]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/kernel/setup.c
mm, x86/mm: Untangle address space layout definitions from basic pgtable type definitions
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kernel / setup.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * This file contains the setup_arch() code, which handles the architecture-dependent
6 * parts of early kernel initialization.
7 */
8 #include <linux/console.h>
9 #include <linux/crash_dump.h>
10 #include <linux/dmi.h>
11 #include <linux/efi.h>
12 #include <linux/init_ohci1394_dma.h>
13 #include <linux/initrd.h>
14 #include <linux/iscsi_ibft.h>
15 #include <linux/memblock.h>
16 #include <linux/pci.h>
17 #include <linux/root_dev.h>
18 #include <linux/sfi.h>
19 #include <linux/tboot.h>
20 #include <linux/usb/xhci-dbgp.h>
21
22 #include <uapi/linux/mount.h>
23
24 #include <xen/xen.h>
25
26 #include <asm/apic.h>
27 #include <asm/bios_ebda.h>
28 #include <asm/bugs.h>
29 #include <asm/cpu.h>
30 #include <asm/efi.h>
31 #include <asm/gart.h>
32 #include <asm/hypervisor.h>
33 #include <asm/io_apic.h>
34 #include <asm/kasan.h>
35 #include <asm/kaslr.h>
36 #include <asm/mce.h>
37 #include <asm/mtrr.h>
38 #include <asm/olpc_ofw.h>
39 #include <asm/pci-direct.h>
40 #include <asm/prom.h>
41 #include <asm/proto.h>
42 #include <asm/unwind.h>
43 #include <asm/vsyscall.h>
44 #include <linux/vmalloc.h>
45
46 /*
47 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
48 * max_pfn_mapped: highest directly mapped pfn > 4 GB
49 *
50 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
51 * represented by pfn_mapped[].
52 */
53 unsigned long max_low_pfn_mapped;
54 unsigned long max_pfn_mapped;
55
56 #ifdef CONFIG_DMI
57 RESERVE_BRK(dmi_alloc, 65536);
58 #endif
59
60
61 /*
62 * Range of the BSS area. The size of the BSS area is determined
63 * at link time, with RESERVE_BRK*() facility reserving additional
64 * chunks.
65 */
66 static __initdata
67 unsigned long _brk_start = (unsigned long)__brk_base;
68 unsigned long _brk_end = (unsigned long)__brk_base;
69
70 struct boot_params boot_params;
71
72 /*
73 * These are the four main kernel memory regions, we put them into
74 * the resource tree so that kdump tools and other debugging tools
75 * recover it:
76 */
77
78 static struct resource rodata_resource = {
79 .name = "Kernel rodata",
80 .start = 0,
81 .end = 0,
82 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
83 };
84
85 static struct resource data_resource = {
86 .name = "Kernel data",
87 .start = 0,
88 .end = 0,
89 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
90 };
91
92 static struct resource code_resource = {
93 .name = "Kernel code",
94 .start = 0,
95 .end = 0,
96 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
97 };
98
99 static struct resource bss_resource = {
100 .name = "Kernel bss",
101 .start = 0,
102 .end = 0,
103 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
104 };
105
106
107 #ifdef CONFIG_X86_32
108 /* CPU data as detected by the assembly code in head_32.S */
109 struct cpuinfo_x86 new_cpu_data;
110
111 /* Common CPU data for all CPUs */
112 struct cpuinfo_x86 boot_cpu_data __read_mostly;
113 EXPORT_SYMBOL(boot_cpu_data);
114
115 unsigned int def_to_bigsmp;
116
117 /* For MCA, but anyone else can use it if they want */
118 unsigned int machine_id;
119 unsigned int machine_submodel_id;
120 unsigned int BIOS_revision;
121
122 struct apm_info apm_info;
123 EXPORT_SYMBOL(apm_info);
124
125 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
126 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
127 struct ist_info ist_info;
128 EXPORT_SYMBOL(ist_info);
129 #else
130 struct ist_info ist_info;
131 #endif
132
133 #else
134 struct cpuinfo_x86 boot_cpu_data __read_mostly;
135 EXPORT_SYMBOL(boot_cpu_data);
136 #endif
137
138
139 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
140 __visible unsigned long mmu_cr4_features __ro_after_init;
141 #else
142 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
143 #endif
144
145 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
146 int bootloader_type, bootloader_version;
147
148 /*
149 * Setup options
150 */
151 struct screen_info screen_info;
152 EXPORT_SYMBOL(screen_info);
153 struct edid_info edid_info;
154 EXPORT_SYMBOL_GPL(edid_info);
155
156 extern int root_mountflags;
157
158 unsigned long saved_video_mode;
159
160 #define RAMDISK_IMAGE_START_MASK 0x07FF
161 #define RAMDISK_PROMPT_FLAG 0x8000
162 #define RAMDISK_LOAD_FLAG 0x4000
163
164 static char __initdata command_line[COMMAND_LINE_SIZE];
165 #ifdef CONFIG_CMDLINE_BOOL
166 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
167 #endif
168
169 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
170 struct edd edd;
171 #ifdef CONFIG_EDD_MODULE
172 EXPORT_SYMBOL(edd);
173 #endif
174 /**
175 * copy_edd() - Copy the BIOS EDD information
176 * from boot_params into a safe place.
177 *
178 */
179 static inline void __init copy_edd(void)
180 {
181 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
182 sizeof(edd.mbr_signature));
183 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
184 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
185 edd.edd_info_nr = boot_params.eddbuf_entries;
186 }
187 #else
188 static inline void __init copy_edd(void)
189 {
190 }
191 #endif
192
193 void * __init extend_brk(size_t size, size_t align)
194 {
195 size_t mask = align - 1;
196 void *ret;
197
198 BUG_ON(_brk_start == 0);
199 BUG_ON(align & mask);
200
201 _brk_end = (_brk_end + mask) & ~mask;
202 BUG_ON((char *)(_brk_end + size) > __brk_limit);
203
204 ret = (void *)_brk_end;
205 _brk_end += size;
206
207 memset(ret, 0, size);
208
209 return ret;
210 }
211
212 #ifdef CONFIG_X86_32
213 static void __init cleanup_highmap(void)
214 {
215 }
216 #endif
217
218 static void __init reserve_brk(void)
219 {
220 if (_brk_end > _brk_start)
221 memblock_reserve(__pa_symbol(_brk_start),
222 _brk_end - _brk_start);
223
224 /* Mark brk area as locked down and no longer taking any
225 new allocations */
226 _brk_start = 0;
227 }
228
229 u64 relocated_ramdisk;
230
231 #ifdef CONFIG_BLK_DEV_INITRD
232
233 static u64 __init get_ramdisk_image(void)
234 {
235 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
236
237 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
238
239 return ramdisk_image;
240 }
241 static u64 __init get_ramdisk_size(void)
242 {
243 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
244
245 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
246
247 return ramdisk_size;
248 }
249
250 static void __init relocate_initrd(void)
251 {
252 /* Assume only end is not page aligned */
253 u64 ramdisk_image = get_ramdisk_image();
254 u64 ramdisk_size = get_ramdisk_size();
255 u64 area_size = PAGE_ALIGN(ramdisk_size);
256
257 /* We need to move the initrd down into directly mapped mem */
258 relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
259 area_size, PAGE_SIZE);
260
261 if (!relocated_ramdisk)
262 panic("Cannot find place for new RAMDISK of size %lld\n",
263 ramdisk_size);
264
265 /* Note: this includes all the mem currently occupied by
266 the initrd, we rely on that fact to keep the data intact. */
267 memblock_reserve(relocated_ramdisk, area_size);
268 initrd_start = relocated_ramdisk + PAGE_OFFSET;
269 initrd_end = initrd_start + ramdisk_size;
270 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
271 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
272
273 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
274
275 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
276 " [mem %#010llx-%#010llx]\n",
277 ramdisk_image, ramdisk_image + ramdisk_size - 1,
278 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
279 }
280
281 static void __init early_reserve_initrd(void)
282 {
283 /* Assume only end is not page aligned */
284 u64 ramdisk_image = get_ramdisk_image();
285 u64 ramdisk_size = get_ramdisk_size();
286 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
287
288 if (!boot_params.hdr.type_of_loader ||
289 !ramdisk_image || !ramdisk_size)
290 return; /* No initrd provided by bootloader */
291
292 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
293 }
294 static void __init reserve_initrd(void)
295 {
296 /* Assume only end is not page aligned */
297 u64 ramdisk_image = get_ramdisk_image();
298 u64 ramdisk_size = get_ramdisk_size();
299 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
300 u64 mapped_size;
301
302 if (!boot_params.hdr.type_of_loader ||
303 !ramdisk_image || !ramdisk_size)
304 return; /* No initrd provided by bootloader */
305
306 initrd_start = 0;
307
308 mapped_size = memblock_mem_size(max_pfn_mapped);
309 if (ramdisk_size >= (mapped_size>>1))
310 panic("initrd too large to handle, "
311 "disabling initrd (%lld needed, %lld available)\n",
312 ramdisk_size, mapped_size>>1);
313
314 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
315 ramdisk_end - 1);
316
317 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
318 PFN_DOWN(ramdisk_end))) {
319 /* All are mapped, easy case */
320 initrd_start = ramdisk_image + PAGE_OFFSET;
321 initrd_end = initrd_start + ramdisk_size;
322 return;
323 }
324
325 relocate_initrd();
326
327 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
328 }
329
330 #else
331 static void __init early_reserve_initrd(void)
332 {
333 }
334 static void __init reserve_initrd(void)
335 {
336 }
337 #endif /* CONFIG_BLK_DEV_INITRD */
338
339 static void __init parse_setup_data(void)
340 {
341 struct setup_data *data;
342 u64 pa_data, pa_next;
343
344 pa_data = boot_params.hdr.setup_data;
345 while (pa_data) {
346 u32 data_len, data_type;
347
348 data = early_memremap(pa_data, sizeof(*data));
349 data_len = data->len + sizeof(struct setup_data);
350 data_type = data->type;
351 pa_next = data->next;
352 early_memunmap(data, sizeof(*data));
353
354 switch (data_type) {
355 case SETUP_E820_EXT:
356 e820__memory_setup_extended(pa_data, data_len);
357 break;
358 case SETUP_DTB:
359 add_dtb(pa_data);
360 break;
361 case SETUP_EFI:
362 parse_efi_setup(pa_data, data_len);
363 break;
364 default:
365 break;
366 }
367 pa_data = pa_next;
368 }
369 }
370
371 static void __init memblock_x86_reserve_range_setup_data(void)
372 {
373 struct setup_data *data;
374 u64 pa_data;
375
376 pa_data = boot_params.hdr.setup_data;
377 while (pa_data) {
378 data = early_memremap(pa_data, sizeof(*data));
379 memblock_reserve(pa_data, sizeof(*data) + data->len);
380
381 if (data->type == SETUP_INDIRECT &&
382 ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT)
383 memblock_reserve(((struct setup_indirect *)data->data)->addr,
384 ((struct setup_indirect *)data->data)->len);
385
386 pa_data = data->next;
387 early_memunmap(data, sizeof(*data));
388 }
389 }
390
391 /*
392 * --------- Crashkernel reservation ------------------------------
393 */
394
395 #ifdef CONFIG_KEXEC_CORE
396
397 /* 16M alignment for crash kernel regions */
398 #define CRASH_ALIGN SZ_16M
399
400 /*
401 * Keep the crash kernel below this limit.
402 *
403 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
404 * due to mapping restrictions.
405 *
406 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
407 * the upper limit of system RAM in 4-level paging mode. Since the kdump
408 * jump could be from 5-level paging to 4-level paging, the jump will fail if
409 * the kernel is put above 64 TB, and during the 1st kernel bootup there's
410 * no good way to detect the paging mode of the target kernel which will be
411 * loaded for dumping.
412 */
413 #ifdef CONFIG_X86_32
414 # define CRASH_ADDR_LOW_MAX SZ_512M
415 # define CRASH_ADDR_HIGH_MAX SZ_512M
416 #else
417 # define CRASH_ADDR_LOW_MAX SZ_4G
418 # define CRASH_ADDR_HIGH_MAX SZ_64T
419 #endif
420
421 static int __init reserve_crashkernel_low(void)
422 {
423 #ifdef CONFIG_X86_64
424 unsigned long long base, low_base = 0, low_size = 0;
425 unsigned long total_low_mem;
426 int ret;
427
428 total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
429
430 /* crashkernel=Y,low */
431 ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
432 if (ret) {
433 /*
434 * two parts from kernel/dma/swiotlb.c:
435 * -swiotlb size: user-specified with swiotlb= or default.
436 *
437 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
438 * to 8M for other buffers that may need to stay low too. Also
439 * make sure we allocate enough extra low memory so that we
440 * don't run out of DMA buffers for 32-bit devices.
441 */
442 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
443 } else {
444 /* passed with crashkernel=0,low ? */
445 if (!low_size)
446 return 0;
447 }
448
449 low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
450 if (!low_base) {
451 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
452 (unsigned long)(low_size >> 20));
453 return -ENOMEM;
454 }
455
456 ret = memblock_reserve(low_base, low_size);
457 if (ret) {
458 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
459 return ret;
460 }
461
462 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
463 (unsigned long)(low_size >> 20),
464 (unsigned long)(low_base >> 20),
465 (unsigned long)(total_low_mem >> 20));
466
467 crashk_low_res.start = low_base;
468 crashk_low_res.end = low_base + low_size - 1;
469 insert_resource(&iomem_resource, &crashk_low_res);
470 #endif
471 return 0;
472 }
473
474 static void __init reserve_crashkernel(void)
475 {
476 unsigned long long crash_size, crash_base, total_mem;
477 bool high = false;
478 int ret;
479
480 total_mem = memblock_phys_mem_size();
481
482 /* crashkernel=XM */
483 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
484 if (ret != 0 || crash_size <= 0) {
485 /* crashkernel=X,high */
486 ret = parse_crashkernel_high(boot_command_line, total_mem,
487 &crash_size, &crash_base);
488 if (ret != 0 || crash_size <= 0)
489 return;
490 high = true;
491 }
492
493 if (xen_pv_domain()) {
494 pr_info("Ignoring crashkernel for a Xen PV domain\n");
495 return;
496 }
497
498 /* 0 means: find the address automatically */
499 if (!crash_base) {
500 /*
501 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
502 * crashkernel=x,high reserves memory over 4G, also allocates
503 * 256M extra low memory for DMA buffers and swiotlb.
504 * But the extra memory is not required for all machines.
505 * So try low memory first and fall back to high memory
506 * unless "crashkernel=size[KMG],high" is specified.
507 */
508 if (!high)
509 crash_base = memblock_find_in_range(CRASH_ALIGN,
510 CRASH_ADDR_LOW_MAX,
511 crash_size, CRASH_ALIGN);
512 if (!crash_base)
513 crash_base = memblock_find_in_range(CRASH_ALIGN,
514 CRASH_ADDR_HIGH_MAX,
515 crash_size, CRASH_ALIGN);
516 if (!crash_base) {
517 pr_info("crashkernel reservation failed - No suitable area found.\n");
518 return;
519 }
520 } else {
521 unsigned long long start;
522
523 start = memblock_find_in_range(crash_base,
524 crash_base + crash_size,
525 crash_size, 1 << 20);
526 if (start != crash_base) {
527 pr_info("crashkernel reservation failed - memory is in use.\n");
528 return;
529 }
530 }
531 ret = memblock_reserve(crash_base, crash_size);
532 if (ret) {
533 pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
534 return;
535 }
536
537 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
538 memblock_free(crash_base, crash_size);
539 return;
540 }
541
542 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
543 (unsigned long)(crash_size >> 20),
544 (unsigned long)(crash_base >> 20),
545 (unsigned long)(total_mem >> 20));
546
547 crashk_res.start = crash_base;
548 crashk_res.end = crash_base + crash_size - 1;
549 insert_resource(&iomem_resource, &crashk_res);
550 }
551 #else
552 static void __init reserve_crashkernel(void)
553 {
554 }
555 #endif
556
557 static struct resource standard_io_resources[] = {
558 { .name = "dma1", .start = 0x00, .end = 0x1f,
559 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
560 { .name = "pic1", .start = 0x20, .end = 0x21,
561 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
562 { .name = "timer0", .start = 0x40, .end = 0x43,
563 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
564 { .name = "timer1", .start = 0x50, .end = 0x53,
565 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
566 { .name = "keyboard", .start = 0x60, .end = 0x60,
567 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
568 { .name = "keyboard", .start = 0x64, .end = 0x64,
569 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
570 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
571 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
572 { .name = "pic2", .start = 0xa0, .end = 0xa1,
573 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
574 { .name = "dma2", .start = 0xc0, .end = 0xdf,
575 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
576 { .name = "fpu", .start = 0xf0, .end = 0xff,
577 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
578 };
579
580 void __init reserve_standard_io_resources(void)
581 {
582 int i;
583
584 /* request I/O space for devices used on all i[345]86 PCs */
585 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
586 request_resource(&ioport_resource, &standard_io_resources[i]);
587
588 }
589
590 static __init void reserve_ibft_region(void)
591 {
592 unsigned long addr, size = 0;
593
594 addr = find_ibft_region(&size);
595
596 if (size)
597 memblock_reserve(addr, size);
598 }
599
600 static bool __init snb_gfx_workaround_needed(void)
601 {
602 #ifdef CONFIG_PCI
603 int i;
604 u16 vendor, devid;
605 static const __initconst u16 snb_ids[] = {
606 0x0102,
607 0x0112,
608 0x0122,
609 0x0106,
610 0x0116,
611 0x0126,
612 0x010a,
613 };
614
615 /* Assume no if something weird is going on with PCI */
616 if (!early_pci_allowed())
617 return false;
618
619 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
620 if (vendor != 0x8086)
621 return false;
622
623 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
624 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
625 if (devid == snb_ids[i])
626 return true;
627 #endif
628
629 return false;
630 }
631
632 /*
633 * Sandy Bridge graphics has trouble with certain ranges, exclude
634 * them from allocation.
635 */
636 static void __init trim_snb_memory(void)
637 {
638 static const __initconst unsigned long bad_pages[] = {
639 0x20050000,
640 0x20110000,
641 0x20130000,
642 0x20138000,
643 0x40004000,
644 };
645 int i;
646
647 if (!snb_gfx_workaround_needed())
648 return;
649
650 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
651
652 /*
653 * Reserve all memory below the 1 MB mark that has not
654 * already been reserved.
655 */
656 memblock_reserve(0, 1<<20);
657
658 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
659 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
660 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
661 bad_pages[i]);
662 }
663 }
664
665 /*
666 * Here we put platform-specific memory range workarounds, i.e.
667 * memory known to be corrupt or otherwise in need to be reserved on
668 * specific platforms.
669 *
670 * If this gets used more widely it could use a real dispatch mechanism.
671 */
672 static void __init trim_platform_memory_ranges(void)
673 {
674 trim_snb_memory();
675 }
676
677 static void __init trim_bios_range(void)
678 {
679 /*
680 * A special case is the first 4Kb of memory;
681 * This is a BIOS owned area, not kernel ram, but generally
682 * not listed as such in the E820 table.
683 *
684 * This typically reserves additional memory (64KiB by default)
685 * since some BIOSes are known to corrupt low memory. See the
686 * Kconfig help text for X86_RESERVE_LOW.
687 */
688 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
689
690 /*
691 * special case: Some BIOSes report the PC BIOS
692 * area (640Kb -> 1Mb) as RAM even though it is not.
693 * take them out.
694 */
695 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
696
697 e820__update_table(e820_table);
698 }
699
700 /* called before trim_bios_range() to spare extra sanitize */
701 static void __init e820_add_kernel_range(void)
702 {
703 u64 start = __pa_symbol(_text);
704 u64 size = __pa_symbol(_end) - start;
705
706 /*
707 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
708 * attempt to fix it by adding the range. We may have a confused BIOS,
709 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
710 * exclude kernel range. If we really are running on top non-RAM,
711 * we will crash later anyways.
712 */
713 if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
714 return;
715
716 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
717 e820__range_remove(start, size, E820_TYPE_RAM, 0);
718 e820__range_add(start, size, E820_TYPE_RAM);
719 }
720
721 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
722
723 static int __init parse_reservelow(char *p)
724 {
725 unsigned long long size;
726
727 if (!p)
728 return -EINVAL;
729
730 size = memparse(p, &p);
731
732 if (size < 4096)
733 size = 4096;
734
735 if (size > 640*1024)
736 size = 640*1024;
737
738 reserve_low = size;
739
740 return 0;
741 }
742
743 early_param("reservelow", parse_reservelow);
744
745 static void __init trim_low_memory_range(void)
746 {
747 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
748 }
749
750 /*
751 * Dump out kernel offset information on panic.
752 */
753 static int
754 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
755 {
756 if (kaslr_enabled()) {
757 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
758 kaslr_offset(),
759 __START_KERNEL,
760 __START_KERNEL_map,
761 MODULES_VADDR-1);
762 } else {
763 pr_emerg("Kernel Offset: disabled\n");
764 }
765
766 return 0;
767 }
768
769 /*
770 * Determine if we were loaded by an EFI loader. If so, then we have also been
771 * passed the efi memmap, systab, etc., so we should use these data structures
772 * for initialization. Note, the efi init code path is determined by the
773 * global efi_enabled. This allows the same kernel image to be used on existing
774 * systems (with a traditional BIOS) as well as on EFI systems.
775 */
776 /*
777 * setup_arch - architecture-specific boot-time initializations
778 *
779 * Note: On x86_64, fixmaps are ready for use even before this is called.
780 */
781
782 void __init setup_arch(char **cmdline_p)
783 {
784 /*
785 * Reserve the memory occupied by the kernel between _text and
786 * __end_of_kernel_reserve symbols. Any kernel sections after the
787 * __end_of_kernel_reserve symbol must be explicitly reserved with a
788 * separate memblock_reserve() or they will be discarded.
789 */
790 memblock_reserve(__pa_symbol(_text),
791 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
792
793 /*
794 * Make sure page 0 is always reserved because on systems with
795 * L1TF its contents can be leaked to user processes.
796 */
797 memblock_reserve(0, PAGE_SIZE);
798
799 early_reserve_initrd();
800
801 /*
802 * At this point everything still needed from the boot loader
803 * or BIOS or kernel text should be early reserved or marked not
804 * RAM in e820. All other memory is free game.
805 */
806
807 #ifdef CONFIG_X86_32
808 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
809
810 /*
811 * copy kernel address range established so far and switch
812 * to the proper swapper page table
813 */
814 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
815 initial_page_table + KERNEL_PGD_BOUNDARY,
816 KERNEL_PGD_PTRS);
817
818 load_cr3(swapper_pg_dir);
819 /*
820 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
821 * a cr3 based tlb flush, so the following __flush_tlb_all()
822 * will not flush anything because the CPU quirk which clears
823 * X86_FEATURE_PGE has not been invoked yet. Though due to the
824 * load_cr3() above the TLB has been flushed already. The
825 * quirk is invoked before subsequent calls to __flush_tlb_all()
826 * so proper operation is guaranteed.
827 */
828 __flush_tlb_all();
829 #else
830 printk(KERN_INFO "Command line: %s\n", boot_command_line);
831 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
832 #endif
833
834 /*
835 * If we have OLPC OFW, we might end up relocating the fixmap due to
836 * reserve_top(), so do this before touching the ioremap area.
837 */
838 olpc_ofw_detect();
839
840 idt_setup_early_traps();
841 early_cpu_init();
842 arch_init_ideal_nops();
843 jump_label_init();
844 early_ioremap_init();
845
846 setup_olpc_ofw_pgd();
847
848 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
849 screen_info = boot_params.screen_info;
850 edid_info = boot_params.edid_info;
851 #ifdef CONFIG_X86_32
852 apm_info.bios = boot_params.apm_bios_info;
853 ist_info = boot_params.ist_info;
854 #endif
855 saved_video_mode = boot_params.hdr.vid_mode;
856 bootloader_type = boot_params.hdr.type_of_loader;
857 if ((bootloader_type >> 4) == 0xe) {
858 bootloader_type &= 0xf;
859 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
860 }
861 bootloader_version = bootloader_type & 0xf;
862 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
863
864 #ifdef CONFIG_BLK_DEV_RAM
865 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
866 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
867 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
868 #endif
869 #ifdef CONFIG_EFI
870 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
871 EFI32_LOADER_SIGNATURE, 4)) {
872 set_bit(EFI_BOOT, &efi.flags);
873 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
874 EFI64_LOADER_SIGNATURE, 4)) {
875 set_bit(EFI_BOOT, &efi.flags);
876 set_bit(EFI_64BIT, &efi.flags);
877 }
878 #endif
879
880 x86_init.oem.arch_setup();
881
882 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
883 e820__memory_setup();
884 parse_setup_data();
885
886 copy_edd();
887
888 if (!boot_params.hdr.root_flags)
889 root_mountflags &= ~MS_RDONLY;
890 init_mm.start_code = (unsigned long) _text;
891 init_mm.end_code = (unsigned long) _etext;
892 init_mm.end_data = (unsigned long) _edata;
893 init_mm.brk = _brk_end;
894
895 mpx_mm_init(&init_mm);
896
897 code_resource.start = __pa_symbol(_text);
898 code_resource.end = __pa_symbol(_etext)-1;
899 rodata_resource.start = __pa_symbol(__start_rodata);
900 rodata_resource.end = __pa_symbol(__end_rodata)-1;
901 data_resource.start = __pa_symbol(_sdata);
902 data_resource.end = __pa_symbol(_edata)-1;
903 bss_resource.start = __pa_symbol(__bss_start);
904 bss_resource.end = __pa_symbol(__bss_stop)-1;
905
906 #ifdef CONFIG_CMDLINE_BOOL
907 #ifdef CONFIG_CMDLINE_OVERRIDE
908 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
909 #else
910 if (builtin_cmdline[0]) {
911 /* append boot loader cmdline to builtin */
912 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
913 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
914 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
915 }
916 #endif
917 #endif
918
919 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
920 *cmdline_p = command_line;
921
922 /*
923 * x86_configure_nx() is called before parse_early_param() to detect
924 * whether hardware doesn't support NX (so that the early EHCI debug
925 * console setup can safely call set_fixmap()). It may then be called
926 * again from within noexec_setup() during parsing early parameters
927 * to honor the respective command line option.
928 */
929 x86_configure_nx();
930
931 parse_early_param();
932
933 if (efi_enabled(EFI_BOOT))
934 efi_memblock_x86_reserve_range();
935 #ifdef CONFIG_MEMORY_HOTPLUG
936 /*
937 * Memory used by the kernel cannot be hot-removed because Linux
938 * cannot migrate the kernel pages. When memory hotplug is
939 * enabled, we should prevent memblock from allocating memory
940 * for the kernel.
941 *
942 * ACPI SRAT records all hotpluggable memory ranges. But before
943 * SRAT is parsed, we don't know about it.
944 *
945 * The kernel image is loaded into memory at very early time. We
946 * cannot prevent this anyway. So on NUMA system, we set any
947 * node the kernel resides in as un-hotpluggable.
948 *
949 * Since on modern servers, one node could have double-digit
950 * gigabytes memory, we can assume the memory around the kernel
951 * image is also un-hotpluggable. So before SRAT is parsed, just
952 * allocate memory near the kernel image to try the best to keep
953 * the kernel away from hotpluggable memory.
954 */
955 if (movable_node_is_enabled())
956 memblock_set_bottom_up(true);
957 #endif
958
959 x86_report_nx();
960
961 /* after early param, so could get panic from serial */
962 memblock_x86_reserve_range_setup_data();
963
964 if (acpi_mps_check()) {
965 #ifdef CONFIG_X86_LOCAL_APIC
966 disable_apic = 1;
967 #endif
968 setup_clear_cpu_cap(X86_FEATURE_APIC);
969 }
970
971 e820__reserve_setup_data();
972 e820__finish_early_params();
973
974 if (efi_enabled(EFI_BOOT))
975 efi_init();
976
977 dmi_setup();
978
979 /*
980 * VMware detection requires dmi to be available, so this
981 * needs to be done after dmi_setup(), for the boot CPU.
982 */
983 init_hypervisor_platform();
984
985 tsc_early_init();
986 x86_init.resources.probe_roms();
987
988 /* after parse_early_param, so could debug it */
989 insert_resource(&iomem_resource, &code_resource);
990 insert_resource(&iomem_resource, &rodata_resource);
991 insert_resource(&iomem_resource, &data_resource);
992 insert_resource(&iomem_resource, &bss_resource);
993
994 e820_add_kernel_range();
995 trim_bios_range();
996 #ifdef CONFIG_X86_32
997 if (ppro_with_ram_bug()) {
998 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
999 E820_TYPE_RESERVED);
1000 e820__update_table(e820_table);
1001 printk(KERN_INFO "fixed physical RAM map:\n");
1002 e820__print_table("bad_ppro");
1003 }
1004 #else
1005 early_gart_iommu_check();
1006 #endif
1007
1008 /*
1009 * partially used pages are not usable - thus
1010 * we are rounding upwards:
1011 */
1012 max_pfn = e820__end_of_ram_pfn();
1013
1014 /* update e820 for memory not covered by WB MTRRs */
1015 mtrr_bp_init();
1016 if (mtrr_trim_uncached_memory(max_pfn))
1017 max_pfn = e820__end_of_ram_pfn();
1018
1019 max_possible_pfn = max_pfn;
1020
1021 /*
1022 * This call is required when the CPU does not support PAT. If
1023 * mtrr_bp_init() invoked it already via pat_init() the call has no
1024 * effect.
1025 */
1026 init_cache_modes();
1027
1028 /*
1029 * Define random base addresses for memory sections after max_pfn is
1030 * defined and before each memory section base is used.
1031 */
1032 kernel_randomize_memory();
1033
1034 #ifdef CONFIG_X86_32
1035 /* max_low_pfn get updated here */
1036 find_low_pfn_range();
1037 #else
1038 check_x2apic();
1039
1040 /* How many end-of-memory variables you have, grandma! */
1041 /* need this before calling reserve_initrd */
1042 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1043 max_low_pfn = e820__end_of_low_ram_pfn();
1044 else
1045 max_low_pfn = max_pfn;
1046
1047 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1048 #endif
1049
1050 /*
1051 * Find and reserve possible boot-time SMP configuration:
1052 */
1053 find_smp_config();
1054
1055 reserve_ibft_region();
1056
1057 early_alloc_pgt_buf();
1058
1059 /*
1060 * Need to conclude brk, before e820__memblock_setup()
1061 * it could use memblock_find_in_range, could overlap with
1062 * brk area.
1063 */
1064 reserve_brk();
1065
1066 cleanup_highmap();
1067
1068 memblock_set_current_limit(ISA_END_ADDRESS);
1069 e820__memblock_setup();
1070
1071 reserve_bios_regions();
1072
1073 efi_fake_memmap();
1074 efi_find_mirror();
1075 efi_esrt_init();
1076
1077 /*
1078 * The EFI specification says that boot service code won't be
1079 * called after ExitBootServices(). This is, in fact, a lie.
1080 */
1081 efi_reserve_boot_services();
1082
1083 /* preallocate 4k for mptable mpc */
1084 e820__memblock_alloc_reserved_mpc_new();
1085
1086 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1087 setup_bios_corruption_check();
1088 #endif
1089
1090 #ifdef CONFIG_X86_32
1091 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1092 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1093 #endif
1094
1095 reserve_real_mode();
1096
1097 trim_platform_memory_ranges();
1098 trim_low_memory_range();
1099
1100 init_mem_mapping();
1101
1102 idt_setup_early_pf();
1103
1104 /*
1105 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1106 * with the current CR4 value. This may not be necessary, but
1107 * auditing all the early-boot CR4 manipulation would be needed to
1108 * rule it out.
1109 *
1110 * Mask off features that don't work outside long mode (just
1111 * PCIDE for now).
1112 */
1113 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1114
1115 memblock_set_current_limit(get_max_mapped());
1116
1117 /*
1118 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1119 */
1120
1121 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1122 if (init_ohci1394_dma_early)
1123 init_ohci1394_dma_on_all_controllers();
1124 #endif
1125 /* Allocate bigger log buffer */
1126 setup_log_buf(1);
1127
1128 if (efi_enabled(EFI_BOOT)) {
1129 switch (boot_params.secure_boot) {
1130 case efi_secureboot_mode_disabled:
1131 pr_info("Secure boot disabled\n");
1132 break;
1133 case efi_secureboot_mode_enabled:
1134 pr_info("Secure boot enabled\n");
1135 break;
1136 default:
1137 pr_info("Secure boot could not be determined\n");
1138 break;
1139 }
1140 }
1141
1142 reserve_initrd();
1143
1144 acpi_table_upgrade();
1145
1146 vsmp_init();
1147
1148 io_delay_init();
1149
1150 early_platform_quirks();
1151
1152 /*
1153 * Parse the ACPI tables for possible boot-time SMP configuration.
1154 */
1155 acpi_boot_table_init();
1156
1157 early_acpi_boot_init();
1158
1159 initmem_init();
1160 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1161
1162 /*
1163 * Reserve memory for crash kernel after SRAT is parsed so that it
1164 * won't consume hotpluggable memory.
1165 */
1166 reserve_crashkernel();
1167
1168 memblock_find_dma_reserve();
1169
1170 if (!early_xdbc_setup_hardware())
1171 early_xdbc_register_console();
1172
1173 x86_init.paging.pagetable_init();
1174
1175 kasan_init();
1176
1177 /*
1178 * Sync back kernel address range.
1179 *
1180 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1181 * this call?
1182 */
1183 sync_initial_page_table();
1184
1185 tboot_probe();
1186
1187 map_vsyscall();
1188
1189 generic_apic_probe();
1190
1191 early_quirks();
1192
1193 /*
1194 * Read APIC and some other early information from ACPI tables.
1195 */
1196 acpi_boot_init();
1197 sfi_init();
1198 x86_dtb_init();
1199
1200 /*
1201 * get boot-time SMP configuration:
1202 */
1203 get_smp_config();
1204
1205 /*
1206 * Systems w/o ACPI and mptables might not have it mapped the local
1207 * APIC yet, but prefill_possible_map() might need to access it.
1208 */
1209 init_apic_mappings();
1210
1211 prefill_possible_map();
1212
1213 init_cpu_to_node();
1214
1215 io_apic_init_mappings();
1216
1217 x86_init.hyper.guest_late_init();
1218
1219 e820__reserve_resources();
1220 e820__register_nosave_regions(max_pfn);
1221
1222 x86_init.resources.reserve_resources();
1223
1224 e820__setup_pci_gap();
1225
1226 #ifdef CONFIG_VT
1227 #if defined(CONFIG_VGA_CONSOLE)
1228 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1229 conswitchp = &vga_con;
1230 #elif defined(CONFIG_DUMMY_CONSOLE)
1231 conswitchp = &dummy_con;
1232 #endif
1233 #endif
1234 x86_init.oem.banner();
1235
1236 x86_init.timers.wallclock_init();
1237
1238 mcheck_init();
1239
1240 register_refined_jiffies(CLOCK_TICK_RATE);
1241
1242 #ifdef CONFIG_EFI
1243 if (efi_enabled(EFI_BOOT))
1244 efi_apply_memmap_quirks();
1245 #endif
1246
1247 unwind_init();
1248 }
1249
1250 #ifdef CONFIG_X86_32
1251
1252 static struct resource video_ram_resource = {
1253 .name = "Video RAM area",
1254 .start = 0xa0000,
1255 .end = 0xbffff,
1256 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1257 };
1258
1259 void __init i386_reserve_resources(void)
1260 {
1261 request_resource(&iomem_resource, &video_ram_resource);
1262 reserve_standard_io_resources();
1263 }
1264
1265 #endif /* CONFIG_X86_32 */
1266
1267 static struct notifier_block kernel_offset_notifier = {
1268 .notifier_call = dump_kernel_offset
1269 };
1270
1271 static int __init register_kernel_offset_dumper(void)
1272 {
1273 atomic_notifier_chain_register(&panic_notifier_list,
1274 &kernel_offset_notifier);
1275 return 0;
1276 }
1277 __initcall(register_kernel_offset_dumper);