saved and restored as part of pt_regs.
321 */
322 savesegment(es, prev->es);
323 if (unlikely(next->es | prev->es))
324 loadsegment(es, next->es);
325
326 savesegment(ds, prev->ds);
327 if (unlikely(next->ds | prev->ds))
328 loadsegment(ds, next->ds);
329
330 /*
331 * Switch FS and GS.
332 *
333 * These are even more complicated than FS and GS: they have
334 * 64-bit bases are that controlled by arch_prctl. Those bases
335 * only differ from the values in the GDT or LDT if the selector
336 * is 0.
337 *
338 * Loading the segment register resets the hidden base part of
339 * the register to 0 or the value from the GDT / LDT. If the
340 * next base address zero, writing 0 to the segment register is
341 * much faster than using wrmsr to explicitly zero the base.
342 *
343 * The thread_struct.fs and thread_struct.gs values are 0
344 * if the fs and gs bases respectively are not overridden
345 * from the values implied by fsindex and gsindex. They
346 * are nonzero, and store the nonzero base addresses, if
347 * the bases are overridden.
348 *
349 * (fs != 0 && fsindex != 0) || (gs != 0 && gsindex != 0) should
350 * be impossible.
351 *
352 * Therefore we need to reload the segment registers if either
353 * the old or new selector is nonzero, and we need to override
354 * the base address if next thread expects it to be overridden.
355 *
356 * This code is unnecessarily slow in the case where the old and
357 * new indexes are zero and the new base is nonzero -- it will
358 * unnecessarily write 0 to the selector before writing the new
359 * base address.
360 *
361 * Note: This all depends on arch_prctl being the only way that
362 * user code can override the segment base. Once wrfsbase and
363 * wrgsbase are enabled, most of this code will need to change.
364 */
365 if (unlikely(fsindex | next->fsindex | prev->fs)) {
366 loadsegment(fs, next->fsindex);
367
368 /*
369 * If user code wrote a nonzero value to FS, then it also
370 * cleared the overridden base address.
371 *
372 * XXX: if user code wrote 0 to FS and cleared the base
373 * address itself, we won't notice and we'll incorrectly
374 * restore the prior base address next time we reschdule
375 * the process.
376 */
377 if (fsindex)
378 prev->fs = 0;
379 }
380 if (next->fs)
381 wrmsrl(MSR_FS_BASE, next->fs);
382 prev->fsindex = fsindex;
383
384 if (unlikely(gsindex | next->gsindex | prev->gs)) {
385 load_gs_index(next->gsindex);
386
387 /* This works (and fails) the same way as fsindex above. */
388 if (gsindex)
389 prev->gs = 0;
390 }
391 if (next->gs)
392 wrmsrl(MSR_KERNEL_GS_BASE, next->gs);
393 prev->gsindex = gsindex;
394
395 switch_fpu_finish(next_fpu, fpu_switch);
396
397 /*
398 * Switch the PDA and FPU contexts.
399 */
400 this_cpu_write(current_task, next_p);
401
402 /*
403 * If it were not for PREEMPT_ACTIVE we could guarantee that the
404 * preempt_count of all tasks was equal here and this would not be
405 * needed.
406 */
407 task_thread_info(prev_p)->saved_preempt_count = this_cpu_read(__preempt_count);
408 this_cpu_write(__preempt_count, task_thread_info(next_p)->saved_preempt_count);
409
410 /* Reload esp0 and ss1. This changes current_thread_info(). */
411 load_sp0(tss, next);
412
413 /*
414 * Now maybe reload the debug registers and handle I/O bitmaps
415 */
416 if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
417 task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
418 __switch_to_xtra(prev_p, next_p, tss);
419
420 if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
421 /*
422 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
423 * does not update the cached descriptor. As a result, if we
424 * do SYSRET while SS is NULL, we'll end up in user mode with
425 * SS apparently equal to __USER_DS but actually unusable.
426 *
427 * The straightforward workaround would be to fix it up just
428 * before SYSRET, but that would slow down the system call
429 * fast paths. Instead, we ensure that SS is never NULL in
430 * system call context. We do this by replacing NULL SS
431 * selectors at every context switch. SYSCALL sets up a valid
432 * SS, so the only way to get NULL is to re-enter the kernel
433 * from CPL 3 through an interrupt. Since that can't happen
434 * in the same task as a running syscall, we are guaranteed to
435 * context switch between every interrupt vector entry and a
436 * subsequent SYSRET.
437 *
438 * We read SS first because SS reads are much faster than
439 * writes. Out of caution, we force SS to __KERNEL_DS even if
440 * it previously had a different non-NULL value.
441 */
442 unsigned short ss_sel;
443 savesegment(ss, ss_sel);
444 if (ss_sel != __KERNEL_DS)
445 loadsegment(ss, __KERNEL_DS);
446 }
447
448 return prev_p;
449 }
450
451 void set_personality_64bit(void)
452 {
453 /* inherit personality from parent */
454
455 /* Make sure to be in 64bit mode */
456 clear_thread_flag(TIF_IA32);
457 clear_thread_flag(TIF_ADDR32);
458 clear_thread_flag(TIF_X32);
459
460 /* Ensure the corresponding mm is not marked. */
461 if (current->mm)
462 current->mm->context.ia32_compat = 0;
463
464 /* TBD: overwrites user setup. Should have two bits.
465 But 64bit processes have always behaved this way,
466 so it's not too bad. The main problem is just that
467 32bit childs are affected again. */
468 current->personality &= ~READ_IMPLIES_EXEC;
469 }
470
471 void set_personality_ia32(bool x32)
472 {
473 /* inherit personality from parent */
474
475 /* Make sure to be in 32bit mode */
476 set_thread_flag(TIF_ADDR32);
477
478 /* Mark the associated mm as containing 32-bit tasks. */
479 if (x32) {
480 clear_thread_flag(TIF_IA32);
481 set_thread_flag(TIF_X32);
482 if (current->mm)
483 current->mm->context.ia32_compat = TIF_X32;
484 current->personality &= ~READ_IMPLIES_EXEC;
485 /* is_compat_task() uses the presence of the x32
486 syscall bit flag to determine compat status */
487 current_thread_info()->status &= ~TS_COMPAT;
488 } else {
489 set_thread_flag(TIF_IA32);
490 clear_thread_flag(TIF_X32);
491 if (current->mm)
492 current->mm->context.ia32_compat = TIF_IA32;
493 current->personality |= force_personality32;
494 /* Prepare the first "return" to user space */
495 current_thread_info()->status |= TS_COMPAT;
496 }
497 }
498 EXPORT_SYMBOL_GPL(set_personality_ia32);
499
500 unsigned long get_wchan(struct task_struct *p)
501 {
502 unsigned long stack;
503 u64 fp, ip;
504 int count = 0;
505
506 if (!p || p == current || p->state == TASK_RUNNING)
507 return 0;
508 stack = (unsigned long)task_stack_page(p);
509 if (p->thread.sp < stack || p->thread.sp >= stack+THREAD_SIZE)
510 return 0;
511 fp = *(u64 *)(p->thread.sp);
512 do {
513 if (fp < (unsigned long)stack ||
514 fp >= (unsigned long)stack+THREAD_SIZE)
515 return 0;
516 ip = *(u64 *)(fp+8);
517 if (!in_sched_functions(ip))
518 return ip;
519 fp = *(u64 *)fp;
520 } while (count++ < 16);
521 return 0;
522 }
523
524 long do_arch_prctl(struct task_struct *task, int code, unsigned long addr)
525 {
526 int ret = 0;
527 int doit = task == current;
528 int cpu;
529
530 switch (code) {
531 case ARCH_SET_GS:
532 if (addr >= TASK_SIZE_OF(task))
533 return -EPERM;
534 cpu = get_cpu();
535 /* handle small bases via the GDT because that's faster to
536 switch. */
537 if (addr <= 0xffffffff) {
538 set_32bit_tls(task, GS_TLS, addr);
539 if (doit) {
540 load_TLS(&task->thread, cpu);
541 load_gs_index(GS_TLS_SEL);
542 }
543 task->thread.gsindex = GS_TLS_SEL;
544 task->thread.gs = 0;
545 } else {
546 task->thread.gsindex = 0;
547 task->thread.gs = addr;
548 if (doit) {
549 load_gs_index(0);
550 ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, addr);
551 }
552 }
553 put_cpu();
554 break;
555 case ARCH_SET_FS:
556 /* Not strictly needed for fs, but do it for symmetry
557 with gs */
558 if (addr >= TASK_SIZE_OF(task))
559 return -EPERM;
560 cpu = get_cpu();
561 /* handle small bases via the GDT because that's faster to
562 switch. */
563 if (addr <= 0xffffffff) {
564 set_32bit_tls(task, FS_TLS, addr);
565 if (doit) {
566 load_TLS(&task->thread, cpu);
567 loadsegment(fs, FS_TLS_SEL);
568 }
569 task->thread.fsindex = FS_TLS_SEL;
570 task->thread.fs = 0;
571 } else {
572 task->thread.fsindex = 0;
573 task->thread.fs = addr;
574 if (doit) {
575 /* set the selector to 0 to not confuse
576 __switch_to */
577 loadsegment(fs, 0);
578 ret = wrmsrl_safe(MSR_FS_BASE, addr);
579 }
580 }
581 put_cpu();
582 break;
583 case ARCH_GET_FS: {
584 unsigned long base;
585 if (task->thread.fsindex == FS_TLS_SEL)
586 base = read_32bit_tls(task, FS_TLS);
587 else if (doit)
588 rdmsrl(MSR_FS_BASE, base);
589 else
590 base = task->thread.fs;
591 ret = put_user(base, (unsigned long __user *)addr);
592 break;
593 }
594 case ARCH_GET_GS: {
595 unsigned long base;
596 unsigned gsindex;
597 if (task->thread.gsindex == GS_TLS_SEL)
598 base = read_32bit_tls(task, GS_TLS);
599 else if (doit) {
600 savesegment(gs, gsindex);
601 if (gsindex)
602 rdmsrl(MSR_KERNEL_GS_BASE, base);
603 else
604 base = task->thread.gs;
605 } else
606 base = task->thread.gs;
607 ret = put_user(base, (unsigned long __user *)addr);
608 break;
609 }
610
611 default:
612 ret = -EINVAL;
613 break;
614 }
615
616 return ret;
617 }
618
619 long sys_arch_prctl(int code, unsigned long addr)
620 {
621 return do_arch_prctl(current, code, addr);
622 }
623
624 unsigned long KSTK_ESP(struct task_struct *task)
625 {
626 return task_pt_regs(task)->sp;
627 }