]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/setup.c
Merge tag 'iio-for-4.13b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / setup.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 *
6 * Memory region support
7 * David Parsons <orc@pell.chi.il.us>, July-August 1999
8 *
9 * Added E820 sanitization routine (removes overlapping memory regions);
10 * Brian Moyle <bmoyle@mvista.com>, February 2001
11 *
12 * Moved CPU detection code to cpu/${cpu}.c
13 * Patrick Mochel <mochel@osdl.org>, March 2002
14 *
15 * Provisions for empty E820 memory regions (reported by certain BIOSes).
16 * Alex Achenbach <xela@slit.de>, December 2002.
17 *
18 */
19
20 /*
21 * This file handles the architecture-dependent parts of initialization
22 */
23
24 #include <linux/sched.h>
25 #include <linux/mm.h>
26 #include <linux/mmzone.h>
27 #include <linux/screen_info.h>
28 #include <linux/ioport.h>
29 #include <linux/acpi.h>
30 #include <linux/sfi.h>
31 #include <linux/apm_bios.h>
32 #include <linux/initrd.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/seq_file.h>
36 #include <linux/console.h>
37 #include <linux/root_dev.h>
38 #include <linux/highmem.h>
39 #include <linux/export.h>
40 #include <linux/efi.h>
41 #include <linux/init.h>
42 #include <linux/edd.h>
43 #include <linux/iscsi_ibft.h>
44 #include <linux/nodemask.h>
45 #include <linux/kexec.h>
46 #include <linux/dmi.h>
47 #include <linux/pfn.h>
48 #include <linux/pci.h>
49 #include <asm/pci-direct.h>
50 #include <linux/init_ohci1394_dma.h>
51 #include <linux/kvm_para.h>
52 #include <linux/dma-contiguous.h>
53
54 #include <linux/errno.h>
55 #include <linux/kernel.h>
56 #include <linux/stddef.h>
57 #include <linux/unistd.h>
58 #include <linux/ptrace.h>
59 #include <linux/user.h>
60 #include <linux/delay.h>
61
62 #include <linux/kallsyms.h>
63 #include <linux/cpufreq.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/ctype.h>
66 #include <linux/uaccess.h>
67
68 #include <linux/percpu.h>
69 #include <linux/crash_dump.h>
70 #include <linux/tboot.h>
71 #include <linux/jiffies.h>
72
73 #include <linux/usb/xhci-dbgp.h>
74 #include <video/edid.h>
75
76 #include <asm/mtrr.h>
77 #include <asm/apic.h>
78 #include <asm/realmode.h>
79 #include <asm/e820/api.h>
80 #include <asm/mpspec.h>
81 #include <asm/setup.h>
82 #include <asm/efi.h>
83 #include <asm/timer.h>
84 #include <asm/i8259.h>
85 #include <asm/sections.h>
86 #include <asm/io_apic.h>
87 #include <asm/ist.h>
88 #include <asm/setup_arch.h>
89 #include <asm/bios_ebda.h>
90 #include <asm/cacheflush.h>
91 #include <asm/processor.h>
92 #include <asm/bugs.h>
93 #include <asm/kasan.h>
94
95 #include <asm/vsyscall.h>
96 #include <asm/cpu.h>
97 #include <asm/desc.h>
98 #include <asm/dma.h>
99 #include <asm/iommu.h>
100 #include <asm/gart.h>
101 #include <asm/mmu_context.h>
102 #include <asm/proto.h>
103
104 #include <asm/paravirt.h>
105 #include <asm/hypervisor.h>
106 #include <asm/olpc_ofw.h>
107
108 #include <asm/percpu.h>
109 #include <asm/topology.h>
110 #include <asm/apicdef.h>
111 #include <asm/amd_nb.h>
112 #include <asm/mce.h>
113 #include <asm/alternative.h>
114 #include <asm/prom.h>
115 #include <asm/microcode.h>
116 #include <asm/mmu_context.h>
117 #include <asm/kaslr.h>
118
119 /*
120 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
121 * max_pfn_mapped: highest direct mapped pfn over 4GB
122 *
123 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
124 * represented by pfn_mapped
125 */
126 unsigned long max_low_pfn_mapped;
127 unsigned long max_pfn_mapped;
128
129 #ifdef CONFIG_DMI
130 RESERVE_BRK(dmi_alloc, 65536);
131 #endif
132
133
134 static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
135 unsigned long _brk_end = (unsigned long)__brk_base;
136
137 #ifdef CONFIG_X86_64
138 int default_cpu_present_to_apicid(int mps_cpu)
139 {
140 return __default_cpu_present_to_apicid(mps_cpu);
141 }
142
143 int default_check_phys_apicid_present(int phys_apicid)
144 {
145 return __default_check_phys_apicid_present(phys_apicid);
146 }
147 #endif
148
149 struct boot_params boot_params;
150
151 /*
152 * Machine setup..
153 */
154 static struct resource data_resource = {
155 .name = "Kernel data",
156 .start = 0,
157 .end = 0,
158 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
159 };
160
161 static struct resource code_resource = {
162 .name = "Kernel code",
163 .start = 0,
164 .end = 0,
165 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
166 };
167
168 static struct resource bss_resource = {
169 .name = "Kernel bss",
170 .start = 0,
171 .end = 0,
172 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
173 };
174
175
176 #ifdef CONFIG_X86_32
177 /* cpu data as detected by the assembly code in head_32.S */
178 struct cpuinfo_x86 new_cpu_data;
179
180 /* common cpu data for all cpus */
181 struct cpuinfo_x86 boot_cpu_data __read_mostly;
182 EXPORT_SYMBOL(boot_cpu_data);
183
184 unsigned int def_to_bigsmp;
185
186 /* for MCA, but anyone else can use it if they want */
187 unsigned int machine_id;
188 unsigned int machine_submodel_id;
189 unsigned int BIOS_revision;
190
191 struct apm_info apm_info;
192 EXPORT_SYMBOL(apm_info);
193
194 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
195 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
196 struct ist_info ist_info;
197 EXPORT_SYMBOL(ist_info);
198 #else
199 struct ist_info ist_info;
200 #endif
201
202 #else
203 struct cpuinfo_x86 boot_cpu_data __read_mostly = {
204 .x86_phys_bits = MAX_PHYSMEM_BITS,
205 };
206 EXPORT_SYMBOL(boot_cpu_data);
207 #endif
208
209
210 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
211 __visible unsigned long mmu_cr4_features __ro_after_init;
212 #else
213 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
214 #endif
215
216 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
217 int bootloader_type, bootloader_version;
218
219 /*
220 * Setup options
221 */
222 struct screen_info screen_info;
223 EXPORT_SYMBOL(screen_info);
224 struct edid_info edid_info;
225 EXPORT_SYMBOL_GPL(edid_info);
226
227 extern int root_mountflags;
228
229 unsigned long saved_video_mode;
230
231 #define RAMDISK_IMAGE_START_MASK 0x07FF
232 #define RAMDISK_PROMPT_FLAG 0x8000
233 #define RAMDISK_LOAD_FLAG 0x4000
234
235 static char __initdata command_line[COMMAND_LINE_SIZE];
236 #ifdef CONFIG_CMDLINE_BOOL
237 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
238 #endif
239
240 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
241 struct edd edd;
242 #ifdef CONFIG_EDD_MODULE
243 EXPORT_SYMBOL(edd);
244 #endif
245 /**
246 * copy_edd() - Copy the BIOS EDD information
247 * from boot_params into a safe place.
248 *
249 */
250 static inline void __init copy_edd(void)
251 {
252 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
253 sizeof(edd.mbr_signature));
254 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
255 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
256 edd.edd_info_nr = boot_params.eddbuf_entries;
257 }
258 #else
259 static inline void __init copy_edd(void)
260 {
261 }
262 #endif
263
264 void * __init extend_brk(size_t size, size_t align)
265 {
266 size_t mask = align - 1;
267 void *ret;
268
269 BUG_ON(_brk_start == 0);
270 BUG_ON(align & mask);
271
272 _brk_end = (_brk_end + mask) & ~mask;
273 BUG_ON((char *)(_brk_end + size) > __brk_limit);
274
275 ret = (void *)_brk_end;
276 _brk_end += size;
277
278 memset(ret, 0, size);
279
280 return ret;
281 }
282
283 #ifdef CONFIG_X86_32
284 static void __init cleanup_highmap(void)
285 {
286 }
287 #endif
288
289 static void __init reserve_brk(void)
290 {
291 if (_brk_end > _brk_start)
292 memblock_reserve(__pa_symbol(_brk_start),
293 _brk_end - _brk_start);
294
295 /* Mark brk area as locked down and no longer taking any
296 new allocations */
297 _brk_start = 0;
298 }
299
300 u64 relocated_ramdisk;
301
302 #ifdef CONFIG_BLK_DEV_INITRD
303
304 static u64 __init get_ramdisk_image(void)
305 {
306 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
307
308 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
309
310 return ramdisk_image;
311 }
312 static u64 __init get_ramdisk_size(void)
313 {
314 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
315
316 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
317
318 return ramdisk_size;
319 }
320
321 static void __init relocate_initrd(void)
322 {
323 /* Assume only end is not page aligned */
324 u64 ramdisk_image = get_ramdisk_image();
325 u64 ramdisk_size = get_ramdisk_size();
326 u64 area_size = PAGE_ALIGN(ramdisk_size);
327
328 /* We need to move the initrd down into directly mapped mem */
329 relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
330 area_size, PAGE_SIZE);
331
332 if (!relocated_ramdisk)
333 panic("Cannot find place for new RAMDISK of size %lld\n",
334 ramdisk_size);
335
336 /* Note: this includes all the mem currently occupied by
337 the initrd, we rely on that fact to keep the data intact. */
338 memblock_reserve(relocated_ramdisk, area_size);
339 initrd_start = relocated_ramdisk + PAGE_OFFSET;
340 initrd_end = initrd_start + ramdisk_size;
341 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
342 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
343
344 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
345
346 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
347 " [mem %#010llx-%#010llx]\n",
348 ramdisk_image, ramdisk_image + ramdisk_size - 1,
349 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
350 }
351
352 static void __init early_reserve_initrd(void)
353 {
354 /* Assume only end is not page aligned */
355 u64 ramdisk_image = get_ramdisk_image();
356 u64 ramdisk_size = get_ramdisk_size();
357 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
358
359 if (!boot_params.hdr.type_of_loader ||
360 !ramdisk_image || !ramdisk_size)
361 return; /* No initrd provided by bootloader */
362
363 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
364 }
365 static void __init reserve_initrd(void)
366 {
367 /* Assume only end is not page aligned */
368 u64 ramdisk_image = get_ramdisk_image();
369 u64 ramdisk_size = get_ramdisk_size();
370 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
371 u64 mapped_size;
372
373 if (!boot_params.hdr.type_of_loader ||
374 !ramdisk_image || !ramdisk_size)
375 return; /* No initrd provided by bootloader */
376
377 initrd_start = 0;
378
379 mapped_size = memblock_mem_size(max_pfn_mapped);
380 if (ramdisk_size >= (mapped_size>>1))
381 panic("initrd too large to handle, "
382 "disabling initrd (%lld needed, %lld available)\n",
383 ramdisk_size, mapped_size>>1);
384
385 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
386 ramdisk_end - 1);
387
388 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
389 PFN_DOWN(ramdisk_end))) {
390 /* All are mapped, easy case */
391 initrd_start = ramdisk_image + PAGE_OFFSET;
392 initrd_end = initrd_start + ramdisk_size;
393 return;
394 }
395
396 relocate_initrd();
397
398 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
399 }
400
401 #else
402 static void __init early_reserve_initrd(void)
403 {
404 }
405 static void __init reserve_initrd(void)
406 {
407 }
408 #endif /* CONFIG_BLK_DEV_INITRD */
409
410 static void __init parse_setup_data(void)
411 {
412 struct setup_data *data;
413 u64 pa_data, pa_next;
414
415 pa_data = boot_params.hdr.setup_data;
416 while (pa_data) {
417 u32 data_len, data_type;
418
419 data = early_memremap(pa_data, sizeof(*data));
420 data_len = data->len + sizeof(struct setup_data);
421 data_type = data->type;
422 pa_next = data->next;
423 early_memunmap(data, sizeof(*data));
424
425 switch (data_type) {
426 case SETUP_E820_EXT:
427 e820__memory_setup_extended(pa_data, data_len);
428 break;
429 case SETUP_DTB:
430 add_dtb(pa_data);
431 break;
432 case SETUP_EFI:
433 parse_efi_setup(pa_data, data_len);
434 break;
435 default:
436 break;
437 }
438 pa_data = pa_next;
439 }
440 }
441
442 static void __init memblock_x86_reserve_range_setup_data(void)
443 {
444 struct setup_data *data;
445 u64 pa_data;
446
447 pa_data = boot_params.hdr.setup_data;
448 while (pa_data) {
449 data = early_memremap(pa_data, sizeof(*data));
450 memblock_reserve(pa_data, sizeof(*data) + data->len);
451 pa_data = data->next;
452 early_memunmap(data, sizeof(*data));
453 }
454 }
455
456 /*
457 * --------- Crashkernel reservation ------------------------------
458 */
459
460 #ifdef CONFIG_KEXEC_CORE
461
462 /* 16M alignment for crash kernel regions */
463 #define CRASH_ALIGN (16 << 20)
464
465 /*
466 * Keep the crash kernel below this limit. On 32 bits earlier kernels
467 * would limit the kernel to the low 512 MiB due to mapping restrictions.
468 * On 64bit, old kexec-tools need to under 896MiB.
469 */
470 #ifdef CONFIG_X86_32
471 # define CRASH_ADDR_LOW_MAX (512 << 20)
472 # define CRASH_ADDR_HIGH_MAX (512 << 20)
473 #else
474 # define CRASH_ADDR_LOW_MAX (896UL << 20)
475 # define CRASH_ADDR_HIGH_MAX MAXMEM
476 #endif
477
478 static int __init reserve_crashkernel_low(void)
479 {
480 #ifdef CONFIG_X86_64
481 unsigned long long base, low_base = 0, low_size = 0;
482 unsigned long total_low_mem;
483 int ret;
484
485 total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
486
487 /* crashkernel=Y,low */
488 ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
489 if (ret) {
490 /*
491 * two parts from lib/swiotlb.c:
492 * -swiotlb size: user-specified with swiotlb= or default.
493 *
494 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
495 * to 8M for other buffers that may need to stay low too. Also
496 * make sure we allocate enough extra low memory so that we
497 * don't run out of DMA buffers for 32-bit devices.
498 */
499 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
500 } else {
501 /* passed with crashkernel=0,low ? */
502 if (!low_size)
503 return 0;
504 }
505
506 low_base = memblock_find_in_range(low_size, 1ULL << 32, low_size, CRASH_ALIGN);
507 if (!low_base) {
508 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
509 (unsigned long)(low_size >> 20));
510 return -ENOMEM;
511 }
512
513 ret = memblock_reserve(low_base, low_size);
514 if (ret) {
515 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
516 return ret;
517 }
518
519 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
520 (unsigned long)(low_size >> 20),
521 (unsigned long)(low_base >> 20),
522 (unsigned long)(total_low_mem >> 20));
523
524 crashk_low_res.start = low_base;
525 crashk_low_res.end = low_base + low_size - 1;
526 insert_resource(&iomem_resource, &crashk_low_res);
527 #endif
528 return 0;
529 }
530
531 static void __init reserve_crashkernel(void)
532 {
533 unsigned long long crash_size, crash_base, total_mem;
534 bool high = false;
535 int ret;
536
537 total_mem = memblock_phys_mem_size();
538
539 /* crashkernel=XM */
540 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
541 if (ret != 0 || crash_size <= 0) {
542 /* crashkernel=X,high */
543 ret = parse_crashkernel_high(boot_command_line, total_mem,
544 &crash_size, &crash_base);
545 if (ret != 0 || crash_size <= 0)
546 return;
547 high = true;
548 }
549
550 /* 0 means: find the address automatically */
551 if (crash_base <= 0) {
552 /*
553 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
554 * as old kexec-tools loads bzImage below that, unless
555 * "crashkernel=size[KMG],high" is specified.
556 */
557 crash_base = memblock_find_in_range(CRASH_ALIGN,
558 high ? CRASH_ADDR_HIGH_MAX
559 : CRASH_ADDR_LOW_MAX,
560 crash_size, CRASH_ALIGN);
561 if (!crash_base) {
562 pr_info("crashkernel reservation failed - No suitable area found.\n");
563 return;
564 }
565
566 } else {
567 unsigned long long start;
568
569 start = memblock_find_in_range(crash_base,
570 crash_base + crash_size,
571 crash_size, 1 << 20);
572 if (start != crash_base) {
573 pr_info("crashkernel reservation failed - memory is in use.\n");
574 return;
575 }
576 }
577 ret = memblock_reserve(crash_base, crash_size);
578 if (ret) {
579 pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
580 return;
581 }
582
583 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
584 memblock_free(crash_base, crash_size);
585 return;
586 }
587
588 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
589 (unsigned long)(crash_size >> 20),
590 (unsigned long)(crash_base >> 20),
591 (unsigned long)(total_mem >> 20));
592
593 crashk_res.start = crash_base;
594 crashk_res.end = crash_base + crash_size - 1;
595 insert_resource(&iomem_resource, &crashk_res);
596 }
597 #else
598 static void __init reserve_crashkernel(void)
599 {
600 }
601 #endif
602
603 static struct resource standard_io_resources[] = {
604 { .name = "dma1", .start = 0x00, .end = 0x1f,
605 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
606 { .name = "pic1", .start = 0x20, .end = 0x21,
607 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
608 { .name = "timer0", .start = 0x40, .end = 0x43,
609 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
610 { .name = "timer1", .start = 0x50, .end = 0x53,
611 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
612 { .name = "keyboard", .start = 0x60, .end = 0x60,
613 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
614 { .name = "keyboard", .start = 0x64, .end = 0x64,
615 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
616 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
617 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
618 { .name = "pic2", .start = 0xa0, .end = 0xa1,
619 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
620 { .name = "dma2", .start = 0xc0, .end = 0xdf,
621 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
622 { .name = "fpu", .start = 0xf0, .end = 0xff,
623 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
624 };
625
626 void __init reserve_standard_io_resources(void)
627 {
628 int i;
629
630 /* request I/O space for devices used on all i[345]86 PCs */
631 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
632 request_resource(&ioport_resource, &standard_io_resources[i]);
633
634 }
635
636 static __init void reserve_ibft_region(void)
637 {
638 unsigned long addr, size = 0;
639
640 addr = find_ibft_region(&size);
641
642 if (size)
643 memblock_reserve(addr, size);
644 }
645
646 static bool __init snb_gfx_workaround_needed(void)
647 {
648 #ifdef CONFIG_PCI
649 int i;
650 u16 vendor, devid;
651 static const __initconst u16 snb_ids[] = {
652 0x0102,
653 0x0112,
654 0x0122,
655 0x0106,
656 0x0116,
657 0x0126,
658 0x010a,
659 };
660
661 /* Assume no if something weird is going on with PCI */
662 if (!early_pci_allowed())
663 return false;
664
665 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
666 if (vendor != 0x8086)
667 return false;
668
669 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
670 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
671 if (devid == snb_ids[i])
672 return true;
673 #endif
674
675 return false;
676 }
677
678 /*
679 * Sandy Bridge graphics has trouble with certain ranges, exclude
680 * them from allocation.
681 */
682 static void __init trim_snb_memory(void)
683 {
684 static const __initconst unsigned long bad_pages[] = {
685 0x20050000,
686 0x20110000,
687 0x20130000,
688 0x20138000,
689 0x40004000,
690 };
691 int i;
692
693 if (!snb_gfx_workaround_needed())
694 return;
695
696 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
697
698 /*
699 * Reserve all memory below the 1 MB mark that has not
700 * already been reserved.
701 */
702 memblock_reserve(0, 1<<20);
703
704 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
705 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
706 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
707 bad_pages[i]);
708 }
709 }
710
711 /*
712 * Here we put platform-specific memory range workarounds, i.e.
713 * memory known to be corrupt or otherwise in need to be reserved on
714 * specific platforms.
715 *
716 * If this gets used more widely it could use a real dispatch mechanism.
717 */
718 static void __init trim_platform_memory_ranges(void)
719 {
720 trim_snb_memory();
721 }
722
723 static void __init trim_bios_range(void)
724 {
725 /*
726 * A special case is the first 4Kb of memory;
727 * This is a BIOS owned area, not kernel ram, but generally
728 * not listed as such in the E820 table.
729 *
730 * This typically reserves additional memory (64KiB by default)
731 * since some BIOSes are known to corrupt low memory. See the
732 * Kconfig help text for X86_RESERVE_LOW.
733 */
734 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
735
736 /*
737 * special case: Some BIOSen report the PC BIOS
738 * area (640->1Mb) as ram even though it is not.
739 * take them out.
740 */
741 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
742
743 e820__update_table(e820_table);
744 }
745
746 /* called before trim_bios_range() to spare extra sanitize */
747 static void __init e820_add_kernel_range(void)
748 {
749 u64 start = __pa_symbol(_text);
750 u64 size = __pa_symbol(_end) - start;
751
752 /*
753 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
754 * attempt to fix it by adding the range. We may have a confused BIOS,
755 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
756 * exclude kernel range. If we really are running on top non-RAM,
757 * we will crash later anyways.
758 */
759 if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
760 return;
761
762 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
763 e820__range_remove(start, size, E820_TYPE_RAM, 0);
764 e820__range_add(start, size, E820_TYPE_RAM);
765 }
766
767 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
768
769 static int __init parse_reservelow(char *p)
770 {
771 unsigned long long size;
772
773 if (!p)
774 return -EINVAL;
775
776 size = memparse(p, &p);
777
778 if (size < 4096)
779 size = 4096;
780
781 if (size > 640*1024)
782 size = 640*1024;
783
784 reserve_low = size;
785
786 return 0;
787 }
788
789 early_param("reservelow", parse_reservelow);
790
791 static void __init trim_low_memory_range(void)
792 {
793 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
794 }
795
796 /*
797 * Dump out kernel offset information on panic.
798 */
799 static int
800 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
801 {
802 if (kaslr_enabled()) {
803 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
804 kaslr_offset(),
805 __START_KERNEL,
806 __START_KERNEL_map,
807 MODULES_VADDR-1);
808 } else {
809 pr_emerg("Kernel Offset: disabled\n");
810 }
811
812 return 0;
813 }
814
815 static void __init simple_udelay_calibration(void)
816 {
817 unsigned int tsc_khz, cpu_khz;
818 unsigned long lpj;
819
820 if (!boot_cpu_has(X86_FEATURE_TSC))
821 return;
822
823 cpu_khz = x86_platform.calibrate_cpu();
824 tsc_khz = x86_platform.calibrate_tsc();
825
826 tsc_khz = tsc_khz ? : cpu_khz;
827 if (!tsc_khz)
828 return;
829
830 lpj = tsc_khz * 1000;
831 do_div(lpj, HZ);
832 loops_per_jiffy = lpj;
833 }
834
835 /*
836 * Determine if we were loaded by an EFI loader. If so, then we have also been
837 * passed the efi memmap, systab, etc., so we should use these data structures
838 * for initialization. Note, the efi init code path is determined by the
839 * global efi_enabled. This allows the same kernel image to be used on existing
840 * systems (with a traditional BIOS) as well as on EFI systems.
841 */
842 /*
843 * setup_arch - architecture-specific boot-time initializations
844 *
845 * Note: On x86_64, fixmaps are ready for use even before this is called.
846 */
847
848 void __init setup_arch(char **cmdline_p)
849 {
850 memblock_reserve(__pa_symbol(_text),
851 (unsigned long)__bss_stop - (unsigned long)_text);
852
853 early_reserve_initrd();
854
855 /*
856 * At this point everything still needed from the boot loader
857 * or BIOS or kernel text should be early reserved or marked not
858 * RAM in e820. All other memory is free game.
859 */
860
861 #ifdef CONFIG_X86_32
862 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
863
864 /*
865 * copy kernel address range established so far and switch
866 * to the proper swapper page table
867 */
868 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
869 initial_page_table + KERNEL_PGD_BOUNDARY,
870 KERNEL_PGD_PTRS);
871
872 load_cr3(swapper_pg_dir);
873 /*
874 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
875 * a cr3 based tlb flush, so the following __flush_tlb_all()
876 * will not flush anything because the cpu quirk which clears
877 * X86_FEATURE_PGE has not been invoked yet. Though due to the
878 * load_cr3() above the TLB has been flushed already. The
879 * quirk is invoked before subsequent calls to __flush_tlb_all()
880 * so proper operation is guaranteed.
881 */
882 __flush_tlb_all();
883 #else
884 printk(KERN_INFO "Command line: %s\n", boot_command_line);
885 #endif
886
887 /*
888 * If we have OLPC OFW, we might end up relocating the fixmap due to
889 * reserve_top(), so do this before touching the ioremap area.
890 */
891 olpc_ofw_detect();
892
893 early_trap_init();
894 early_cpu_init();
895 early_ioremap_init();
896
897 setup_olpc_ofw_pgd();
898
899 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
900 screen_info = boot_params.screen_info;
901 edid_info = boot_params.edid_info;
902 #ifdef CONFIG_X86_32
903 apm_info.bios = boot_params.apm_bios_info;
904 ist_info = boot_params.ist_info;
905 #endif
906 saved_video_mode = boot_params.hdr.vid_mode;
907 bootloader_type = boot_params.hdr.type_of_loader;
908 if ((bootloader_type >> 4) == 0xe) {
909 bootloader_type &= 0xf;
910 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
911 }
912 bootloader_version = bootloader_type & 0xf;
913 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
914
915 #ifdef CONFIG_BLK_DEV_RAM
916 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
917 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
918 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
919 #endif
920 #ifdef CONFIG_EFI
921 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
922 EFI32_LOADER_SIGNATURE, 4)) {
923 set_bit(EFI_BOOT, &efi.flags);
924 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
925 EFI64_LOADER_SIGNATURE, 4)) {
926 set_bit(EFI_BOOT, &efi.flags);
927 set_bit(EFI_64BIT, &efi.flags);
928 }
929
930 if (efi_enabled(EFI_BOOT))
931 efi_memblock_x86_reserve_range();
932 #endif
933
934 x86_init.oem.arch_setup();
935
936 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
937 e820__memory_setup();
938 parse_setup_data();
939
940 copy_edd();
941
942 if (!boot_params.hdr.root_flags)
943 root_mountflags &= ~MS_RDONLY;
944 init_mm.start_code = (unsigned long) _text;
945 init_mm.end_code = (unsigned long) _etext;
946 init_mm.end_data = (unsigned long) _edata;
947 init_mm.brk = _brk_end;
948
949 mpx_mm_init(&init_mm);
950
951 code_resource.start = __pa_symbol(_text);
952 code_resource.end = __pa_symbol(_etext)-1;
953 data_resource.start = __pa_symbol(_etext);
954 data_resource.end = __pa_symbol(_edata)-1;
955 bss_resource.start = __pa_symbol(__bss_start);
956 bss_resource.end = __pa_symbol(__bss_stop)-1;
957
958 #ifdef CONFIG_CMDLINE_BOOL
959 #ifdef CONFIG_CMDLINE_OVERRIDE
960 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
961 #else
962 if (builtin_cmdline[0]) {
963 /* append boot loader cmdline to builtin */
964 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
965 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
966 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
967 }
968 #endif
969 #endif
970
971 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
972 *cmdline_p = command_line;
973
974 /*
975 * x86_configure_nx() is called before parse_early_param() to detect
976 * whether hardware doesn't support NX (so that the early EHCI debug
977 * console setup can safely call set_fixmap()). It may then be called
978 * again from within noexec_setup() during parsing early parameters
979 * to honor the respective command line option.
980 */
981 x86_configure_nx();
982
983 parse_early_param();
984
985 #ifdef CONFIG_MEMORY_HOTPLUG
986 /*
987 * Memory used by the kernel cannot be hot-removed because Linux
988 * cannot migrate the kernel pages. When memory hotplug is
989 * enabled, we should prevent memblock from allocating memory
990 * for the kernel.
991 *
992 * ACPI SRAT records all hotpluggable memory ranges. But before
993 * SRAT is parsed, we don't know about it.
994 *
995 * The kernel image is loaded into memory at very early time. We
996 * cannot prevent this anyway. So on NUMA system, we set any
997 * node the kernel resides in as un-hotpluggable.
998 *
999 * Since on modern servers, one node could have double-digit
1000 * gigabytes memory, we can assume the memory around the kernel
1001 * image is also un-hotpluggable. So before SRAT is parsed, just
1002 * allocate memory near the kernel image to try the best to keep
1003 * the kernel away from hotpluggable memory.
1004 */
1005 if (movable_node_is_enabled())
1006 memblock_set_bottom_up(true);
1007 #endif
1008
1009 x86_report_nx();
1010
1011 /* after early param, so could get panic from serial */
1012 memblock_x86_reserve_range_setup_data();
1013
1014 if (acpi_mps_check()) {
1015 #ifdef CONFIG_X86_LOCAL_APIC
1016 disable_apic = 1;
1017 #endif
1018 setup_clear_cpu_cap(X86_FEATURE_APIC);
1019 }
1020
1021 #ifdef CONFIG_PCI
1022 if (pci_early_dump_regs)
1023 early_dump_pci_devices();
1024 #endif
1025
1026 e820__reserve_setup_data();
1027 e820__finish_early_params();
1028
1029 if (efi_enabled(EFI_BOOT))
1030 efi_init();
1031
1032 dmi_scan_machine();
1033 dmi_memdev_walk();
1034 dmi_set_dump_stack_arch_desc();
1035
1036 /*
1037 * VMware detection requires dmi to be available, so this
1038 * needs to be done after dmi_scan_machine, for the BP.
1039 */
1040 init_hypervisor_platform();
1041
1042 simple_udelay_calibration();
1043
1044 x86_init.resources.probe_roms();
1045
1046 /* after parse_early_param, so could debug it */
1047 insert_resource(&iomem_resource, &code_resource);
1048 insert_resource(&iomem_resource, &data_resource);
1049 insert_resource(&iomem_resource, &bss_resource);
1050
1051 e820_add_kernel_range();
1052 trim_bios_range();
1053 #ifdef CONFIG_X86_32
1054 if (ppro_with_ram_bug()) {
1055 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1056 E820_TYPE_RESERVED);
1057 e820__update_table(e820_table);
1058 printk(KERN_INFO "fixed physical RAM map:\n");
1059 e820__print_table("bad_ppro");
1060 }
1061 #else
1062 early_gart_iommu_check();
1063 #endif
1064
1065 /*
1066 * partially used pages are not usable - thus
1067 * we are rounding upwards:
1068 */
1069 max_pfn = e820__end_of_ram_pfn();
1070
1071 /* update e820 for memory not covered by WB MTRRs */
1072 mtrr_bp_init();
1073 if (mtrr_trim_uncached_memory(max_pfn))
1074 max_pfn = e820__end_of_ram_pfn();
1075
1076 max_possible_pfn = max_pfn;
1077
1078 /*
1079 * Define random base addresses for memory sections after max_pfn is
1080 * defined and before each memory section base is used.
1081 */
1082 kernel_randomize_memory();
1083
1084 #ifdef CONFIG_X86_32
1085 /* max_low_pfn get updated here */
1086 find_low_pfn_range();
1087 #else
1088 check_x2apic();
1089
1090 /* How many end-of-memory variables you have, grandma! */
1091 /* need this before calling reserve_initrd */
1092 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1093 max_low_pfn = e820__end_of_low_ram_pfn();
1094 else
1095 max_low_pfn = max_pfn;
1096
1097 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1098 #endif
1099
1100 /*
1101 * Find and reserve possible boot-time SMP configuration:
1102 */
1103 find_smp_config();
1104
1105 reserve_ibft_region();
1106
1107 early_alloc_pgt_buf();
1108
1109 /*
1110 * Need to conclude brk, before e820__memblock_setup()
1111 * it could use memblock_find_in_range, could overlap with
1112 * brk area.
1113 */
1114 reserve_brk();
1115
1116 cleanup_highmap();
1117
1118 memblock_set_current_limit(ISA_END_ADDRESS);
1119 e820__memblock_setup();
1120
1121 if (!early_xdbc_setup_hardware())
1122 early_xdbc_register_console();
1123
1124 reserve_bios_regions();
1125
1126 if (efi_enabled(EFI_MEMMAP)) {
1127 efi_fake_memmap();
1128 efi_find_mirror();
1129 efi_esrt_init();
1130
1131 /*
1132 * The EFI specification says that boot service code won't be
1133 * called after ExitBootServices(). This is, in fact, a lie.
1134 */
1135 efi_reserve_boot_services();
1136 }
1137
1138 /* preallocate 4k for mptable mpc */
1139 e820__memblock_alloc_reserved_mpc_new();
1140
1141 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1142 setup_bios_corruption_check();
1143 #endif
1144
1145 #ifdef CONFIG_X86_32
1146 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1147 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1148 #endif
1149
1150 reserve_real_mode();
1151
1152 trim_platform_memory_ranges();
1153 trim_low_memory_range();
1154
1155 init_mem_mapping();
1156
1157 early_trap_pf_init();
1158
1159 /*
1160 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1161 * with the current CR4 value. This may not be necessary, but
1162 * auditing all the early-boot CR4 manipulation would be needed to
1163 * rule it out.
1164 */
1165 mmu_cr4_features = __read_cr4();
1166
1167 memblock_set_current_limit(get_max_mapped());
1168
1169 /*
1170 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1171 */
1172
1173 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1174 if (init_ohci1394_dma_early)
1175 init_ohci1394_dma_on_all_controllers();
1176 #endif
1177 /* Allocate bigger log buffer */
1178 setup_log_buf(1);
1179
1180 if (efi_enabled(EFI_BOOT)) {
1181 switch (boot_params.secure_boot) {
1182 case efi_secureboot_mode_disabled:
1183 pr_info("Secure boot disabled\n");
1184 break;
1185 case efi_secureboot_mode_enabled:
1186 pr_info("Secure boot enabled\n");
1187 break;
1188 default:
1189 pr_info("Secure boot could not be determined\n");
1190 break;
1191 }
1192 }
1193
1194 reserve_initrd();
1195
1196 acpi_table_upgrade();
1197
1198 vsmp_init();
1199
1200 io_delay_init();
1201
1202 /*
1203 * Parse the ACPI tables for possible boot-time SMP configuration.
1204 */
1205 acpi_boot_table_init();
1206
1207 early_acpi_boot_init();
1208
1209 initmem_init();
1210 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1211
1212 /*
1213 * Reserve memory for crash kernel after SRAT is parsed so that it
1214 * won't consume hotpluggable memory.
1215 */
1216 reserve_crashkernel();
1217
1218 memblock_find_dma_reserve();
1219
1220 #ifdef CONFIG_KVM_GUEST
1221 kvmclock_init();
1222 #endif
1223
1224 x86_init.paging.pagetable_init();
1225
1226 kasan_init();
1227
1228 #ifdef CONFIG_X86_32
1229 /* sync back kernel address range */
1230 clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY,
1231 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
1232 KERNEL_PGD_PTRS);
1233
1234 /*
1235 * sync back low identity map too. It is used for example
1236 * in the 32-bit EFI stub.
1237 */
1238 clone_pgd_range(initial_page_table,
1239 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
1240 min(KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
1241 #endif
1242
1243 tboot_probe();
1244
1245 map_vsyscall();
1246
1247 generic_apic_probe();
1248
1249 early_quirks();
1250
1251 /*
1252 * Read APIC and some other early information from ACPI tables.
1253 */
1254 acpi_boot_init();
1255 sfi_init();
1256 x86_dtb_init();
1257
1258 /*
1259 * get boot-time SMP configuration:
1260 */
1261 get_smp_config();
1262
1263 /*
1264 * Systems w/o ACPI and mptables might not have it mapped the local
1265 * APIC yet, but prefill_possible_map() might need to access it.
1266 */
1267 init_apic_mappings();
1268
1269 prefill_possible_map();
1270
1271 init_cpu_to_node();
1272
1273 io_apic_init_mappings();
1274
1275 kvm_guest_init();
1276
1277 e820__reserve_resources();
1278 e820__register_nosave_regions(max_low_pfn);
1279
1280 x86_init.resources.reserve_resources();
1281
1282 e820__setup_pci_gap();
1283
1284 #ifdef CONFIG_VT
1285 #if defined(CONFIG_VGA_CONSOLE)
1286 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1287 conswitchp = &vga_con;
1288 #elif defined(CONFIG_DUMMY_CONSOLE)
1289 conswitchp = &dummy_con;
1290 #endif
1291 #endif
1292 x86_init.oem.banner();
1293
1294 x86_init.timers.wallclock_init();
1295
1296 mcheck_init();
1297
1298 arch_init_ideal_nops();
1299
1300 register_refined_jiffies(CLOCK_TICK_RATE);
1301
1302 #ifdef CONFIG_EFI
1303 if (efi_enabled(EFI_BOOT))
1304 efi_apply_memmap_quirks();
1305 #endif
1306 }
1307
1308 #ifdef CONFIG_X86_32
1309
1310 static struct resource video_ram_resource = {
1311 .name = "Video RAM area",
1312 .start = 0xa0000,
1313 .end = 0xbffff,
1314 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1315 };
1316
1317 void __init i386_reserve_resources(void)
1318 {
1319 request_resource(&iomem_resource, &video_ram_resource);
1320 reserve_standard_io_resources();
1321 }
1322
1323 #endif /* CONFIG_X86_32 */
1324
1325 static struct notifier_block kernel_offset_notifier = {
1326 .notifier_call = dump_kernel_offset
1327 };
1328
1329 static int __init register_kernel_offset_dumper(void)
1330 {
1331 atomic_notifier_chain_register(&panic_notifier_list,
1332 &kernel_offset_notifier);
1333 return 0;
1334 }
1335 __initcall(register_kernel_offset_dumper);
1336
1337 void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
1338 {
1339 if (!boot_cpu_has(X86_FEATURE_OSPKE))
1340 return;
1341
1342 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
1343 }