]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/ptrace.c
perf/x86/intel/lbr: Allow time stamp for free running PEBSv3
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / ptrace.c
1 /* By Ross Biro 1/23/92 */
2 /*
3 * Pentium III FXSR, SSE support
4 * Gareth Hughes <gareth@valinux.com>, May 2000
5 */
6
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/smp.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/ptrace.h>
14 #include <linux/tracehook.h>
15 #include <linux/user.h>
16 #include <linux/elf.h>
17 #include <linux/security.h>
18 #include <linux/audit.h>
19 #include <linux/seccomp.h>
20 #include <linux/signal.h>
21 #include <linux/perf_event.h>
22 #include <linux/hw_breakpoint.h>
23 #include <linux/rcupdate.h>
24 #include <linux/export.h>
25 #include <linux/context_tracking.h>
26
27 #include <asm/uaccess.h>
28 #include <asm/pgtable.h>
29 #include <asm/processor.h>
30 #include <asm/fpu/internal.h>
31 #include <asm/fpu/signal.h>
32 #include <asm/fpu/regset.h>
33 #include <asm/debugreg.h>
34 #include <asm/ldt.h>
35 #include <asm/desc.h>
36 #include <asm/prctl.h>
37 #include <asm/proto.h>
38 #include <asm/hw_breakpoint.h>
39 #include <asm/traps.h>
40
41 #include "tls.h"
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/syscalls.h>
45
46 enum x86_regset {
47 REGSET_GENERAL,
48 REGSET_FP,
49 REGSET_XFP,
50 REGSET_IOPERM64 = REGSET_XFP,
51 REGSET_XSTATE,
52 REGSET_TLS,
53 REGSET_IOPERM32,
54 };
55
56 struct pt_regs_offset {
57 const char *name;
58 int offset;
59 };
60
61 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
62 #define REG_OFFSET_END {.name = NULL, .offset = 0}
63
64 static const struct pt_regs_offset regoffset_table[] = {
65 #ifdef CONFIG_X86_64
66 REG_OFFSET_NAME(r15),
67 REG_OFFSET_NAME(r14),
68 REG_OFFSET_NAME(r13),
69 REG_OFFSET_NAME(r12),
70 REG_OFFSET_NAME(r11),
71 REG_OFFSET_NAME(r10),
72 REG_OFFSET_NAME(r9),
73 REG_OFFSET_NAME(r8),
74 #endif
75 REG_OFFSET_NAME(bx),
76 REG_OFFSET_NAME(cx),
77 REG_OFFSET_NAME(dx),
78 REG_OFFSET_NAME(si),
79 REG_OFFSET_NAME(di),
80 REG_OFFSET_NAME(bp),
81 REG_OFFSET_NAME(ax),
82 #ifdef CONFIG_X86_32
83 REG_OFFSET_NAME(ds),
84 REG_OFFSET_NAME(es),
85 REG_OFFSET_NAME(fs),
86 REG_OFFSET_NAME(gs),
87 #endif
88 REG_OFFSET_NAME(orig_ax),
89 REG_OFFSET_NAME(ip),
90 REG_OFFSET_NAME(cs),
91 REG_OFFSET_NAME(flags),
92 REG_OFFSET_NAME(sp),
93 REG_OFFSET_NAME(ss),
94 REG_OFFSET_END,
95 };
96
97 /**
98 * regs_query_register_offset() - query register offset from its name
99 * @name: the name of a register
100 *
101 * regs_query_register_offset() returns the offset of a register in struct
102 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
103 */
104 int regs_query_register_offset(const char *name)
105 {
106 const struct pt_regs_offset *roff;
107 for (roff = regoffset_table; roff->name != NULL; roff++)
108 if (!strcmp(roff->name, name))
109 return roff->offset;
110 return -EINVAL;
111 }
112
113 /**
114 * regs_query_register_name() - query register name from its offset
115 * @offset: the offset of a register in struct pt_regs.
116 *
117 * regs_query_register_name() returns the name of a register from its
118 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
119 */
120 const char *regs_query_register_name(unsigned int offset)
121 {
122 const struct pt_regs_offset *roff;
123 for (roff = regoffset_table; roff->name != NULL; roff++)
124 if (roff->offset == offset)
125 return roff->name;
126 return NULL;
127 }
128
129 static const int arg_offs_table[] = {
130 #ifdef CONFIG_X86_32
131 [0] = offsetof(struct pt_regs, ax),
132 [1] = offsetof(struct pt_regs, dx),
133 [2] = offsetof(struct pt_regs, cx)
134 #else /* CONFIG_X86_64 */
135 [0] = offsetof(struct pt_regs, di),
136 [1] = offsetof(struct pt_regs, si),
137 [2] = offsetof(struct pt_regs, dx),
138 [3] = offsetof(struct pt_regs, cx),
139 [4] = offsetof(struct pt_regs, r8),
140 [5] = offsetof(struct pt_regs, r9)
141 #endif
142 };
143
144 /*
145 * does not yet catch signals sent when the child dies.
146 * in exit.c or in signal.c.
147 */
148
149 /*
150 * Determines which flags the user has access to [1 = access, 0 = no access].
151 */
152 #define FLAG_MASK_32 ((unsigned long) \
153 (X86_EFLAGS_CF | X86_EFLAGS_PF | \
154 X86_EFLAGS_AF | X86_EFLAGS_ZF | \
155 X86_EFLAGS_SF | X86_EFLAGS_TF | \
156 X86_EFLAGS_DF | X86_EFLAGS_OF | \
157 X86_EFLAGS_RF | X86_EFLAGS_AC))
158
159 /*
160 * Determines whether a value may be installed in a segment register.
161 */
162 static inline bool invalid_selector(u16 value)
163 {
164 return unlikely(value != 0 && (value & SEGMENT_RPL_MASK) != USER_RPL);
165 }
166
167 #ifdef CONFIG_X86_32
168
169 #define FLAG_MASK FLAG_MASK_32
170
171 /*
172 * X86_32 CPUs don't save ss and esp if the CPU is already in kernel mode
173 * when it traps. The previous stack will be directly underneath the saved
174 * registers, and 'sp/ss' won't even have been saved. Thus the '&regs->sp'.
175 *
176 * Now, if the stack is empty, '&regs->sp' is out of range. In this
177 * case we try to take the previous stack. To always return a non-null
178 * stack pointer we fall back to regs as stack if no previous stack
179 * exists.
180 *
181 * This is valid only for kernel mode traps.
182 */
183 unsigned long kernel_stack_pointer(struct pt_regs *regs)
184 {
185 unsigned long context = (unsigned long)regs & ~(THREAD_SIZE - 1);
186 unsigned long sp = (unsigned long)&regs->sp;
187 u32 *prev_esp;
188
189 if (context == (sp & ~(THREAD_SIZE - 1)))
190 return sp;
191
192 prev_esp = (u32 *)(context);
193 if (prev_esp)
194 return (unsigned long)prev_esp;
195
196 return (unsigned long)regs;
197 }
198 EXPORT_SYMBOL_GPL(kernel_stack_pointer);
199
200 static unsigned long *pt_regs_access(struct pt_regs *regs, unsigned long regno)
201 {
202 BUILD_BUG_ON(offsetof(struct pt_regs, bx) != 0);
203 return &regs->bx + (regno >> 2);
204 }
205
206 static u16 get_segment_reg(struct task_struct *task, unsigned long offset)
207 {
208 /*
209 * Returning the value truncates it to 16 bits.
210 */
211 unsigned int retval;
212 if (offset != offsetof(struct user_regs_struct, gs))
213 retval = *pt_regs_access(task_pt_regs(task), offset);
214 else {
215 if (task == current)
216 retval = get_user_gs(task_pt_regs(task));
217 else
218 retval = task_user_gs(task);
219 }
220 return retval;
221 }
222
223 static int set_segment_reg(struct task_struct *task,
224 unsigned long offset, u16 value)
225 {
226 /*
227 * The value argument was already truncated to 16 bits.
228 */
229 if (invalid_selector(value))
230 return -EIO;
231
232 /*
233 * For %cs and %ss we cannot permit a null selector.
234 * We can permit a bogus selector as long as it has USER_RPL.
235 * Null selectors are fine for other segment registers, but
236 * we will never get back to user mode with invalid %cs or %ss
237 * and will take the trap in iret instead. Much code relies
238 * on user_mode() to distinguish a user trap frame (which can
239 * safely use invalid selectors) from a kernel trap frame.
240 */
241 switch (offset) {
242 case offsetof(struct user_regs_struct, cs):
243 case offsetof(struct user_regs_struct, ss):
244 if (unlikely(value == 0))
245 return -EIO;
246
247 default:
248 *pt_regs_access(task_pt_regs(task), offset) = value;
249 break;
250
251 case offsetof(struct user_regs_struct, gs):
252 if (task == current)
253 set_user_gs(task_pt_regs(task), value);
254 else
255 task_user_gs(task) = value;
256 }
257
258 return 0;
259 }
260
261 #else /* CONFIG_X86_64 */
262
263 #define FLAG_MASK (FLAG_MASK_32 | X86_EFLAGS_NT)
264
265 static unsigned long *pt_regs_access(struct pt_regs *regs, unsigned long offset)
266 {
267 BUILD_BUG_ON(offsetof(struct pt_regs, r15) != 0);
268 return &regs->r15 + (offset / sizeof(regs->r15));
269 }
270
271 static u16 get_segment_reg(struct task_struct *task, unsigned long offset)
272 {
273 /*
274 * Returning the value truncates it to 16 bits.
275 */
276 unsigned int seg;
277
278 switch (offset) {
279 case offsetof(struct user_regs_struct, fs):
280 if (task == current) {
281 /* Older gas can't assemble movq %?s,%r?? */
282 asm("movl %%fs,%0" : "=r" (seg));
283 return seg;
284 }
285 return task->thread.fsindex;
286 case offsetof(struct user_regs_struct, gs):
287 if (task == current) {
288 asm("movl %%gs,%0" : "=r" (seg));
289 return seg;
290 }
291 return task->thread.gsindex;
292 case offsetof(struct user_regs_struct, ds):
293 if (task == current) {
294 asm("movl %%ds,%0" : "=r" (seg));
295 return seg;
296 }
297 return task->thread.ds;
298 case offsetof(struct user_regs_struct, es):
299 if (task == current) {
300 asm("movl %%es,%0" : "=r" (seg));
301 return seg;
302 }
303 return task->thread.es;
304
305 case offsetof(struct user_regs_struct, cs):
306 case offsetof(struct user_regs_struct, ss):
307 break;
308 }
309 return *pt_regs_access(task_pt_regs(task), offset);
310 }
311
312 static int set_segment_reg(struct task_struct *task,
313 unsigned long offset, u16 value)
314 {
315 /*
316 * The value argument was already truncated to 16 bits.
317 */
318 if (invalid_selector(value))
319 return -EIO;
320
321 switch (offset) {
322 case offsetof(struct user_regs_struct,fs):
323 /*
324 * If this is setting fs as for normal 64-bit use but
325 * setting fs_base has implicitly changed it, leave it.
326 */
327 if ((value == FS_TLS_SEL && task->thread.fsindex == 0 &&
328 task->thread.fs != 0) ||
329 (value == 0 && task->thread.fsindex == FS_TLS_SEL &&
330 task->thread.fs == 0))
331 break;
332 task->thread.fsindex = value;
333 if (task == current)
334 loadsegment(fs, task->thread.fsindex);
335 break;
336 case offsetof(struct user_regs_struct,gs):
337 /*
338 * If this is setting gs as for normal 64-bit use but
339 * setting gs_base has implicitly changed it, leave it.
340 */
341 if ((value == GS_TLS_SEL && task->thread.gsindex == 0 &&
342 task->thread.gs != 0) ||
343 (value == 0 && task->thread.gsindex == GS_TLS_SEL &&
344 task->thread.gs == 0))
345 break;
346 task->thread.gsindex = value;
347 if (task == current)
348 load_gs_index(task->thread.gsindex);
349 break;
350 case offsetof(struct user_regs_struct,ds):
351 task->thread.ds = value;
352 if (task == current)
353 loadsegment(ds, task->thread.ds);
354 break;
355 case offsetof(struct user_regs_struct,es):
356 task->thread.es = value;
357 if (task == current)
358 loadsegment(es, task->thread.es);
359 break;
360
361 /*
362 * Can't actually change these in 64-bit mode.
363 */
364 case offsetof(struct user_regs_struct,cs):
365 if (unlikely(value == 0))
366 return -EIO;
367 task_pt_regs(task)->cs = value;
368 break;
369 case offsetof(struct user_regs_struct,ss):
370 if (unlikely(value == 0))
371 return -EIO;
372 task_pt_regs(task)->ss = value;
373 break;
374 }
375
376 return 0;
377 }
378
379 #endif /* CONFIG_X86_32 */
380
381 static unsigned long get_flags(struct task_struct *task)
382 {
383 unsigned long retval = task_pt_regs(task)->flags;
384
385 /*
386 * If the debugger set TF, hide it from the readout.
387 */
388 if (test_tsk_thread_flag(task, TIF_FORCED_TF))
389 retval &= ~X86_EFLAGS_TF;
390
391 return retval;
392 }
393
394 static int set_flags(struct task_struct *task, unsigned long value)
395 {
396 struct pt_regs *regs = task_pt_regs(task);
397
398 /*
399 * If the user value contains TF, mark that
400 * it was not "us" (the debugger) that set it.
401 * If not, make sure it stays set if we had.
402 */
403 if (value & X86_EFLAGS_TF)
404 clear_tsk_thread_flag(task, TIF_FORCED_TF);
405 else if (test_tsk_thread_flag(task, TIF_FORCED_TF))
406 value |= X86_EFLAGS_TF;
407
408 regs->flags = (regs->flags & ~FLAG_MASK) | (value & FLAG_MASK);
409
410 return 0;
411 }
412
413 static int putreg(struct task_struct *child,
414 unsigned long offset, unsigned long value)
415 {
416 switch (offset) {
417 case offsetof(struct user_regs_struct, cs):
418 case offsetof(struct user_regs_struct, ds):
419 case offsetof(struct user_regs_struct, es):
420 case offsetof(struct user_regs_struct, fs):
421 case offsetof(struct user_regs_struct, gs):
422 case offsetof(struct user_regs_struct, ss):
423 return set_segment_reg(child, offset, value);
424
425 case offsetof(struct user_regs_struct, flags):
426 return set_flags(child, value);
427
428 #ifdef CONFIG_X86_64
429 case offsetof(struct user_regs_struct,fs_base):
430 if (value >= TASK_SIZE_OF(child))
431 return -EIO;
432 /*
433 * When changing the segment base, use do_arch_prctl
434 * to set either thread.fs or thread.fsindex and the
435 * corresponding GDT slot.
436 */
437 if (child->thread.fs != value)
438 return do_arch_prctl(child, ARCH_SET_FS, value);
439 return 0;
440 case offsetof(struct user_regs_struct,gs_base):
441 /*
442 * Exactly the same here as the %fs handling above.
443 */
444 if (value >= TASK_SIZE_OF(child))
445 return -EIO;
446 if (child->thread.gs != value)
447 return do_arch_prctl(child, ARCH_SET_GS, value);
448 return 0;
449 #endif
450 }
451
452 *pt_regs_access(task_pt_regs(child), offset) = value;
453 return 0;
454 }
455
456 static unsigned long getreg(struct task_struct *task, unsigned long offset)
457 {
458 switch (offset) {
459 case offsetof(struct user_regs_struct, cs):
460 case offsetof(struct user_regs_struct, ds):
461 case offsetof(struct user_regs_struct, es):
462 case offsetof(struct user_regs_struct, fs):
463 case offsetof(struct user_regs_struct, gs):
464 case offsetof(struct user_regs_struct, ss):
465 return get_segment_reg(task, offset);
466
467 case offsetof(struct user_regs_struct, flags):
468 return get_flags(task);
469
470 #ifdef CONFIG_X86_64
471 case offsetof(struct user_regs_struct, fs_base): {
472 /*
473 * do_arch_prctl may have used a GDT slot instead of
474 * the MSR. To userland, it appears the same either
475 * way, except the %fs segment selector might not be 0.
476 */
477 unsigned int seg = task->thread.fsindex;
478 if (task->thread.fs != 0)
479 return task->thread.fs;
480 if (task == current)
481 asm("movl %%fs,%0" : "=r" (seg));
482 if (seg != FS_TLS_SEL)
483 return 0;
484 return get_desc_base(&task->thread.tls_array[FS_TLS]);
485 }
486 case offsetof(struct user_regs_struct, gs_base): {
487 /*
488 * Exactly the same here as the %fs handling above.
489 */
490 unsigned int seg = task->thread.gsindex;
491 if (task->thread.gs != 0)
492 return task->thread.gs;
493 if (task == current)
494 asm("movl %%gs,%0" : "=r" (seg));
495 if (seg != GS_TLS_SEL)
496 return 0;
497 return get_desc_base(&task->thread.tls_array[GS_TLS]);
498 }
499 #endif
500 }
501
502 return *pt_regs_access(task_pt_regs(task), offset);
503 }
504
505 static int genregs_get(struct task_struct *target,
506 const struct user_regset *regset,
507 unsigned int pos, unsigned int count,
508 void *kbuf, void __user *ubuf)
509 {
510 if (kbuf) {
511 unsigned long *k = kbuf;
512 while (count >= sizeof(*k)) {
513 *k++ = getreg(target, pos);
514 count -= sizeof(*k);
515 pos += sizeof(*k);
516 }
517 } else {
518 unsigned long __user *u = ubuf;
519 while (count >= sizeof(*u)) {
520 if (__put_user(getreg(target, pos), u++))
521 return -EFAULT;
522 count -= sizeof(*u);
523 pos += sizeof(*u);
524 }
525 }
526
527 return 0;
528 }
529
530 static int genregs_set(struct task_struct *target,
531 const struct user_regset *regset,
532 unsigned int pos, unsigned int count,
533 const void *kbuf, const void __user *ubuf)
534 {
535 int ret = 0;
536 if (kbuf) {
537 const unsigned long *k = kbuf;
538 while (count >= sizeof(*k) && !ret) {
539 ret = putreg(target, pos, *k++);
540 count -= sizeof(*k);
541 pos += sizeof(*k);
542 }
543 } else {
544 const unsigned long __user *u = ubuf;
545 while (count >= sizeof(*u) && !ret) {
546 unsigned long word;
547 ret = __get_user(word, u++);
548 if (ret)
549 break;
550 ret = putreg(target, pos, word);
551 count -= sizeof(*u);
552 pos += sizeof(*u);
553 }
554 }
555 return ret;
556 }
557
558 static void ptrace_triggered(struct perf_event *bp,
559 struct perf_sample_data *data,
560 struct pt_regs *regs)
561 {
562 int i;
563 struct thread_struct *thread = &(current->thread);
564
565 /*
566 * Store in the virtual DR6 register the fact that the breakpoint
567 * was hit so the thread's debugger will see it.
568 */
569 for (i = 0; i < HBP_NUM; i++) {
570 if (thread->ptrace_bps[i] == bp)
571 break;
572 }
573
574 thread->debugreg6 |= (DR_TRAP0 << i);
575 }
576
577 /*
578 * Walk through every ptrace breakpoints for this thread and
579 * build the dr7 value on top of their attributes.
580 *
581 */
582 static unsigned long ptrace_get_dr7(struct perf_event *bp[])
583 {
584 int i;
585 int dr7 = 0;
586 struct arch_hw_breakpoint *info;
587
588 for (i = 0; i < HBP_NUM; i++) {
589 if (bp[i] && !bp[i]->attr.disabled) {
590 info = counter_arch_bp(bp[i]);
591 dr7 |= encode_dr7(i, info->len, info->type);
592 }
593 }
594
595 return dr7;
596 }
597
598 static int ptrace_fill_bp_fields(struct perf_event_attr *attr,
599 int len, int type, bool disabled)
600 {
601 int err, bp_len, bp_type;
602
603 err = arch_bp_generic_fields(len, type, &bp_len, &bp_type);
604 if (!err) {
605 attr->bp_len = bp_len;
606 attr->bp_type = bp_type;
607 attr->disabled = disabled;
608 }
609
610 return err;
611 }
612
613 static struct perf_event *
614 ptrace_register_breakpoint(struct task_struct *tsk, int len, int type,
615 unsigned long addr, bool disabled)
616 {
617 struct perf_event_attr attr;
618 int err;
619
620 ptrace_breakpoint_init(&attr);
621 attr.bp_addr = addr;
622
623 err = ptrace_fill_bp_fields(&attr, len, type, disabled);
624 if (err)
625 return ERR_PTR(err);
626
627 return register_user_hw_breakpoint(&attr, ptrace_triggered,
628 NULL, tsk);
629 }
630
631 static int ptrace_modify_breakpoint(struct perf_event *bp, int len, int type,
632 int disabled)
633 {
634 struct perf_event_attr attr = bp->attr;
635 int err;
636
637 err = ptrace_fill_bp_fields(&attr, len, type, disabled);
638 if (err)
639 return err;
640
641 return modify_user_hw_breakpoint(bp, &attr);
642 }
643
644 /*
645 * Handle ptrace writes to debug register 7.
646 */
647 static int ptrace_write_dr7(struct task_struct *tsk, unsigned long data)
648 {
649 struct thread_struct *thread = &tsk->thread;
650 unsigned long old_dr7;
651 bool second_pass = false;
652 int i, rc, ret = 0;
653
654 data &= ~DR_CONTROL_RESERVED;
655 old_dr7 = ptrace_get_dr7(thread->ptrace_bps);
656
657 restore:
658 rc = 0;
659 for (i = 0; i < HBP_NUM; i++) {
660 unsigned len, type;
661 bool disabled = !decode_dr7(data, i, &len, &type);
662 struct perf_event *bp = thread->ptrace_bps[i];
663
664 if (!bp) {
665 if (disabled)
666 continue;
667
668 bp = ptrace_register_breakpoint(tsk,
669 len, type, 0, disabled);
670 if (IS_ERR(bp)) {
671 rc = PTR_ERR(bp);
672 break;
673 }
674
675 thread->ptrace_bps[i] = bp;
676 continue;
677 }
678
679 rc = ptrace_modify_breakpoint(bp, len, type, disabled);
680 if (rc)
681 break;
682 }
683
684 /* Restore if the first pass failed, second_pass shouldn't fail. */
685 if (rc && !WARN_ON(second_pass)) {
686 ret = rc;
687 data = old_dr7;
688 second_pass = true;
689 goto restore;
690 }
691
692 return ret;
693 }
694
695 /*
696 * Handle PTRACE_PEEKUSR calls for the debug register area.
697 */
698 static unsigned long ptrace_get_debugreg(struct task_struct *tsk, int n)
699 {
700 struct thread_struct *thread = &tsk->thread;
701 unsigned long val = 0;
702
703 if (n < HBP_NUM) {
704 struct perf_event *bp = thread->ptrace_bps[n];
705
706 if (bp)
707 val = bp->hw.info.address;
708 } else if (n == 6) {
709 val = thread->debugreg6;
710 } else if (n == 7) {
711 val = thread->ptrace_dr7;
712 }
713 return val;
714 }
715
716 static int ptrace_set_breakpoint_addr(struct task_struct *tsk, int nr,
717 unsigned long addr)
718 {
719 struct thread_struct *t = &tsk->thread;
720 struct perf_event *bp = t->ptrace_bps[nr];
721 int err = 0;
722
723 if (!bp) {
724 /*
725 * Put stub len and type to create an inactive but correct bp.
726 *
727 * CHECKME: the previous code returned -EIO if the addr wasn't
728 * a valid task virtual addr. The new one will return -EINVAL in
729 * this case.
730 * -EINVAL may be what we want for in-kernel breakpoints users,
731 * but -EIO looks better for ptrace, since we refuse a register
732 * writing for the user. And anyway this is the previous
733 * behaviour.
734 */
735 bp = ptrace_register_breakpoint(tsk,
736 X86_BREAKPOINT_LEN_1, X86_BREAKPOINT_WRITE,
737 addr, true);
738 if (IS_ERR(bp))
739 err = PTR_ERR(bp);
740 else
741 t->ptrace_bps[nr] = bp;
742 } else {
743 struct perf_event_attr attr = bp->attr;
744
745 attr.bp_addr = addr;
746 err = modify_user_hw_breakpoint(bp, &attr);
747 }
748
749 return err;
750 }
751
752 /*
753 * Handle PTRACE_POKEUSR calls for the debug register area.
754 */
755 static int ptrace_set_debugreg(struct task_struct *tsk, int n,
756 unsigned long val)
757 {
758 struct thread_struct *thread = &tsk->thread;
759 /* There are no DR4 or DR5 registers */
760 int rc = -EIO;
761
762 if (n < HBP_NUM) {
763 rc = ptrace_set_breakpoint_addr(tsk, n, val);
764 } else if (n == 6) {
765 thread->debugreg6 = val;
766 rc = 0;
767 } else if (n == 7) {
768 rc = ptrace_write_dr7(tsk, val);
769 if (!rc)
770 thread->ptrace_dr7 = val;
771 }
772 return rc;
773 }
774
775 /*
776 * These access the current or another (stopped) task's io permission
777 * bitmap for debugging or core dump.
778 */
779 static int ioperm_active(struct task_struct *target,
780 const struct user_regset *regset)
781 {
782 return target->thread.io_bitmap_max / regset->size;
783 }
784
785 static int ioperm_get(struct task_struct *target,
786 const struct user_regset *regset,
787 unsigned int pos, unsigned int count,
788 void *kbuf, void __user *ubuf)
789 {
790 if (!target->thread.io_bitmap_ptr)
791 return -ENXIO;
792
793 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
794 target->thread.io_bitmap_ptr,
795 0, IO_BITMAP_BYTES);
796 }
797
798 /*
799 * Called by kernel/ptrace.c when detaching..
800 *
801 * Make sure the single step bit is not set.
802 */
803 void ptrace_disable(struct task_struct *child)
804 {
805 user_disable_single_step(child);
806 #ifdef TIF_SYSCALL_EMU
807 clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
808 #endif
809 }
810
811 #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
812 static const struct user_regset_view user_x86_32_view; /* Initialized below. */
813 #endif
814
815 long arch_ptrace(struct task_struct *child, long request,
816 unsigned long addr, unsigned long data)
817 {
818 int ret;
819 unsigned long __user *datap = (unsigned long __user *)data;
820
821 switch (request) {
822 /* read the word at location addr in the USER area. */
823 case PTRACE_PEEKUSR: {
824 unsigned long tmp;
825
826 ret = -EIO;
827 if ((addr & (sizeof(data) - 1)) || addr >= sizeof(struct user))
828 break;
829
830 tmp = 0; /* Default return condition */
831 if (addr < sizeof(struct user_regs_struct))
832 tmp = getreg(child, addr);
833 else if (addr >= offsetof(struct user, u_debugreg[0]) &&
834 addr <= offsetof(struct user, u_debugreg[7])) {
835 addr -= offsetof(struct user, u_debugreg[0]);
836 tmp = ptrace_get_debugreg(child, addr / sizeof(data));
837 }
838 ret = put_user(tmp, datap);
839 break;
840 }
841
842 case PTRACE_POKEUSR: /* write the word at location addr in the USER area */
843 ret = -EIO;
844 if ((addr & (sizeof(data) - 1)) || addr >= sizeof(struct user))
845 break;
846
847 if (addr < sizeof(struct user_regs_struct))
848 ret = putreg(child, addr, data);
849 else if (addr >= offsetof(struct user, u_debugreg[0]) &&
850 addr <= offsetof(struct user, u_debugreg[7])) {
851 addr -= offsetof(struct user, u_debugreg[0]);
852 ret = ptrace_set_debugreg(child,
853 addr / sizeof(data), data);
854 }
855 break;
856
857 case PTRACE_GETREGS: /* Get all gp regs from the child. */
858 return copy_regset_to_user(child,
859 task_user_regset_view(current),
860 REGSET_GENERAL,
861 0, sizeof(struct user_regs_struct),
862 datap);
863
864 case PTRACE_SETREGS: /* Set all gp regs in the child. */
865 return copy_regset_from_user(child,
866 task_user_regset_view(current),
867 REGSET_GENERAL,
868 0, sizeof(struct user_regs_struct),
869 datap);
870
871 case PTRACE_GETFPREGS: /* Get the child FPU state. */
872 return copy_regset_to_user(child,
873 task_user_regset_view(current),
874 REGSET_FP,
875 0, sizeof(struct user_i387_struct),
876 datap);
877
878 case PTRACE_SETFPREGS: /* Set the child FPU state. */
879 return copy_regset_from_user(child,
880 task_user_regset_view(current),
881 REGSET_FP,
882 0, sizeof(struct user_i387_struct),
883 datap);
884
885 #ifdef CONFIG_X86_32
886 case PTRACE_GETFPXREGS: /* Get the child extended FPU state. */
887 return copy_regset_to_user(child, &user_x86_32_view,
888 REGSET_XFP,
889 0, sizeof(struct user_fxsr_struct),
890 datap) ? -EIO : 0;
891
892 case PTRACE_SETFPXREGS: /* Set the child extended FPU state. */
893 return copy_regset_from_user(child, &user_x86_32_view,
894 REGSET_XFP,
895 0, sizeof(struct user_fxsr_struct),
896 datap) ? -EIO : 0;
897 #endif
898
899 #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
900 case PTRACE_GET_THREAD_AREA:
901 if ((int) addr < 0)
902 return -EIO;
903 ret = do_get_thread_area(child, addr,
904 (struct user_desc __user *)data);
905 break;
906
907 case PTRACE_SET_THREAD_AREA:
908 if ((int) addr < 0)
909 return -EIO;
910 ret = do_set_thread_area(child, addr,
911 (struct user_desc __user *)data, 0);
912 break;
913 #endif
914
915 #ifdef CONFIG_X86_64
916 /* normal 64bit interface to access TLS data.
917 Works just like arch_prctl, except that the arguments
918 are reversed. */
919 case PTRACE_ARCH_PRCTL:
920 ret = do_arch_prctl(child, data, addr);
921 break;
922 #endif
923
924 default:
925 ret = ptrace_request(child, request, addr, data);
926 break;
927 }
928
929 return ret;
930 }
931
932 #ifdef CONFIG_IA32_EMULATION
933
934 #include <linux/compat.h>
935 #include <linux/syscalls.h>
936 #include <asm/ia32.h>
937 #include <asm/user32.h>
938
939 #define R32(l,q) \
940 case offsetof(struct user32, regs.l): \
941 regs->q = value; break
942
943 #define SEG32(rs) \
944 case offsetof(struct user32, regs.rs): \
945 return set_segment_reg(child, \
946 offsetof(struct user_regs_struct, rs), \
947 value); \
948 break
949
950 static int putreg32(struct task_struct *child, unsigned regno, u32 value)
951 {
952 struct pt_regs *regs = task_pt_regs(child);
953
954 switch (regno) {
955
956 SEG32(cs);
957 SEG32(ds);
958 SEG32(es);
959 SEG32(fs);
960 SEG32(gs);
961 SEG32(ss);
962
963 R32(ebx, bx);
964 R32(ecx, cx);
965 R32(edx, dx);
966 R32(edi, di);
967 R32(esi, si);
968 R32(ebp, bp);
969 R32(eax, ax);
970 R32(eip, ip);
971 R32(esp, sp);
972
973 case offsetof(struct user32, regs.orig_eax):
974 /*
975 * A 32-bit debugger setting orig_eax means to restore
976 * the state of the task restarting a 32-bit syscall.
977 * Make sure we interpret the -ERESTART* codes correctly
978 * in case the task is not actually still sitting at the
979 * exit from a 32-bit syscall with TS_COMPAT still set.
980 */
981 regs->orig_ax = value;
982 if (syscall_get_nr(child, regs) >= 0)
983 task_thread_info(child)->status |= TS_COMPAT;
984 break;
985
986 case offsetof(struct user32, regs.eflags):
987 return set_flags(child, value);
988
989 case offsetof(struct user32, u_debugreg[0]) ...
990 offsetof(struct user32, u_debugreg[7]):
991 regno -= offsetof(struct user32, u_debugreg[0]);
992 return ptrace_set_debugreg(child, regno / 4, value);
993
994 default:
995 if (regno > sizeof(struct user32) || (regno & 3))
996 return -EIO;
997
998 /*
999 * Other dummy fields in the virtual user structure
1000 * are ignored
1001 */
1002 break;
1003 }
1004 return 0;
1005 }
1006
1007 #undef R32
1008 #undef SEG32
1009
1010 #define R32(l,q) \
1011 case offsetof(struct user32, regs.l): \
1012 *val = regs->q; break
1013
1014 #define SEG32(rs) \
1015 case offsetof(struct user32, regs.rs): \
1016 *val = get_segment_reg(child, \
1017 offsetof(struct user_regs_struct, rs)); \
1018 break
1019
1020 static int getreg32(struct task_struct *child, unsigned regno, u32 *val)
1021 {
1022 struct pt_regs *regs = task_pt_regs(child);
1023
1024 switch (regno) {
1025
1026 SEG32(ds);
1027 SEG32(es);
1028 SEG32(fs);
1029 SEG32(gs);
1030
1031 R32(cs, cs);
1032 R32(ss, ss);
1033 R32(ebx, bx);
1034 R32(ecx, cx);
1035 R32(edx, dx);
1036 R32(edi, di);
1037 R32(esi, si);
1038 R32(ebp, bp);
1039 R32(eax, ax);
1040 R32(orig_eax, orig_ax);
1041 R32(eip, ip);
1042 R32(esp, sp);
1043
1044 case offsetof(struct user32, regs.eflags):
1045 *val = get_flags(child);
1046 break;
1047
1048 case offsetof(struct user32, u_debugreg[0]) ...
1049 offsetof(struct user32, u_debugreg[7]):
1050 regno -= offsetof(struct user32, u_debugreg[0]);
1051 *val = ptrace_get_debugreg(child, regno / 4);
1052 break;
1053
1054 default:
1055 if (regno > sizeof(struct user32) || (regno & 3))
1056 return -EIO;
1057
1058 /*
1059 * Other dummy fields in the virtual user structure
1060 * are ignored
1061 */
1062 *val = 0;
1063 break;
1064 }
1065 return 0;
1066 }
1067
1068 #undef R32
1069 #undef SEG32
1070
1071 static int genregs32_get(struct task_struct *target,
1072 const struct user_regset *regset,
1073 unsigned int pos, unsigned int count,
1074 void *kbuf, void __user *ubuf)
1075 {
1076 if (kbuf) {
1077 compat_ulong_t *k = kbuf;
1078 while (count >= sizeof(*k)) {
1079 getreg32(target, pos, k++);
1080 count -= sizeof(*k);
1081 pos += sizeof(*k);
1082 }
1083 } else {
1084 compat_ulong_t __user *u = ubuf;
1085 while (count >= sizeof(*u)) {
1086 compat_ulong_t word;
1087 getreg32(target, pos, &word);
1088 if (__put_user(word, u++))
1089 return -EFAULT;
1090 count -= sizeof(*u);
1091 pos += sizeof(*u);
1092 }
1093 }
1094
1095 return 0;
1096 }
1097
1098 static int genregs32_set(struct task_struct *target,
1099 const struct user_regset *regset,
1100 unsigned int pos, unsigned int count,
1101 const void *kbuf, const void __user *ubuf)
1102 {
1103 int ret = 0;
1104 if (kbuf) {
1105 const compat_ulong_t *k = kbuf;
1106 while (count >= sizeof(*k) && !ret) {
1107 ret = putreg32(target, pos, *k++);
1108 count -= sizeof(*k);
1109 pos += sizeof(*k);
1110 }
1111 } else {
1112 const compat_ulong_t __user *u = ubuf;
1113 while (count >= sizeof(*u) && !ret) {
1114 compat_ulong_t word;
1115 ret = __get_user(word, u++);
1116 if (ret)
1117 break;
1118 ret = putreg32(target, pos, word);
1119 count -= sizeof(*u);
1120 pos += sizeof(*u);
1121 }
1122 }
1123 return ret;
1124 }
1125
1126 #ifdef CONFIG_X86_X32_ABI
1127 static long x32_arch_ptrace(struct task_struct *child,
1128 compat_long_t request, compat_ulong_t caddr,
1129 compat_ulong_t cdata)
1130 {
1131 unsigned long addr = caddr;
1132 unsigned long data = cdata;
1133 void __user *datap = compat_ptr(data);
1134 int ret;
1135
1136 switch (request) {
1137 /* Read 32bits at location addr in the USER area. Only allow
1138 to return the lower 32bits of segment and debug registers. */
1139 case PTRACE_PEEKUSR: {
1140 u32 tmp;
1141
1142 ret = -EIO;
1143 if ((addr & (sizeof(data) - 1)) || addr >= sizeof(struct user) ||
1144 addr < offsetof(struct user_regs_struct, cs))
1145 break;
1146
1147 tmp = 0; /* Default return condition */
1148 if (addr < sizeof(struct user_regs_struct))
1149 tmp = getreg(child, addr);
1150 else if (addr >= offsetof(struct user, u_debugreg[0]) &&
1151 addr <= offsetof(struct user, u_debugreg[7])) {
1152 addr -= offsetof(struct user, u_debugreg[0]);
1153 tmp = ptrace_get_debugreg(child, addr / sizeof(data));
1154 }
1155 ret = put_user(tmp, (__u32 __user *)datap);
1156 break;
1157 }
1158
1159 /* Write the word at location addr in the USER area. Only allow
1160 to update segment and debug registers with the upper 32bits
1161 zero-extended. */
1162 case PTRACE_POKEUSR:
1163 ret = -EIO;
1164 if ((addr & (sizeof(data) - 1)) || addr >= sizeof(struct user) ||
1165 addr < offsetof(struct user_regs_struct, cs))
1166 break;
1167
1168 if (addr < sizeof(struct user_regs_struct))
1169 ret = putreg(child, addr, data);
1170 else if (addr >= offsetof(struct user, u_debugreg[0]) &&
1171 addr <= offsetof(struct user, u_debugreg[7])) {
1172 addr -= offsetof(struct user, u_debugreg[0]);
1173 ret = ptrace_set_debugreg(child,
1174 addr / sizeof(data), data);
1175 }
1176 break;
1177
1178 case PTRACE_GETREGS: /* Get all gp regs from the child. */
1179 return copy_regset_to_user(child,
1180 task_user_regset_view(current),
1181 REGSET_GENERAL,
1182 0, sizeof(struct user_regs_struct),
1183 datap);
1184
1185 case PTRACE_SETREGS: /* Set all gp regs in the child. */
1186 return copy_regset_from_user(child,
1187 task_user_regset_view(current),
1188 REGSET_GENERAL,
1189 0, sizeof(struct user_regs_struct),
1190 datap);
1191
1192 case PTRACE_GETFPREGS: /* Get the child FPU state. */
1193 return copy_regset_to_user(child,
1194 task_user_regset_view(current),
1195 REGSET_FP,
1196 0, sizeof(struct user_i387_struct),
1197 datap);
1198
1199 case PTRACE_SETFPREGS: /* Set the child FPU state. */
1200 return copy_regset_from_user(child,
1201 task_user_regset_view(current),
1202 REGSET_FP,
1203 0, sizeof(struct user_i387_struct),
1204 datap);
1205
1206 default:
1207 return compat_ptrace_request(child, request, addr, data);
1208 }
1209
1210 return ret;
1211 }
1212 #endif
1213
1214 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1215 compat_ulong_t caddr, compat_ulong_t cdata)
1216 {
1217 unsigned long addr = caddr;
1218 unsigned long data = cdata;
1219 void __user *datap = compat_ptr(data);
1220 int ret;
1221 __u32 val;
1222
1223 #ifdef CONFIG_X86_X32_ABI
1224 if (!is_ia32_task())
1225 return x32_arch_ptrace(child, request, caddr, cdata);
1226 #endif
1227
1228 switch (request) {
1229 case PTRACE_PEEKUSR:
1230 ret = getreg32(child, addr, &val);
1231 if (ret == 0)
1232 ret = put_user(val, (__u32 __user *)datap);
1233 break;
1234
1235 case PTRACE_POKEUSR:
1236 ret = putreg32(child, addr, data);
1237 break;
1238
1239 case PTRACE_GETREGS: /* Get all gp regs from the child. */
1240 return copy_regset_to_user(child, &user_x86_32_view,
1241 REGSET_GENERAL,
1242 0, sizeof(struct user_regs_struct32),
1243 datap);
1244
1245 case PTRACE_SETREGS: /* Set all gp regs in the child. */
1246 return copy_regset_from_user(child, &user_x86_32_view,
1247 REGSET_GENERAL, 0,
1248 sizeof(struct user_regs_struct32),
1249 datap);
1250
1251 case PTRACE_GETFPREGS: /* Get the child FPU state. */
1252 return copy_regset_to_user(child, &user_x86_32_view,
1253 REGSET_FP, 0,
1254 sizeof(struct user_i387_ia32_struct),
1255 datap);
1256
1257 case PTRACE_SETFPREGS: /* Set the child FPU state. */
1258 return copy_regset_from_user(
1259 child, &user_x86_32_view, REGSET_FP,
1260 0, sizeof(struct user_i387_ia32_struct), datap);
1261
1262 case PTRACE_GETFPXREGS: /* Get the child extended FPU state. */
1263 return copy_regset_to_user(child, &user_x86_32_view,
1264 REGSET_XFP, 0,
1265 sizeof(struct user32_fxsr_struct),
1266 datap);
1267
1268 case PTRACE_SETFPXREGS: /* Set the child extended FPU state. */
1269 return copy_regset_from_user(child, &user_x86_32_view,
1270 REGSET_XFP, 0,
1271 sizeof(struct user32_fxsr_struct),
1272 datap);
1273
1274 case PTRACE_GET_THREAD_AREA:
1275 case PTRACE_SET_THREAD_AREA:
1276 return arch_ptrace(child, request, addr, data);
1277
1278 default:
1279 return compat_ptrace_request(child, request, addr, data);
1280 }
1281
1282 return ret;
1283 }
1284
1285 #endif /* CONFIG_IA32_EMULATION */
1286
1287 #ifdef CONFIG_X86_64
1288
1289 static struct user_regset x86_64_regsets[] __read_mostly = {
1290 [REGSET_GENERAL] = {
1291 .core_note_type = NT_PRSTATUS,
1292 .n = sizeof(struct user_regs_struct) / sizeof(long),
1293 .size = sizeof(long), .align = sizeof(long),
1294 .get = genregs_get, .set = genregs_set
1295 },
1296 [REGSET_FP] = {
1297 .core_note_type = NT_PRFPREG,
1298 .n = sizeof(struct user_i387_struct) / sizeof(long),
1299 .size = sizeof(long), .align = sizeof(long),
1300 .active = regset_xregset_fpregs_active, .get = xfpregs_get, .set = xfpregs_set
1301 },
1302 [REGSET_XSTATE] = {
1303 .core_note_type = NT_X86_XSTATE,
1304 .size = sizeof(u64), .align = sizeof(u64),
1305 .active = xstateregs_active, .get = xstateregs_get,
1306 .set = xstateregs_set
1307 },
1308 [REGSET_IOPERM64] = {
1309 .core_note_type = NT_386_IOPERM,
1310 .n = IO_BITMAP_LONGS,
1311 .size = sizeof(long), .align = sizeof(long),
1312 .active = ioperm_active, .get = ioperm_get
1313 },
1314 };
1315
1316 static const struct user_regset_view user_x86_64_view = {
1317 .name = "x86_64", .e_machine = EM_X86_64,
1318 .regsets = x86_64_regsets, .n = ARRAY_SIZE(x86_64_regsets)
1319 };
1320
1321 #else /* CONFIG_X86_32 */
1322
1323 #define user_regs_struct32 user_regs_struct
1324 #define genregs32_get genregs_get
1325 #define genregs32_set genregs_set
1326
1327 #endif /* CONFIG_X86_64 */
1328
1329 #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
1330 static struct user_regset x86_32_regsets[] __read_mostly = {
1331 [REGSET_GENERAL] = {
1332 .core_note_type = NT_PRSTATUS,
1333 .n = sizeof(struct user_regs_struct32) / sizeof(u32),
1334 .size = sizeof(u32), .align = sizeof(u32),
1335 .get = genregs32_get, .set = genregs32_set
1336 },
1337 [REGSET_FP] = {
1338 .core_note_type = NT_PRFPREG,
1339 .n = sizeof(struct user_i387_ia32_struct) / sizeof(u32),
1340 .size = sizeof(u32), .align = sizeof(u32),
1341 .active = regset_fpregs_active, .get = fpregs_get, .set = fpregs_set
1342 },
1343 [REGSET_XFP] = {
1344 .core_note_type = NT_PRXFPREG,
1345 .n = sizeof(struct user32_fxsr_struct) / sizeof(u32),
1346 .size = sizeof(u32), .align = sizeof(u32),
1347 .active = regset_xregset_fpregs_active, .get = xfpregs_get, .set = xfpregs_set
1348 },
1349 [REGSET_XSTATE] = {
1350 .core_note_type = NT_X86_XSTATE,
1351 .size = sizeof(u64), .align = sizeof(u64),
1352 .active = xstateregs_active, .get = xstateregs_get,
1353 .set = xstateregs_set
1354 },
1355 [REGSET_TLS] = {
1356 .core_note_type = NT_386_TLS,
1357 .n = GDT_ENTRY_TLS_ENTRIES, .bias = GDT_ENTRY_TLS_MIN,
1358 .size = sizeof(struct user_desc),
1359 .align = sizeof(struct user_desc),
1360 .active = regset_tls_active,
1361 .get = regset_tls_get, .set = regset_tls_set
1362 },
1363 [REGSET_IOPERM32] = {
1364 .core_note_type = NT_386_IOPERM,
1365 .n = IO_BITMAP_BYTES / sizeof(u32),
1366 .size = sizeof(u32), .align = sizeof(u32),
1367 .active = ioperm_active, .get = ioperm_get
1368 },
1369 };
1370
1371 static const struct user_regset_view user_x86_32_view = {
1372 .name = "i386", .e_machine = EM_386,
1373 .regsets = x86_32_regsets, .n = ARRAY_SIZE(x86_32_regsets)
1374 };
1375 #endif
1376
1377 /*
1378 * This represents bytes 464..511 in the memory layout exported through
1379 * the REGSET_XSTATE interface.
1380 */
1381 u64 xstate_fx_sw_bytes[USER_XSTATE_FX_SW_WORDS];
1382
1383 void update_regset_xstate_info(unsigned int size, u64 xstate_mask)
1384 {
1385 #ifdef CONFIG_X86_64
1386 x86_64_regsets[REGSET_XSTATE].n = size / sizeof(u64);
1387 #endif
1388 #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
1389 x86_32_regsets[REGSET_XSTATE].n = size / sizeof(u64);
1390 #endif
1391 xstate_fx_sw_bytes[USER_XSTATE_XCR0_WORD] = xstate_mask;
1392 }
1393
1394 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1395 {
1396 #ifdef CONFIG_IA32_EMULATION
1397 if (test_tsk_thread_flag(task, TIF_IA32))
1398 #endif
1399 #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
1400 return &user_x86_32_view;
1401 #endif
1402 #ifdef CONFIG_X86_64
1403 return &user_x86_64_view;
1404 #endif
1405 }
1406
1407 static void fill_sigtrap_info(struct task_struct *tsk,
1408 struct pt_regs *regs,
1409 int error_code, int si_code,
1410 struct siginfo *info)
1411 {
1412 tsk->thread.trap_nr = X86_TRAP_DB;
1413 tsk->thread.error_code = error_code;
1414
1415 memset(info, 0, sizeof(*info));
1416 info->si_signo = SIGTRAP;
1417 info->si_code = si_code;
1418 info->si_addr = user_mode(regs) ? (void __user *)regs->ip : NULL;
1419 }
1420
1421 void user_single_step_siginfo(struct task_struct *tsk,
1422 struct pt_regs *regs,
1423 struct siginfo *info)
1424 {
1425 fill_sigtrap_info(tsk, regs, 0, TRAP_BRKPT, info);
1426 }
1427
1428 void send_sigtrap(struct task_struct *tsk, struct pt_regs *regs,
1429 int error_code, int si_code)
1430 {
1431 struct siginfo info;
1432
1433 fill_sigtrap_info(tsk, regs, error_code, si_code, &info);
1434 /* Send us the fake SIGTRAP */
1435 force_sig_info(SIGTRAP, &info, tsk);
1436 }
1437
1438 static void do_audit_syscall_entry(struct pt_regs *regs, u32 arch)
1439 {
1440 #ifdef CONFIG_X86_64
1441 if (arch == AUDIT_ARCH_X86_64) {
1442 audit_syscall_entry(regs->orig_ax, regs->di,
1443 regs->si, regs->dx, regs->r10);
1444 } else
1445 #endif
1446 {
1447 audit_syscall_entry(regs->orig_ax, regs->bx,
1448 regs->cx, regs->dx, regs->si);
1449 }
1450 }
1451
1452 /*
1453 * We can return 0 to resume the syscall or anything else to go to phase
1454 * 2. If we resume the syscall, we need to put something appropriate in
1455 * regs->orig_ax.
1456 *
1457 * NB: We don't have full pt_regs here, but regs->orig_ax and regs->ax
1458 * are fully functional.
1459 *
1460 * For phase 2's benefit, our return value is:
1461 * 0: resume the syscall
1462 * 1: go to phase 2; no seccomp phase 2 needed
1463 * anything else: go to phase 2; pass return value to seccomp
1464 */
1465 unsigned long syscall_trace_enter_phase1(struct pt_regs *regs, u32 arch)
1466 {
1467 unsigned long ret = 0;
1468 u32 work;
1469
1470 BUG_ON(regs != task_pt_regs(current));
1471
1472 work = ACCESS_ONCE(current_thread_info()->flags) &
1473 _TIF_WORK_SYSCALL_ENTRY;
1474
1475 /*
1476 * If TIF_NOHZ is set, we are required to call user_exit() before
1477 * doing anything that could touch RCU.
1478 */
1479 if (work & _TIF_NOHZ) {
1480 user_exit();
1481 work &= ~_TIF_NOHZ;
1482 }
1483
1484 #ifdef CONFIG_SECCOMP
1485 /*
1486 * Do seccomp first -- it should minimize exposure of other
1487 * code, and keeping seccomp fast is probably more valuable
1488 * than the rest of this.
1489 */
1490 if (work & _TIF_SECCOMP) {
1491 struct seccomp_data sd;
1492
1493 sd.arch = arch;
1494 sd.nr = regs->orig_ax;
1495 sd.instruction_pointer = regs->ip;
1496 #ifdef CONFIG_X86_64
1497 if (arch == AUDIT_ARCH_X86_64) {
1498 sd.args[0] = regs->di;
1499 sd.args[1] = regs->si;
1500 sd.args[2] = regs->dx;
1501 sd.args[3] = regs->r10;
1502 sd.args[4] = regs->r8;
1503 sd.args[5] = regs->r9;
1504 } else
1505 #endif
1506 {
1507 sd.args[0] = regs->bx;
1508 sd.args[1] = regs->cx;
1509 sd.args[2] = regs->dx;
1510 sd.args[3] = regs->si;
1511 sd.args[4] = regs->di;
1512 sd.args[5] = regs->bp;
1513 }
1514
1515 BUILD_BUG_ON(SECCOMP_PHASE1_OK != 0);
1516 BUILD_BUG_ON(SECCOMP_PHASE1_SKIP != 1);
1517
1518 ret = seccomp_phase1(&sd);
1519 if (ret == SECCOMP_PHASE1_SKIP) {
1520 regs->orig_ax = -1;
1521 ret = 0;
1522 } else if (ret != SECCOMP_PHASE1_OK) {
1523 return ret; /* Go directly to phase 2 */
1524 }
1525
1526 work &= ~_TIF_SECCOMP;
1527 }
1528 #endif
1529
1530 /* Do our best to finish without phase 2. */
1531 if (work == 0)
1532 return ret; /* seccomp and/or nohz only (ret == 0 here) */
1533
1534 #ifdef CONFIG_AUDITSYSCALL
1535 if (work == _TIF_SYSCALL_AUDIT) {
1536 /*
1537 * If there is no more work to be done except auditing,
1538 * then audit in phase 1. Phase 2 always audits, so, if
1539 * we audit here, then we can't go on to phase 2.
1540 */
1541 do_audit_syscall_entry(regs, arch);
1542 return 0;
1543 }
1544 #endif
1545
1546 return 1; /* Something is enabled that we can't handle in phase 1 */
1547 }
1548
1549 /* Returns the syscall nr to run (which should match regs->orig_ax). */
1550 long syscall_trace_enter_phase2(struct pt_regs *regs, u32 arch,
1551 unsigned long phase1_result)
1552 {
1553 long ret = 0;
1554 u32 work = ACCESS_ONCE(current_thread_info()->flags) &
1555 _TIF_WORK_SYSCALL_ENTRY;
1556
1557 BUG_ON(regs != task_pt_regs(current));
1558
1559 /*
1560 * If we stepped into a sysenter/syscall insn, it trapped in
1561 * kernel mode; do_debug() cleared TF and set TIF_SINGLESTEP.
1562 * If user-mode had set TF itself, then it's still clear from
1563 * do_debug() and we need to set it again to restore the user
1564 * state. If we entered on the slow path, TF was already set.
1565 */
1566 if (work & _TIF_SINGLESTEP)
1567 regs->flags |= X86_EFLAGS_TF;
1568
1569 #ifdef CONFIG_SECCOMP
1570 /*
1571 * Call seccomp_phase2 before running the other hooks so that
1572 * they can see any changes made by a seccomp tracer.
1573 */
1574 if (phase1_result > 1 && seccomp_phase2(phase1_result)) {
1575 /* seccomp failures shouldn't expose any additional code. */
1576 return -1;
1577 }
1578 #endif
1579
1580 if (unlikely(work & _TIF_SYSCALL_EMU))
1581 ret = -1L;
1582
1583 if ((ret || test_thread_flag(TIF_SYSCALL_TRACE)) &&
1584 tracehook_report_syscall_entry(regs))
1585 ret = -1L;
1586
1587 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
1588 trace_sys_enter(regs, regs->orig_ax);
1589
1590 do_audit_syscall_entry(regs, arch);
1591
1592 return ret ?: regs->orig_ax;
1593 }
1594
1595 long syscall_trace_enter(struct pt_regs *regs)
1596 {
1597 u32 arch = is_ia32_task() ? AUDIT_ARCH_I386 : AUDIT_ARCH_X86_64;
1598 unsigned long phase1_result = syscall_trace_enter_phase1(regs, arch);
1599
1600 if (phase1_result == 0)
1601 return regs->orig_ax;
1602 else
1603 return syscall_trace_enter_phase2(regs, arch, phase1_result);
1604 }
1605
1606 void syscall_trace_leave(struct pt_regs *regs)
1607 {
1608 bool step;
1609
1610 /*
1611 * We may come here right after calling schedule_user()
1612 * or do_notify_resume(), in which case we can be in RCU
1613 * user mode.
1614 */
1615 user_exit();
1616
1617 audit_syscall_exit(regs);
1618
1619 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
1620 trace_sys_exit(regs, regs->ax);
1621
1622 /*
1623 * If TIF_SYSCALL_EMU is set, we only get here because of
1624 * TIF_SINGLESTEP (i.e. this is PTRACE_SYSEMU_SINGLESTEP).
1625 * We already reported this syscall instruction in
1626 * syscall_trace_enter().
1627 */
1628 step = unlikely(test_thread_flag(TIF_SINGLESTEP)) &&
1629 !test_thread_flag(TIF_SYSCALL_EMU);
1630 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1631 tracehook_report_syscall_exit(regs, step);
1632
1633 user_enter();
1634 }