]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/setup.c
x86/mm/64: Initialize CR4.PCIDE early
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / setup.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 *
6 * Memory region support
7 * David Parsons <orc@pell.chi.il.us>, July-August 1999
8 *
9 * Added E820 sanitization routine (removes overlapping memory regions);
10 * Brian Moyle <bmoyle@mvista.com>, February 2001
11 *
12 * Moved CPU detection code to cpu/${cpu}.c
13 * Patrick Mochel <mochel@osdl.org>, March 2002
14 *
15 * Provisions for empty E820 memory regions (reported by certain BIOSes).
16 * Alex Achenbach <xela@slit.de>, December 2002.
17 *
18 */
19
20 /*
21 * This file handles the architecture-dependent parts of initialization
22 */
23
24 #include <linux/sched.h>
25 #include <linux/mm.h>
26 #include <linux/mmzone.h>
27 #include <linux/screen_info.h>
28 #include <linux/ioport.h>
29 #include <linux/acpi.h>
30 #include <linux/sfi.h>
31 #include <linux/apm_bios.h>
32 #include <linux/initrd.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/seq_file.h>
36 #include <linux/console.h>
37 #include <linux/root_dev.h>
38 #include <linux/highmem.h>
39 #include <linux/export.h>
40 #include <linux/efi.h>
41 #include <linux/init.h>
42 #include <linux/edd.h>
43 #include <linux/iscsi_ibft.h>
44 #include <linux/nodemask.h>
45 #include <linux/kexec.h>
46 #include <linux/dmi.h>
47 #include <linux/pfn.h>
48 #include <linux/pci.h>
49 #include <asm/pci-direct.h>
50 #include <linux/init_ohci1394_dma.h>
51 #include <linux/kvm_para.h>
52 #include <linux/dma-contiguous.h>
53
54 #include <linux/errno.h>
55 #include <linux/kernel.h>
56 #include <linux/stddef.h>
57 #include <linux/unistd.h>
58 #include <linux/ptrace.h>
59 #include <linux/user.h>
60 #include <linux/delay.h>
61
62 #include <linux/kallsyms.h>
63 #include <linux/cpufreq.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/ctype.h>
66 #include <linux/uaccess.h>
67
68 #include <linux/percpu.h>
69 #include <linux/crash_dump.h>
70 #include <linux/tboot.h>
71 #include <linux/jiffies.h>
72 #include <linux/mem_encrypt.h>
73
74 #include <linux/usb/xhci-dbgp.h>
75 #include <video/edid.h>
76
77 #include <asm/mtrr.h>
78 #include <asm/apic.h>
79 #include <asm/realmode.h>
80 #include <asm/e820/api.h>
81 #include <asm/mpspec.h>
82 #include <asm/setup.h>
83 #include <asm/efi.h>
84 #include <asm/timer.h>
85 #include <asm/i8259.h>
86 #include <asm/sections.h>
87 #include <asm/io_apic.h>
88 #include <asm/ist.h>
89 #include <asm/setup_arch.h>
90 #include <asm/bios_ebda.h>
91 #include <asm/cacheflush.h>
92 #include <asm/processor.h>
93 #include <asm/bugs.h>
94 #include <asm/kasan.h>
95
96 #include <asm/vsyscall.h>
97 #include <asm/cpu.h>
98 #include <asm/desc.h>
99 #include <asm/dma.h>
100 #include <asm/iommu.h>
101 #include <asm/gart.h>
102 #include <asm/mmu_context.h>
103 #include <asm/proto.h>
104
105 #include <asm/paravirt.h>
106 #include <asm/hypervisor.h>
107 #include <asm/olpc_ofw.h>
108
109 #include <asm/percpu.h>
110 #include <asm/topology.h>
111 #include <asm/apicdef.h>
112 #include <asm/amd_nb.h>
113 #include <asm/mce.h>
114 #include <asm/alternative.h>
115 #include <asm/prom.h>
116 #include <asm/microcode.h>
117 #include <asm/mmu_context.h>
118 #include <asm/kaslr.h>
119 #include <asm/unwind.h>
120
121 /*
122 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
123 * max_pfn_mapped: highest direct mapped pfn over 4GB
124 *
125 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
126 * represented by pfn_mapped
127 */
128 unsigned long max_low_pfn_mapped;
129 unsigned long max_pfn_mapped;
130
131 #ifdef CONFIG_DMI
132 RESERVE_BRK(dmi_alloc, 65536);
133 #endif
134
135
136 static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
137 unsigned long _brk_end = (unsigned long)__brk_base;
138
139 #ifdef CONFIG_X86_64
140 int default_cpu_present_to_apicid(int mps_cpu)
141 {
142 return __default_cpu_present_to_apicid(mps_cpu);
143 }
144
145 int default_check_phys_apicid_present(int phys_apicid)
146 {
147 return __default_check_phys_apicid_present(phys_apicid);
148 }
149 #endif
150
151 struct boot_params boot_params;
152
153 /*
154 * Machine setup..
155 */
156 static struct resource data_resource = {
157 .name = "Kernel data",
158 .start = 0,
159 .end = 0,
160 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
161 };
162
163 static struct resource code_resource = {
164 .name = "Kernel code",
165 .start = 0,
166 .end = 0,
167 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
168 };
169
170 static struct resource bss_resource = {
171 .name = "Kernel bss",
172 .start = 0,
173 .end = 0,
174 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
175 };
176
177
178 #ifdef CONFIG_X86_32
179 /* cpu data as detected by the assembly code in head_32.S */
180 struct cpuinfo_x86 new_cpu_data;
181
182 /* common cpu data for all cpus */
183 struct cpuinfo_x86 boot_cpu_data __read_mostly;
184 EXPORT_SYMBOL(boot_cpu_data);
185
186 unsigned int def_to_bigsmp;
187
188 /* for MCA, but anyone else can use it if they want */
189 unsigned int machine_id;
190 unsigned int machine_submodel_id;
191 unsigned int BIOS_revision;
192
193 struct apm_info apm_info;
194 EXPORT_SYMBOL(apm_info);
195
196 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
197 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
198 struct ist_info ist_info;
199 EXPORT_SYMBOL(ist_info);
200 #else
201 struct ist_info ist_info;
202 #endif
203
204 #else
205 struct cpuinfo_x86 boot_cpu_data __read_mostly = {
206 .x86_phys_bits = MAX_PHYSMEM_BITS,
207 };
208 EXPORT_SYMBOL(boot_cpu_data);
209 #endif
210
211
212 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
213 __visible unsigned long mmu_cr4_features __ro_after_init;
214 #else
215 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
216 #endif
217
218 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
219 int bootloader_type, bootloader_version;
220
221 /*
222 * Setup options
223 */
224 struct screen_info screen_info;
225 EXPORT_SYMBOL(screen_info);
226 struct edid_info edid_info;
227 EXPORT_SYMBOL_GPL(edid_info);
228
229 extern int root_mountflags;
230
231 unsigned long saved_video_mode;
232
233 #define RAMDISK_IMAGE_START_MASK 0x07FF
234 #define RAMDISK_PROMPT_FLAG 0x8000
235 #define RAMDISK_LOAD_FLAG 0x4000
236
237 static char __initdata command_line[COMMAND_LINE_SIZE];
238 #ifdef CONFIG_CMDLINE_BOOL
239 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
240 #endif
241
242 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
243 struct edd edd;
244 #ifdef CONFIG_EDD_MODULE
245 EXPORT_SYMBOL(edd);
246 #endif
247 /**
248 * copy_edd() - Copy the BIOS EDD information
249 * from boot_params into a safe place.
250 *
251 */
252 static inline void __init copy_edd(void)
253 {
254 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
255 sizeof(edd.mbr_signature));
256 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
257 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
258 edd.edd_info_nr = boot_params.eddbuf_entries;
259 }
260 #else
261 static inline void __init copy_edd(void)
262 {
263 }
264 #endif
265
266 void * __init extend_brk(size_t size, size_t align)
267 {
268 size_t mask = align - 1;
269 void *ret;
270
271 BUG_ON(_brk_start == 0);
272 BUG_ON(align & mask);
273
274 _brk_end = (_brk_end + mask) & ~mask;
275 BUG_ON((char *)(_brk_end + size) > __brk_limit);
276
277 ret = (void *)_brk_end;
278 _brk_end += size;
279
280 memset(ret, 0, size);
281
282 return ret;
283 }
284
285 #ifdef CONFIG_X86_32
286 static void __init cleanup_highmap(void)
287 {
288 }
289 #endif
290
291 static void __init reserve_brk(void)
292 {
293 if (_brk_end > _brk_start)
294 memblock_reserve(__pa_symbol(_brk_start),
295 _brk_end - _brk_start);
296
297 /* Mark brk area as locked down and no longer taking any
298 new allocations */
299 _brk_start = 0;
300 }
301
302 u64 relocated_ramdisk;
303
304 #ifdef CONFIG_BLK_DEV_INITRD
305
306 static u64 __init get_ramdisk_image(void)
307 {
308 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
309
310 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
311
312 return ramdisk_image;
313 }
314 static u64 __init get_ramdisk_size(void)
315 {
316 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
317
318 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
319
320 return ramdisk_size;
321 }
322
323 static void __init relocate_initrd(void)
324 {
325 /* Assume only end is not page aligned */
326 u64 ramdisk_image = get_ramdisk_image();
327 u64 ramdisk_size = get_ramdisk_size();
328 u64 area_size = PAGE_ALIGN(ramdisk_size);
329
330 /* We need to move the initrd down into directly mapped mem */
331 relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
332 area_size, PAGE_SIZE);
333
334 if (!relocated_ramdisk)
335 panic("Cannot find place for new RAMDISK of size %lld\n",
336 ramdisk_size);
337
338 /* Note: this includes all the mem currently occupied by
339 the initrd, we rely on that fact to keep the data intact. */
340 memblock_reserve(relocated_ramdisk, area_size);
341 initrd_start = relocated_ramdisk + PAGE_OFFSET;
342 initrd_end = initrd_start + ramdisk_size;
343 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
344 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
345
346 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
347
348 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
349 " [mem %#010llx-%#010llx]\n",
350 ramdisk_image, ramdisk_image + ramdisk_size - 1,
351 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
352 }
353
354 static void __init early_reserve_initrd(void)
355 {
356 /* Assume only end is not page aligned */
357 u64 ramdisk_image = get_ramdisk_image();
358 u64 ramdisk_size = get_ramdisk_size();
359 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
360
361 if (!boot_params.hdr.type_of_loader ||
362 !ramdisk_image || !ramdisk_size)
363 return; /* No initrd provided by bootloader */
364
365 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
366 }
367 static void __init reserve_initrd(void)
368 {
369 /* Assume only end is not page aligned */
370 u64 ramdisk_image = get_ramdisk_image();
371 u64 ramdisk_size = get_ramdisk_size();
372 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
373 u64 mapped_size;
374
375 if (!boot_params.hdr.type_of_loader ||
376 !ramdisk_image || !ramdisk_size)
377 return; /* No initrd provided by bootloader */
378
379 /*
380 * If SME is active, this memory will be marked encrypted by the
381 * kernel when it is accessed (including relocation). However, the
382 * ramdisk image was loaded decrypted by the bootloader, so make
383 * sure that it is encrypted before accessing it.
384 */
385 sme_early_encrypt(ramdisk_image, ramdisk_end - ramdisk_image);
386
387 initrd_start = 0;
388
389 mapped_size = memblock_mem_size(max_pfn_mapped);
390 if (ramdisk_size >= (mapped_size>>1))
391 panic("initrd too large to handle, "
392 "disabling initrd (%lld needed, %lld available)\n",
393 ramdisk_size, mapped_size>>1);
394
395 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
396 ramdisk_end - 1);
397
398 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
399 PFN_DOWN(ramdisk_end))) {
400 /* All are mapped, easy case */
401 initrd_start = ramdisk_image + PAGE_OFFSET;
402 initrd_end = initrd_start + ramdisk_size;
403 return;
404 }
405
406 relocate_initrd();
407
408 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
409 }
410
411 #else
412 static void __init early_reserve_initrd(void)
413 {
414 }
415 static void __init reserve_initrd(void)
416 {
417 }
418 #endif /* CONFIG_BLK_DEV_INITRD */
419
420 static void __init parse_setup_data(void)
421 {
422 struct setup_data *data;
423 u64 pa_data, pa_next;
424
425 pa_data = boot_params.hdr.setup_data;
426 while (pa_data) {
427 u32 data_len, data_type;
428
429 data = early_memremap(pa_data, sizeof(*data));
430 data_len = data->len + sizeof(struct setup_data);
431 data_type = data->type;
432 pa_next = data->next;
433 early_memunmap(data, sizeof(*data));
434
435 switch (data_type) {
436 case SETUP_E820_EXT:
437 e820__memory_setup_extended(pa_data, data_len);
438 break;
439 case SETUP_DTB:
440 add_dtb(pa_data);
441 break;
442 case SETUP_EFI:
443 parse_efi_setup(pa_data, data_len);
444 break;
445 default:
446 break;
447 }
448 pa_data = pa_next;
449 }
450 }
451
452 static void __init memblock_x86_reserve_range_setup_data(void)
453 {
454 struct setup_data *data;
455 u64 pa_data;
456
457 pa_data = boot_params.hdr.setup_data;
458 while (pa_data) {
459 data = early_memremap(pa_data, sizeof(*data));
460 memblock_reserve(pa_data, sizeof(*data) + data->len);
461 pa_data = data->next;
462 early_memunmap(data, sizeof(*data));
463 }
464 }
465
466 /*
467 * --------- Crashkernel reservation ------------------------------
468 */
469
470 #ifdef CONFIG_KEXEC_CORE
471
472 /* 16M alignment for crash kernel regions */
473 #define CRASH_ALIGN (16 << 20)
474
475 /*
476 * Keep the crash kernel below this limit. On 32 bits earlier kernels
477 * would limit the kernel to the low 512 MiB due to mapping restrictions.
478 * On 64bit, old kexec-tools need to under 896MiB.
479 */
480 #ifdef CONFIG_X86_32
481 # define CRASH_ADDR_LOW_MAX (512 << 20)
482 # define CRASH_ADDR_HIGH_MAX (512 << 20)
483 #else
484 # define CRASH_ADDR_LOW_MAX (896UL << 20)
485 # define CRASH_ADDR_HIGH_MAX MAXMEM
486 #endif
487
488 static int __init reserve_crashkernel_low(void)
489 {
490 #ifdef CONFIG_X86_64
491 unsigned long long base, low_base = 0, low_size = 0;
492 unsigned long total_low_mem;
493 int ret;
494
495 total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
496
497 /* crashkernel=Y,low */
498 ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
499 if (ret) {
500 /*
501 * two parts from lib/swiotlb.c:
502 * -swiotlb size: user-specified with swiotlb= or default.
503 *
504 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
505 * to 8M for other buffers that may need to stay low too. Also
506 * make sure we allocate enough extra low memory so that we
507 * don't run out of DMA buffers for 32-bit devices.
508 */
509 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
510 } else {
511 /* passed with crashkernel=0,low ? */
512 if (!low_size)
513 return 0;
514 }
515
516 low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
517 if (!low_base) {
518 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
519 (unsigned long)(low_size >> 20));
520 return -ENOMEM;
521 }
522
523 ret = memblock_reserve(low_base, low_size);
524 if (ret) {
525 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
526 return ret;
527 }
528
529 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
530 (unsigned long)(low_size >> 20),
531 (unsigned long)(low_base >> 20),
532 (unsigned long)(total_low_mem >> 20));
533
534 crashk_low_res.start = low_base;
535 crashk_low_res.end = low_base + low_size - 1;
536 insert_resource(&iomem_resource, &crashk_low_res);
537 #endif
538 return 0;
539 }
540
541 static void __init reserve_crashkernel(void)
542 {
543 unsigned long long crash_size, crash_base, total_mem;
544 bool high = false;
545 int ret;
546
547 total_mem = memblock_phys_mem_size();
548
549 /* crashkernel=XM */
550 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
551 if (ret != 0 || crash_size <= 0) {
552 /* crashkernel=X,high */
553 ret = parse_crashkernel_high(boot_command_line, total_mem,
554 &crash_size, &crash_base);
555 if (ret != 0 || crash_size <= 0)
556 return;
557 high = true;
558 }
559
560 /* 0 means: find the address automatically */
561 if (crash_base <= 0) {
562 /*
563 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
564 * as old kexec-tools loads bzImage below that, unless
565 * "crashkernel=size[KMG],high" is specified.
566 */
567 crash_base = memblock_find_in_range(CRASH_ALIGN,
568 high ? CRASH_ADDR_HIGH_MAX
569 : CRASH_ADDR_LOW_MAX,
570 crash_size, CRASH_ALIGN);
571 if (!crash_base) {
572 pr_info("crashkernel reservation failed - No suitable area found.\n");
573 return;
574 }
575
576 } else {
577 unsigned long long start;
578
579 start = memblock_find_in_range(crash_base,
580 crash_base + crash_size,
581 crash_size, 1 << 20);
582 if (start != crash_base) {
583 pr_info("crashkernel reservation failed - memory is in use.\n");
584 return;
585 }
586 }
587 ret = memblock_reserve(crash_base, crash_size);
588 if (ret) {
589 pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
590 return;
591 }
592
593 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
594 memblock_free(crash_base, crash_size);
595 return;
596 }
597
598 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
599 (unsigned long)(crash_size >> 20),
600 (unsigned long)(crash_base >> 20),
601 (unsigned long)(total_mem >> 20));
602
603 crashk_res.start = crash_base;
604 crashk_res.end = crash_base + crash_size - 1;
605 insert_resource(&iomem_resource, &crashk_res);
606 }
607 #else
608 static void __init reserve_crashkernel(void)
609 {
610 }
611 #endif
612
613 static struct resource standard_io_resources[] = {
614 { .name = "dma1", .start = 0x00, .end = 0x1f,
615 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
616 { .name = "pic1", .start = 0x20, .end = 0x21,
617 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
618 { .name = "timer0", .start = 0x40, .end = 0x43,
619 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
620 { .name = "timer1", .start = 0x50, .end = 0x53,
621 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
622 { .name = "keyboard", .start = 0x60, .end = 0x60,
623 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
624 { .name = "keyboard", .start = 0x64, .end = 0x64,
625 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
626 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
627 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
628 { .name = "pic2", .start = 0xa0, .end = 0xa1,
629 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
630 { .name = "dma2", .start = 0xc0, .end = 0xdf,
631 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
632 { .name = "fpu", .start = 0xf0, .end = 0xff,
633 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
634 };
635
636 void __init reserve_standard_io_resources(void)
637 {
638 int i;
639
640 /* request I/O space for devices used on all i[345]86 PCs */
641 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
642 request_resource(&ioport_resource, &standard_io_resources[i]);
643
644 }
645
646 static __init void reserve_ibft_region(void)
647 {
648 unsigned long addr, size = 0;
649
650 addr = find_ibft_region(&size);
651
652 if (size)
653 memblock_reserve(addr, size);
654 }
655
656 static bool __init snb_gfx_workaround_needed(void)
657 {
658 #ifdef CONFIG_PCI
659 int i;
660 u16 vendor, devid;
661 static const __initconst u16 snb_ids[] = {
662 0x0102,
663 0x0112,
664 0x0122,
665 0x0106,
666 0x0116,
667 0x0126,
668 0x010a,
669 };
670
671 /* Assume no if something weird is going on with PCI */
672 if (!early_pci_allowed())
673 return false;
674
675 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
676 if (vendor != 0x8086)
677 return false;
678
679 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
680 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
681 if (devid == snb_ids[i])
682 return true;
683 #endif
684
685 return false;
686 }
687
688 /*
689 * Sandy Bridge graphics has trouble with certain ranges, exclude
690 * them from allocation.
691 */
692 static void __init trim_snb_memory(void)
693 {
694 static const __initconst unsigned long bad_pages[] = {
695 0x20050000,
696 0x20110000,
697 0x20130000,
698 0x20138000,
699 0x40004000,
700 };
701 int i;
702
703 if (!snb_gfx_workaround_needed())
704 return;
705
706 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
707
708 /*
709 * Reserve all memory below the 1 MB mark that has not
710 * already been reserved.
711 */
712 memblock_reserve(0, 1<<20);
713
714 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
715 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
716 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
717 bad_pages[i]);
718 }
719 }
720
721 /*
722 * Here we put platform-specific memory range workarounds, i.e.
723 * memory known to be corrupt or otherwise in need to be reserved on
724 * specific platforms.
725 *
726 * If this gets used more widely it could use a real dispatch mechanism.
727 */
728 static void __init trim_platform_memory_ranges(void)
729 {
730 trim_snb_memory();
731 }
732
733 static void __init trim_bios_range(void)
734 {
735 /*
736 * A special case is the first 4Kb of memory;
737 * This is a BIOS owned area, not kernel ram, but generally
738 * not listed as such in the E820 table.
739 *
740 * This typically reserves additional memory (64KiB by default)
741 * since some BIOSes are known to corrupt low memory. See the
742 * Kconfig help text for X86_RESERVE_LOW.
743 */
744 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
745
746 /*
747 * special case: Some BIOSen report the PC BIOS
748 * area (640->1Mb) as ram even though it is not.
749 * take them out.
750 */
751 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
752
753 e820__update_table(e820_table);
754 }
755
756 /* called before trim_bios_range() to spare extra sanitize */
757 static void __init e820_add_kernel_range(void)
758 {
759 u64 start = __pa_symbol(_text);
760 u64 size = __pa_symbol(_end) - start;
761
762 /*
763 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
764 * attempt to fix it by adding the range. We may have a confused BIOS,
765 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
766 * exclude kernel range. If we really are running on top non-RAM,
767 * we will crash later anyways.
768 */
769 if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
770 return;
771
772 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
773 e820__range_remove(start, size, E820_TYPE_RAM, 0);
774 e820__range_add(start, size, E820_TYPE_RAM);
775 }
776
777 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
778
779 static int __init parse_reservelow(char *p)
780 {
781 unsigned long long size;
782
783 if (!p)
784 return -EINVAL;
785
786 size = memparse(p, &p);
787
788 if (size < 4096)
789 size = 4096;
790
791 if (size > 640*1024)
792 size = 640*1024;
793
794 reserve_low = size;
795
796 return 0;
797 }
798
799 early_param("reservelow", parse_reservelow);
800
801 static void __init trim_low_memory_range(void)
802 {
803 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
804 }
805
806 /*
807 * Dump out kernel offset information on panic.
808 */
809 static int
810 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
811 {
812 if (kaslr_enabled()) {
813 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
814 kaslr_offset(),
815 __START_KERNEL,
816 __START_KERNEL_map,
817 MODULES_VADDR-1);
818 } else {
819 pr_emerg("Kernel Offset: disabled\n");
820 }
821
822 return 0;
823 }
824
825 static void __init simple_udelay_calibration(void)
826 {
827 unsigned int tsc_khz, cpu_khz;
828 unsigned long lpj;
829
830 if (!boot_cpu_has(X86_FEATURE_TSC))
831 return;
832
833 cpu_khz = x86_platform.calibrate_cpu();
834 tsc_khz = x86_platform.calibrate_tsc();
835
836 tsc_khz = tsc_khz ? : cpu_khz;
837 if (!tsc_khz)
838 return;
839
840 lpj = tsc_khz * 1000;
841 do_div(lpj, HZ);
842 loops_per_jiffy = lpj;
843 }
844
845 /*
846 * Determine if we were loaded by an EFI loader. If so, then we have also been
847 * passed the efi memmap, systab, etc., so we should use these data structures
848 * for initialization. Note, the efi init code path is determined by the
849 * global efi_enabled. This allows the same kernel image to be used on existing
850 * systems (with a traditional BIOS) as well as on EFI systems.
851 */
852 /*
853 * setup_arch - architecture-specific boot-time initializations
854 *
855 * Note: On x86_64, fixmaps are ready for use even before this is called.
856 */
857
858 void __init setup_arch(char **cmdline_p)
859 {
860 memblock_reserve(__pa_symbol(_text),
861 (unsigned long)__bss_stop - (unsigned long)_text);
862
863 early_reserve_initrd();
864
865 /*
866 * At this point everything still needed from the boot loader
867 * or BIOS or kernel text should be early reserved or marked not
868 * RAM in e820. All other memory is free game.
869 */
870
871 #ifdef CONFIG_X86_32
872 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
873
874 /*
875 * copy kernel address range established so far and switch
876 * to the proper swapper page table
877 */
878 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
879 initial_page_table + KERNEL_PGD_BOUNDARY,
880 KERNEL_PGD_PTRS);
881
882 load_cr3(swapper_pg_dir);
883 /*
884 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
885 * a cr3 based tlb flush, so the following __flush_tlb_all()
886 * will not flush anything because the cpu quirk which clears
887 * X86_FEATURE_PGE has not been invoked yet. Though due to the
888 * load_cr3() above the TLB has been flushed already. The
889 * quirk is invoked before subsequent calls to __flush_tlb_all()
890 * so proper operation is guaranteed.
891 */
892 __flush_tlb_all();
893 #else
894 printk(KERN_INFO "Command line: %s\n", boot_command_line);
895 #endif
896
897 /*
898 * If we have OLPC OFW, we might end up relocating the fixmap due to
899 * reserve_top(), so do this before touching the ioremap area.
900 */
901 olpc_ofw_detect();
902
903 idt_setup_early_traps();
904 early_cpu_init();
905 early_ioremap_init();
906
907 setup_olpc_ofw_pgd();
908
909 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
910 screen_info = boot_params.screen_info;
911 edid_info = boot_params.edid_info;
912 #ifdef CONFIG_X86_32
913 apm_info.bios = boot_params.apm_bios_info;
914 ist_info = boot_params.ist_info;
915 #endif
916 saved_video_mode = boot_params.hdr.vid_mode;
917 bootloader_type = boot_params.hdr.type_of_loader;
918 if ((bootloader_type >> 4) == 0xe) {
919 bootloader_type &= 0xf;
920 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
921 }
922 bootloader_version = bootloader_type & 0xf;
923 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
924
925 #ifdef CONFIG_BLK_DEV_RAM
926 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
927 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
928 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
929 #endif
930 #ifdef CONFIG_EFI
931 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
932 EFI32_LOADER_SIGNATURE, 4)) {
933 set_bit(EFI_BOOT, &efi.flags);
934 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
935 EFI64_LOADER_SIGNATURE, 4)) {
936 set_bit(EFI_BOOT, &efi.flags);
937 set_bit(EFI_64BIT, &efi.flags);
938 }
939
940 if (efi_enabled(EFI_BOOT))
941 efi_memblock_x86_reserve_range();
942 #endif
943
944 x86_init.oem.arch_setup();
945
946 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
947 e820__memory_setup();
948 parse_setup_data();
949
950 copy_edd();
951
952 if (!boot_params.hdr.root_flags)
953 root_mountflags &= ~MS_RDONLY;
954 init_mm.start_code = (unsigned long) _text;
955 init_mm.end_code = (unsigned long) _etext;
956 init_mm.end_data = (unsigned long) _edata;
957 init_mm.brk = _brk_end;
958
959 mpx_mm_init(&init_mm);
960
961 code_resource.start = __pa_symbol(_text);
962 code_resource.end = __pa_symbol(_etext)-1;
963 data_resource.start = __pa_symbol(_etext);
964 data_resource.end = __pa_symbol(_edata)-1;
965 bss_resource.start = __pa_symbol(__bss_start);
966 bss_resource.end = __pa_symbol(__bss_stop)-1;
967
968 #ifdef CONFIG_CMDLINE_BOOL
969 #ifdef CONFIG_CMDLINE_OVERRIDE
970 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
971 #else
972 if (builtin_cmdline[0]) {
973 /* append boot loader cmdline to builtin */
974 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
975 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
976 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
977 }
978 #endif
979 #endif
980
981 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
982 *cmdline_p = command_line;
983
984 /*
985 * x86_configure_nx() is called before parse_early_param() to detect
986 * whether hardware doesn't support NX (so that the early EHCI debug
987 * console setup can safely call set_fixmap()). It may then be called
988 * again from within noexec_setup() during parsing early parameters
989 * to honor the respective command line option.
990 */
991 x86_configure_nx();
992
993 parse_early_param();
994
995 #ifdef CONFIG_MEMORY_HOTPLUG
996 /*
997 * Memory used by the kernel cannot be hot-removed because Linux
998 * cannot migrate the kernel pages. When memory hotplug is
999 * enabled, we should prevent memblock from allocating memory
1000 * for the kernel.
1001 *
1002 * ACPI SRAT records all hotpluggable memory ranges. But before
1003 * SRAT is parsed, we don't know about it.
1004 *
1005 * The kernel image is loaded into memory at very early time. We
1006 * cannot prevent this anyway. So on NUMA system, we set any
1007 * node the kernel resides in as un-hotpluggable.
1008 *
1009 * Since on modern servers, one node could have double-digit
1010 * gigabytes memory, we can assume the memory around the kernel
1011 * image is also un-hotpluggable. So before SRAT is parsed, just
1012 * allocate memory near the kernel image to try the best to keep
1013 * the kernel away from hotpluggable memory.
1014 */
1015 if (movable_node_is_enabled())
1016 memblock_set_bottom_up(true);
1017 #endif
1018
1019 x86_report_nx();
1020
1021 /* after early param, so could get panic from serial */
1022 memblock_x86_reserve_range_setup_data();
1023
1024 if (acpi_mps_check()) {
1025 #ifdef CONFIG_X86_LOCAL_APIC
1026 disable_apic = 1;
1027 #endif
1028 setup_clear_cpu_cap(X86_FEATURE_APIC);
1029 }
1030
1031 #ifdef CONFIG_PCI
1032 if (pci_early_dump_regs)
1033 early_dump_pci_devices();
1034 #endif
1035
1036 e820__reserve_setup_data();
1037 e820__finish_early_params();
1038
1039 if (efi_enabled(EFI_BOOT))
1040 efi_init();
1041
1042 dmi_scan_machine();
1043 dmi_memdev_walk();
1044 dmi_set_dump_stack_arch_desc();
1045
1046 /*
1047 * VMware detection requires dmi to be available, so this
1048 * needs to be done after dmi_scan_machine, for the BP.
1049 */
1050 init_hypervisor_platform();
1051
1052 simple_udelay_calibration();
1053
1054 x86_init.resources.probe_roms();
1055
1056 /* after parse_early_param, so could debug it */
1057 insert_resource(&iomem_resource, &code_resource);
1058 insert_resource(&iomem_resource, &data_resource);
1059 insert_resource(&iomem_resource, &bss_resource);
1060
1061 e820_add_kernel_range();
1062 trim_bios_range();
1063 #ifdef CONFIG_X86_32
1064 if (ppro_with_ram_bug()) {
1065 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1066 E820_TYPE_RESERVED);
1067 e820__update_table(e820_table);
1068 printk(KERN_INFO "fixed physical RAM map:\n");
1069 e820__print_table("bad_ppro");
1070 }
1071 #else
1072 early_gart_iommu_check();
1073 #endif
1074
1075 /*
1076 * partially used pages are not usable - thus
1077 * we are rounding upwards:
1078 */
1079 max_pfn = e820__end_of_ram_pfn();
1080
1081 /* update e820 for memory not covered by WB MTRRs */
1082 mtrr_bp_init();
1083 if (mtrr_trim_uncached_memory(max_pfn))
1084 max_pfn = e820__end_of_ram_pfn();
1085
1086 max_possible_pfn = max_pfn;
1087
1088 /*
1089 * This call is required when the CPU does not support PAT. If
1090 * mtrr_bp_init() invoked it already via pat_init() the call has no
1091 * effect.
1092 */
1093 init_cache_modes();
1094
1095 /*
1096 * Define random base addresses for memory sections after max_pfn is
1097 * defined and before each memory section base is used.
1098 */
1099 kernel_randomize_memory();
1100
1101 #ifdef CONFIG_X86_32
1102 /* max_low_pfn get updated here */
1103 find_low_pfn_range();
1104 #else
1105 check_x2apic();
1106
1107 /* How many end-of-memory variables you have, grandma! */
1108 /* need this before calling reserve_initrd */
1109 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1110 max_low_pfn = e820__end_of_low_ram_pfn();
1111 else
1112 max_low_pfn = max_pfn;
1113
1114 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1115 #endif
1116
1117 /*
1118 * Find and reserve possible boot-time SMP configuration:
1119 */
1120 find_smp_config();
1121
1122 reserve_ibft_region();
1123
1124 early_alloc_pgt_buf();
1125
1126 /*
1127 * Need to conclude brk, before e820__memblock_setup()
1128 * it could use memblock_find_in_range, could overlap with
1129 * brk area.
1130 */
1131 reserve_brk();
1132
1133 cleanup_highmap();
1134
1135 memblock_set_current_limit(ISA_END_ADDRESS);
1136 e820__memblock_setup();
1137
1138 if (!early_xdbc_setup_hardware())
1139 early_xdbc_register_console();
1140
1141 reserve_bios_regions();
1142
1143 if (efi_enabled(EFI_MEMMAP)) {
1144 efi_fake_memmap();
1145 efi_find_mirror();
1146 efi_esrt_init();
1147
1148 /*
1149 * The EFI specification says that boot service code won't be
1150 * called after ExitBootServices(). This is, in fact, a lie.
1151 */
1152 efi_reserve_boot_services();
1153 }
1154
1155 /* preallocate 4k for mptable mpc */
1156 e820__memblock_alloc_reserved_mpc_new();
1157
1158 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1159 setup_bios_corruption_check();
1160 #endif
1161
1162 #ifdef CONFIG_X86_32
1163 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1164 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1165 #endif
1166
1167 reserve_real_mode();
1168
1169 trim_platform_memory_ranges();
1170 trim_low_memory_range();
1171
1172 init_mem_mapping();
1173
1174 idt_setup_early_pf();
1175
1176 /*
1177 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1178 * with the current CR4 value. This may not be necessary, but
1179 * auditing all the early-boot CR4 manipulation would be needed to
1180 * rule it out.
1181 *
1182 * Mask off features that don't work outside long mode (just
1183 * PCIDE for now).
1184 */
1185 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1186
1187 memblock_set_current_limit(get_max_mapped());
1188
1189 /*
1190 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1191 */
1192
1193 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1194 if (init_ohci1394_dma_early)
1195 init_ohci1394_dma_on_all_controllers();
1196 #endif
1197 /* Allocate bigger log buffer */
1198 setup_log_buf(1);
1199
1200 if (efi_enabled(EFI_BOOT)) {
1201 switch (boot_params.secure_boot) {
1202 case efi_secureboot_mode_disabled:
1203 pr_info("Secure boot disabled\n");
1204 break;
1205 case efi_secureboot_mode_enabled:
1206 pr_info("Secure boot enabled\n");
1207 break;
1208 default:
1209 pr_info("Secure boot could not be determined\n");
1210 break;
1211 }
1212 }
1213
1214 reserve_initrd();
1215
1216 acpi_table_upgrade();
1217
1218 vsmp_init();
1219
1220 io_delay_init();
1221
1222 early_platform_quirks();
1223
1224 /*
1225 * Parse the ACPI tables for possible boot-time SMP configuration.
1226 */
1227 acpi_boot_table_init();
1228
1229 early_acpi_boot_init();
1230
1231 initmem_init();
1232 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1233
1234 /*
1235 * Reserve memory for crash kernel after SRAT is parsed so that it
1236 * won't consume hotpluggable memory.
1237 */
1238 reserve_crashkernel();
1239
1240 memblock_find_dma_reserve();
1241
1242 #ifdef CONFIG_KVM_GUEST
1243 kvmclock_init();
1244 #endif
1245
1246 x86_init.paging.pagetable_init();
1247
1248 kasan_init();
1249
1250 #ifdef CONFIG_X86_32
1251 /* sync back kernel address range */
1252 clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY,
1253 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
1254 KERNEL_PGD_PTRS);
1255
1256 /*
1257 * sync back low identity map too. It is used for example
1258 * in the 32-bit EFI stub.
1259 */
1260 clone_pgd_range(initial_page_table,
1261 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
1262 min(KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
1263 #endif
1264
1265 tboot_probe();
1266
1267 map_vsyscall();
1268
1269 generic_apic_probe();
1270
1271 early_quirks();
1272
1273 /*
1274 * Read APIC and some other early information from ACPI tables.
1275 */
1276 acpi_boot_init();
1277 sfi_init();
1278 x86_dtb_init();
1279
1280 /*
1281 * get boot-time SMP configuration:
1282 */
1283 get_smp_config();
1284
1285 /*
1286 * Systems w/o ACPI and mptables might not have it mapped the local
1287 * APIC yet, but prefill_possible_map() might need to access it.
1288 */
1289 init_apic_mappings();
1290
1291 prefill_possible_map();
1292
1293 init_cpu_to_node();
1294
1295 io_apic_init_mappings();
1296
1297 kvm_guest_init();
1298
1299 e820__reserve_resources();
1300 e820__register_nosave_regions(max_low_pfn);
1301
1302 x86_init.resources.reserve_resources();
1303
1304 e820__setup_pci_gap();
1305
1306 #ifdef CONFIG_VT
1307 #if defined(CONFIG_VGA_CONSOLE)
1308 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1309 conswitchp = &vga_con;
1310 #elif defined(CONFIG_DUMMY_CONSOLE)
1311 conswitchp = &dummy_con;
1312 #endif
1313 #endif
1314 x86_init.oem.banner();
1315
1316 x86_init.timers.wallclock_init();
1317
1318 mcheck_init();
1319
1320 arch_init_ideal_nops();
1321
1322 register_refined_jiffies(CLOCK_TICK_RATE);
1323
1324 #ifdef CONFIG_EFI
1325 if (efi_enabled(EFI_BOOT))
1326 efi_apply_memmap_quirks();
1327 #endif
1328
1329 unwind_init();
1330 }
1331
1332 #ifdef CONFIG_X86_32
1333
1334 static struct resource video_ram_resource = {
1335 .name = "Video RAM area",
1336 .start = 0xa0000,
1337 .end = 0xbffff,
1338 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1339 };
1340
1341 void __init i386_reserve_resources(void)
1342 {
1343 request_resource(&iomem_resource, &video_ram_resource);
1344 reserve_standard_io_resources();
1345 }
1346
1347 #endif /* CONFIG_X86_32 */
1348
1349 static struct notifier_block kernel_offset_notifier = {
1350 .notifier_call = dump_kernel_offset
1351 };
1352
1353 static int __init register_kernel_offset_dumper(void)
1354 {
1355 atomic_notifier_chain_register(&panic_notifier_list,
1356 &kernel_offset_notifier);
1357 return 0;
1358 }
1359 __initcall(register_kernel_offset_dumper);
1360
1361 void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
1362 {
1363 if (!boot_cpu_has(X86_FEATURE_OSPKE))
1364 return;
1365
1366 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
1367 }