]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/setup.c
f964bfddfefdcdc4d9536be89a13bfbd701edb6d
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / setup.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 *
6 * Memory region support
7 * David Parsons <orc@pell.chi.il.us>, July-August 1999
8 *
9 * Added E820 sanitization routine (removes overlapping memory regions);
10 * Brian Moyle <bmoyle@mvista.com>, February 2001
11 *
12 * Moved CPU detection code to cpu/${cpu}.c
13 * Patrick Mochel <mochel@osdl.org>, March 2002
14 *
15 * Provisions for empty E820 memory regions (reported by certain BIOSes).
16 * Alex Achenbach <xela@slit.de>, December 2002.
17 *
18 */
19
20 /*
21 * This file handles the architecture-dependent parts of initialization
22 */
23
24 #include <linux/sched.h>
25 #include <linux/mm.h>
26 #include <linux/mmzone.h>
27 #include <linux/screen_info.h>
28 #include <linux/ioport.h>
29 #include <linux/acpi.h>
30 #include <linux/sfi.h>
31 #include <linux/apm_bios.h>
32 #include <linux/initrd.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/seq_file.h>
36 #include <linux/console.h>
37 #include <linux/root_dev.h>
38 #include <linux/highmem.h>
39 #include <linux/export.h>
40 #include <linux/efi.h>
41 #include <linux/init.h>
42 #include <linux/edd.h>
43 #include <linux/iscsi_ibft.h>
44 #include <linux/nodemask.h>
45 #include <linux/kexec.h>
46 #include <linux/dmi.h>
47 #include <linux/pfn.h>
48 #include <linux/pci.h>
49 #include <asm/pci-direct.h>
50 #include <linux/init_ohci1394_dma.h>
51 #include <linux/kvm_para.h>
52 #include <linux/dma-contiguous.h>
53
54 #include <linux/errno.h>
55 #include <linux/kernel.h>
56 #include <linux/stddef.h>
57 #include <linux/unistd.h>
58 #include <linux/ptrace.h>
59 #include <linux/user.h>
60 #include <linux/delay.h>
61
62 #include <linux/kallsyms.h>
63 #include <linux/cpufreq.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/ctype.h>
66 #include <linux/uaccess.h>
67
68 #include <linux/percpu.h>
69 #include <linux/crash_dump.h>
70 #include <linux/tboot.h>
71 #include <linux/jiffies.h>
72 #include <linux/security.h>
73
74 #include <linux/fips.h>
75 #include <linux/cred.h>
76 #include <linux/sysrq.h>
77 #include <linux/init_task.h>
78
79 #include <linux/usb/xhci-dbgp.h>
80 #include <video/edid.h>
81
82 #include <asm/mtrr.h>
83 #include <asm/apic.h>
84 #include <asm/realmode.h>
85 #include <asm/e820/api.h>
86 #include <asm/mpspec.h>
87 #include <asm/setup.h>
88 #include <asm/efi.h>
89 #include <asm/timer.h>
90 #include <asm/i8259.h>
91 #include <asm/sections.h>
92 #include <asm/io_apic.h>
93 #include <asm/ist.h>
94 #include <asm/setup_arch.h>
95 #include <asm/bios_ebda.h>
96 #include <asm/cacheflush.h>
97 #include <asm/processor.h>
98 #include <asm/bugs.h>
99 #include <asm/kasan.h>
100
101 #include <asm/vsyscall.h>
102 #include <asm/cpu.h>
103 #include <asm/desc.h>
104 #include <asm/dma.h>
105 #include <asm/iommu.h>
106 #include <asm/gart.h>
107 #include <asm/mmu_context.h>
108 #include <asm/proto.h>
109
110 #include <asm/paravirt.h>
111 #include <asm/hypervisor.h>
112 #include <asm/olpc_ofw.h>
113
114 #include <asm/percpu.h>
115 #include <asm/topology.h>
116 #include <asm/apicdef.h>
117 #include <asm/amd_nb.h>
118 #include <asm/mce.h>
119 #include <asm/alternative.h>
120 #include <asm/prom.h>
121 #include <asm/microcode.h>
122 #include <asm/mmu_context.h>
123 #include <asm/kaslr.h>
124
125 /*
126 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
127 * max_pfn_mapped: highest direct mapped pfn over 4GB
128 *
129 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
130 * represented by pfn_mapped
131 */
132 unsigned long max_low_pfn_mapped;
133 unsigned long max_pfn_mapped;
134
135 #ifdef CONFIG_DMI
136 RESERVE_BRK(dmi_alloc, 65536);
137 #endif
138
139
140 static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
141 unsigned long _brk_end = (unsigned long)__brk_base;
142
143 #ifdef CONFIG_X86_64
144 int default_cpu_present_to_apicid(int mps_cpu)
145 {
146 return __default_cpu_present_to_apicid(mps_cpu);
147 }
148
149 int default_check_phys_apicid_present(int phys_apicid)
150 {
151 return __default_check_phys_apicid_present(phys_apicid);
152 }
153 #endif
154
155 struct boot_params boot_params;
156
157 /*
158 * Machine setup..
159 */
160 static struct resource data_resource = {
161 .name = "Kernel data",
162 .start = 0,
163 .end = 0,
164 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
165 };
166
167 static struct resource code_resource = {
168 .name = "Kernel code",
169 .start = 0,
170 .end = 0,
171 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
172 };
173
174 static struct resource bss_resource = {
175 .name = "Kernel bss",
176 .start = 0,
177 .end = 0,
178 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
179 };
180
181
182 #ifdef CONFIG_X86_32
183 /* cpu data as detected by the assembly code in head_32.S */
184 struct cpuinfo_x86 new_cpu_data;
185
186 /* common cpu data for all cpus */
187 struct cpuinfo_x86 boot_cpu_data __read_mostly;
188 EXPORT_SYMBOL(boot_cpu_data);
189
190 unsigned int def_to_bigsmp;
191
192 /* for MCA, but anyone else can use it if they want */
193 unsigned int machine_id;
194 unsigned int machine_submodel_id;
195 unsigned int BIOS_revision;
196
197 struct apm_info apm_info;
198 EXPORT_SYMBOL(apm_info);
199
200 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
201 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
202 struct ist_info ist_info;
203 EXPORT_SYMBOL(ist_info);
204 #else
205 struct ist_info ist_info;
206 #endif
207
208 #else
209 struct cpuinfo_x86 boot_cpu_data __read_mostly = {
210 .x86_phys_bits = MAX_PHYSMEM_BITS,
211 };
212 EXPORT_SYMBOL(boot_cpu_data);
213 #endif
214
215
216 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
217 __visible unsigned long mmu_cr4_features __ro_after_init;
218 #else
219 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
220 #endif
221
222 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
223 int bootloader_type, bootloader_version;
224
225 /*
226 * Setup options
227 */
228 struct screen_info screen_info;
229 EXPORT_SYMBOL(screen_info);
230 struct edid_info edid_info;
231 EXPORT_SYMBOL_GPL(edid_info);
232
233 extern int root_mountflags;
234
235 unsigned long saved_video_mode;
236
237 #define RAMDISK_IMAGE_START_MASK 0x07FF
238 #define RAMDISK_PROMPT_FLAG 0x8000
239 #define RAMDISK_LOAD_FLAG 0x4000
240
241 static char __initdata command_line[COMMAND_LINE_SIZE];
242 #ifdef CONFIG_CMDLINE_BOOL
243 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
244 #endif
245
246 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
247 struct edd edd;
248 #ifdef CONFIG_EDD_MODULE
249 EXPORT_SYMBOL(edd);
250 #endif
251 /**
252 * copy_edd() - Copy the BIOS EDD information
253 * from boot_params into a safe place.
254 *
255 */
256 static inline void __init copy_edd(void)
257 {
258 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
259 sizeof(edd.mbr_signature));
260 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
261 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
262 edd.edd_info_nr = boot_params.eddbuf_entries;
263 }
264 #else
265 static inline void __init copy_edd(void)
266 {
267 }
268 #endif
269
270 void * __init extend_brk(size_t size, size_t align)
271 {
272 size_t mask = align - 1;
273 void *ret;
274
275 BUG_ON(_brk_start == 0);
276 BUG_ON(align & mask);
277
278 _brk_end = (_brk_end + mask) & ~mask;
279 BUG_ON((char *)(_brk_end + size) > __brk_limit);
280
281 ret = (void *)_brk_end;
282 _brk_end += size;
283
284 memset(ret, 0, size);
285
286 return ret;
287 }
288
289 #ifdef CONFIG_X86_32
290 static void __init cleanup_highmap(void)
291 {
292 }
293 #endif
294
295 static void __init reserve_brk(void)
296 {
297 if (_brk_end > _brk_start)
298 memblock_reserve(__pa_symbol(_brk_start),
299 _brk_end - _brk_start);
300
301 /* Mark brk area as locked down and no longer taking any
302 new allocations */
303 _brk_start = 0;
304 }
305
306 u64 relocated_ramdisk;
307
308 #ifdef CONFIG_BLK_DEV_INITRD
309
310 static u64 __init get_ramdisk_image(void)
311 {
312 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
313
314 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
315
316 return ramdisk_image;
317 }
318 static u64 __init get_ramdisk_size(void)
319 {
320 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
321
322 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
323
324 return ramdisk_size;
325 }
326
327 static void __init relocate_initrd(void)
328 {
329 /* Assume only end is not page aligned */
330 u64 ramdisk_image = get_ramdisk_image();
331 u64 ramdisk_size = get_ramdisk_size();
332 u64 area_size = PAGE_ALIGN(ramdisk_size);
333
334 /* We need to move the initrd down into directly mapped mem */
335 relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
336 area_size, PAGE_SIZE);
337
338 if (!relocated_ramdisk)
339 panic("Cannot find place for new RAMDISK of size %lld\n",
340 ramdisk_size);
341
342 /* Note: this includes all the mem currently occupied by
343 the initrd, we rely on that fact to keep the data intact. */
344 memblock_reserve(relocated_ramdisk, area_size);
345 initrd_start = relocated_ramdisk + PAGE_OFFSET;
346 initrd_end = initrd_start + ramdisk_size;
347 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
348 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
349
350 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
351
352 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
353 " [mem %#010llx-%#010llx]\n",
354 ramdisk_image, ramdisk_image + ramdisk_size - 1,
355 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
356 }
357
358 static void __init early_reserve_initrd(void)
359 {
360 /* Assume only end is not page aligned */
361 u64 ramdisk_image = get_ramdisk_image();
362 u64 ramdisk_size = get_ramdisk_size();
363 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
364
365 if (!boot_params.hdr.type_of_loader ||
366 !ramdisk_image || !ramdisk_size)
367 return; /* No initrd provided by bootloader */
368
369 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
370 }
371 static void __init reserve_initrd(void)
372 {
373 /* Assume only end is not page aligned */
374 u64 ramdisk_image = get_ramdisk_image();
375 u64 ramdisk_size = get_ramdisk_size();
376 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
377 u64 mapped_size;
378
379 if (!boot_params.hdr.type_of_loader ||
380 !ramdisk_image || !ramdisk_size)
381 return; /* No initrd provided by bootloader */
382
383 initrd_start = 0;
384
385 mapped_size = memblock_mem_size(max_pfn_mapped);
386 if (ramdisk_size >= (mapped_size>>1))
387 panic("initrd too large to handle, "
388 "disabling initrd (%lld needed, %lld available)\n",
389 ramdisk_size, mapped_size>>1);
390
391 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
392 ramdisk_end - 1);
393
394 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
395 PFN_DOWN(ramdisk_end))) {
396 /* All are mapped, easy case */
397 initrd_start = ramdisk_image + PAGE_OFFSET;
398 initrd_end = initrd_start + ramdisk_size;
399 return;
400 }
401
402 relocate_initrd();
403
404 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
405 }
406
407 #else
408 static void __init early_reserve_initrd(void)
409 {
410 }
411 static void __init reserve_initrd(void)
412 {
413 }
414 #endif /* CONFIG_BLK_DEV_INITRD */
415
416 static void __init parse_setup_data(void)
417 {
418 struct setup_data *data;
419 u64 pa_data, pa_next;
420
421 pa_data = boot_params.hdr.setup_data;
422 while (pa_data) {
423 u32 data_len, data_type;
424
425 data = early_memremap(pa_data, sizeof(*data));
426 data_len = data->len + sizeof(struct setup_data);
427 data_type = data->type;
428 pa_next = data->next;
429 early_memunmap(data, sizeof(*data));
430
431 switch (data_type) {
432 case SETUP_E820_EXT:
433 e820__memory_setup_extended(pa_data, data_len);
434 break;
435 case SETUP_DTB:
436 add_dtb(pa_data);
437 break;
438 case SETUP_EFI:
439 parse_efi_setup(pa_data, data_len);
440 break;
441 default:
442 break;
443 }
444 pa_data = pa_next;
445 }
446 }
447
448 static void __init memblock_x86_reserve_range_setup_data(void)
449 {
450 struct setup_data *data;
451 u64 pa_data;
452
453 pa_data = boot_params.hdr.setup_data;
454 while (pa_data) {
455 data = early_memremap(pa_data, sizeof(*data));
456 memblock_reserve(pa_data, sizeof(*data) + data->len);
457 pa_data = data->next;
458 early_memunmap(data, sizeof(*data));
459 }
460 }
461
462 /*
463 * --------- Crashkernel reservation ------------------------------
464 */
465
466 #ifdef CONFIG_KEXEC_CORE
467
468 /* 16M alignment for crash kernel regions */
469 #define CRASH_ALIGN (16 << 20)
470
471 /*
472 * Keep the crash kernel below this limit. On 32 bits earlier kernels
473 * would limit the kernel to the low 512 MiB due to mapping restrictions.
474 * On 64bit, old kexec-tools need to under 896MiB.
475 */
476 #ifdef CONFIG_X86_32
477 # define CRASH_ADDR_LOW_MAX (512 << 20)
478 # define CRASH_ADDR_HIGH_MAX (512 << 20)
479 #else
480 # define CRASH_ADDR_LOW_MAX (896UL << 20)
481 # define CRASH_ADDR_HIGH_MAX MAXMEM
482 #endif
483
484 static int __init reserve_crashkernel_low(void)
485 {
486 #ifdef CONFIG_X86_64
487 unsigned long long base, low_base = 0, low_size = 0;
488 unsigned long total_low_mem;
489 int ret;
490
491 total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
492
493 /* crashkernel=Y,low */
494 ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
495 if (ret) {
496 /*
497 * two parts from lib/swiotlb.c:
498 * -swiotlb size: user-specified with swiotlb= or default.
499 *
500 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
501 * to 8M for other buffers that may need to stay low too. Also
502 * make sure we allocate enough extra low memory so that we
503 * don't run out of DMA buffers for 32-bit devices.
504 */
505 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
506 } else {
507 /* passed with crashkernel=0,low ? */
508 if (!low_size)
509 return 0;
510 }
511
512 low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
513 if (!low_base) {
514 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
515 (unsigned long)(low_size >> 20));
516 return -ENOMEM;
517 }
518
519 ret = memblock_reserve(low_base, low_size);
520 if (ret) {
521 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
522 return ret;
523 }
524
525 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
526 (unsigned long)(low_size >> 20),
527 (unsigned long)(low_base >> 20),
528 (unsigned long)(total_low_mem >> 20));
529
530 crashk_low_res.start = low_base;
531 crashk_low_res.end = low_base + low_size - 1;
532 insert_resource(&iomem_resource, &crashk_low_res);
533 #endif
534 return 0;
535 }
536
537 static void __init reserve_crashkernel(void)
538 {
539 unsigned long long crash_size, crash_base, total_mem;
540 bool high = false;
541 int ret;
542
543 total_mem = memblock_phys_mem_size();
544
545 /* crashkernel=XM */
546 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
547 if (ret != 0 || crash_size <= 0) {
548 /* crashkernel=X,high */
549 ret = parse_crashkernel_high(boot_command_line, total_mem,
550 &crash_size, &crash_base);
551 if (ret != 0 || crash_size <= 0)
552 return;
553 high = true;
554 }
555
556 /* 0 means: find the address automatically */
557 if (crash_base <= 0) {
558 /*
559 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
560 * as old kexec-tools loads bzImage below that, unless
561 * "crashkernel=size[KMG],high" is specified.
562 */
563 crash_base = memblock_find_in_range(CRASH_ALIGN,
564 high ? CRASH_ADDR_HIGH_MAX
565 : CRASH_ADDR_LOW_MAX,
566 crash_size, CRASH_ALIGN);
567 if (!crash_base) {
568 pr_info("crashkernel reservation failed - No suitable area found.\n");
569 return;
570 }
571
572 } else {
573 unsigned long long start;
574
575 start = memblock_find_in_range(crash_base,
576 crash_base + crash_size,
577 crash_size, 1 << 20);
578 if (start != crash_base) {
579 pr_info("crashkernel reservation failed - memory is in use.\n");
580 return;
581 }
582 }
583 ret = memblock_reserve(crash_base, crash_size);
584 if (ret) {
585 pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
586 return;
587 }
588
589 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
590 memblock_free(crash_base, crash_size);
591 return;
592 }
593
594 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
595 (unsigned long)(crash_size >> 20),
596 (unsigned long)(crash_base >> 20),
597 (unsigned long)(total_mem >> 20));
598
599 crashk_res.start = crash_base;
600 crashk_res.end = crash_base + crash_size - 1;
601 insert_resource(&iomem_resource, &crashk_res);
602 }
603 #else
604 static void __init reserve_crashkernel(void)
605 {
606 }
607 #endif
608
609 static struct resource standard_io_resources[] = {
610 { .name = "dma1", .start = 0x00, .end = 0x1f,
611 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
612 { .name = "pic1", .start = 0x20, .end = 0x21,
613 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
614 { .name = "timer0", .start = 0x40, .end = 0x43,
615 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
616 { .name = "timer1", .start = 0x50, .end = 0x53,
617 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
618 { .name = "keyboard", .start = 0x60, .end = 0x60,
619 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
620 { .name = "keyboard", .start = 0x64, .end = 0x64,
621 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
622 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
623 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
624 { .name = "pic2", .start = 0xa0, .end = 0xa1,
625 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
626 { .name = "dma2", .start = 0xc0, .end = 0xdf,
627 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
628 { .name = "fpu", .start = 0xf0, .end = 0xff,
629 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
630 };
631
632 void __init reserve_standard_io_resources(void)
633 {
634 int i;
635
636 /* request I/O space for devices used on all i[345]86 PCs */
637 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
638 request_resource(&ioport_resource, &standard_io_resources[i]);
639
640 }
641
642 static __init void reserve_ibft_region(void)
643 {
644 unsigned long addr, size = 0;
645
646 addr = find_ibft_region(&size);
647
648 if (size)
649 memblock_reserve(addr, size);
650 }
651
652 static bool __init snb_gfx_workaround_needed(void)
653 {
654 #ifdef CONFIG_PCI
655 int i;
656 u16 vendor, devid;
657 static const __initconst u16 snb_ids[] = {
658 0x0102,
659 0x0112,
660 0x0122,
661 0x0106,
662 0x0116,
663 0x0126,
664 0x010a,
665 };
666
667 /* Assume no if something weird is going on with PCI */
668 if (!early_pci_allowed())
669 return false;
670
671 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
672 if (vendor != 0x8086)
673 return false;
674
675 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
676 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
677 if (devid == snb_ids[i])
678 return true;
679 #endif
680
681 return false;
682 }
683
684 /*
685 * Sandy Bridge graphics has trouble with certain ranges, exclude
686 * them from allocation.
687 */
688 static void __init trim_snb_memory(void)
689 {
690 static const __initconst unsigned long bad_pages[] = {
691 0x20050000,
692 0x20110000,
693 0x20130000,
694 0x20138000,
695 0x40004000,
696 };
697 int i;
698
699 if (!snb_gfx_workaround_needed())
700 return;
701
702 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
703
704 /*
705 * Reserve all memory below the 1 MB mark that has not
706 * already been reserved.
707 */
708 memblock_reserve(0, 1<<20);
709
710 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
711 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
712 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
713 bad_pages[i]);
714 }
715 }
716
717 /*
718 * Here we put platform-specific memory range workarounds, i.e.
719 * memory known to be corrupt or otherwise in need to be reserved on
720 * specific platforms.
721 *
722 * If this gets used more widely it could use a real dispatch mechanism.
723 */
724 static void __init trim_platform_memory_ranges(void)
725 {
726 trim_snb_memory();
727 }
728
729 static void __init trim_bios_range(void)
730 {
731 /*
732 * A special case is the first 4Kb of memory;
733 * This is a BIOS owned area, not kernel ram, but generally
734 * not listed as such in the E820 table.
735 *
736 * This typically reserves additional memory (64KiB by default)
737 * since some BIOSes are known to corrupt low memory. See the
738 * Kconfig help text for X86_RESERVE_LOW.
739 */
740 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
741
742 /*
743 * special case: Some BIOSen report the PC BIOS
744 * area (640->1Mb) as ram even though it is not.
745 * take them out.
746 */
747 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
748
749 e820__update_table(e820_table);
750 }
751
752 /* called before trim_bios_range() to spare extra sanitize */
753 static void __init e820_add_kernel_range(void)
754 {
755 u64 start = __pa_symbol(_text);
756 u64 size = __pa_symbol(_end) - start;
757
758 /*
759 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
760 * attempt to fix it by adding the range. We may have a confused BIOS,
761 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
762 * exclude kernel range. If we really are running on top non-RAM,
763 * we will crash later anyways.
764 */
765 if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
766 return;
767
768 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
769 e820__range_remove(start, size, E820_TYPE_RAM, 0);
770 e820__range_add(start, size, E820_TYPE_RAM);
771 }
772
773 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
774
775 static int __init parse_reservelow(char *p)
776 {
777 unsigned long long size;
778
779 if (!p)
780 return -EINVAL;
781
782 size = memparse(p, &p);
783
784 if (size < 4096)
785 size = 4096;
786
787 if (size > 640*1024)
788 size = 640*1024;
789
790 reserve_low = size;
791
792 return 0;
793 }
794
795 early_param("reservelow", parse_reservelow);
796
797 static void __init trim_low_memory_range(void)
798 {
799 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
800 }
801
802 /*
803 * Dump out kernel offset information on panic.
804 */
805 static int
806 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
807 {
808 if (kaslr_enabled()) {
809 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
810 kaslr_offset(),
811 __START_KERNEL,
812 __START_KERNEL_map,
813 MODULES_VADDR-1);
814 } else {
815 pr_emerg("Kernel Offset: disabled\n");
816 }
817
818 return 0;
819 }
820
821 static void __init simple_udelay_calibration(void)
822 {
823 unsigned int tsc_khz, cpu_khz;
824 unsigned long lpj;
825
826 if (!boot_cpu_has(X86_FEATURE_TSC))
827 return;
828
829 cpu_khz = x86_platform.calibrate_cpu();
830 tsc_khz = x86_platform.calibrate_tsc();
831
832 tsc_khz = tsc_khz ? : cpu_khz;
833 if (!tsc_khz)
834 return;
835
836 lpj = tsc_khz * 1000;
837 do_div(lpj, HZ);
838 loops_per_jiffy = lpj;
839 }
840
841 /*
842 * Determine if we were loaded by an EFI loader. If so, then we have also been
843 * passed the efi memmap, systab, etc., so we should use these data structures
844 * for initialization. Note, the efi init code path is determined by the
845 * global efi_enabled. This allows the same kernel image to be used on existing
846 * systems (with a traditional BIOS) as well as on EFI systems.
847 */
848 /*
849 * setup_arch - architecture-specific boot-time initializations
850 *
851 * Note: On x86_64, fixmaps are ready for use even before this is called.
852 */
853
854 void __init setup_arch(char **cmdline_p)
855 {
856 memblock_reserve(__pa_symbol(_text),
857 (unsigned long)__bss_stop - (unsigned long)_text);
858
859 early_reserve_initrd();
860
861 /*
862 * At this point everything still needed from the boot loader
863 * or BIOS or kernel text should be early reserved or marked not
864 * RAM in e820. All other memory is free game.
865 */
866
867 #ifdef CONFIG_X86_32
868 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
869
870 /*
871 * copy kernel address range established so far and switch
872 * to the proper swapper page table
873 */
874 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
875 initial_page_table + KERNEL_PGD_BOUNDARY,
876 KERNEL_PGD_PTRS);
877
878 load_cr3(swapper_pg_dir);
879 /*
880 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
881 * a cr3 based tlb flush, so the following __flush_tlb_all()
882 * will not flush anything because the cpu quirk which clears
883 * X86_FEATURE_PGE has not been invoked yet. Though due to the
884 * load_cr3() above the TLB has been flushed already. The
885 * quirk is invoked before subsequent calls to __flush_tlb_all()
886 * so proper operation is guaranteed.
887 */
888 __flush_tlb_all();
889 #else
890 printk(KERN_INFO "Command line: %s\n", boot_command_line);
891 #endif
892
893 /*
894 * If we have OLPC OFW, we might end up relocating the fixmap due to
895 * reserve_top(), so do this before touching the ioremap area.
896 */
897 olpc_ofw_detect();
898
899 early_trap_init();
900 early_cpu_init();
901 early_ioremap_init();
902
903 setup_olpc_ofw_pgd();
904
905 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
906 screen_info = boot_params.screen_info;
907 edid_info = boot_params.edid_info;
908 #ifdef CONFIG_X86_32
909 apm_info.bios = boot_params.apm_bios_info;
910 ist_info = boot_params.ist_info;
911 #endif
912 saved_video_mode = boot_params.hdr.vid_mode;
913 bootloader_type = boot_params.hdr.type_of_loader;
914 if ((bootloader_type >> 4) == 0xe) {
915 bootloader_type &= 0xf;
916 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
917 }
918 bootloader_version = bootloader_type & 0xf;
919 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
920
921 #ifdef CONFIG_BLK_DEV_RAM
922 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
923 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
924 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
925 #endif
926 #ifdef CONFIG_EFI
927 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
928 EFI32_LOADER_SIGNATURE, 4)) {
929 set_bit(EFI_BOOT, &efi.flags);
930 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
931 EFI64_LOADER_SIGNATURE, 4)) {
932 set_bit(EFI_BOOT, &efi.flags);
933 set_bit(EFI_64BIT, &efi.flags);
934 }
935
936 if (efi_enabled(EFI_BOOT))
937 efi_memblock_x86_reserve_range();
938 #endif
939
940 x86_init.oem.arch_setup();
941
942 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
943 e820__memory_setup();
944 parse_setup_data();
945
946 copy_edd();
947
948 if (!boot_params.hdr.root_flags)
949 root_mountflags &= ~MS_RDONLY;
950 init_mm.start_code = (unsigned long) _text;
951 init_mm.end_code = (unsigned long) _etext;
952 init_mm.end_data = (unsigned long) _edata;
953 init_mm.brk = _brk_end;
954
955 mpx_mm_init(&init_mm);
956
957 code_resource.start = __pa_symbol(_text);
958 code_resource.end = __pa_symbol(_etext)-1;
959 data_resource.start = __pa_symbol(_etext);
960 data_resource.end = __pa_symbol(_edata)-1;
961 bss_resource.start = __pa_symbol(__bss_start);
962 bss_resource.end = __pa_symbol(__bss_stop)-1;
963
964 #ifdef CONFIG_CMDLINE_BOOL
965 #ifdef CONFIG_CMDLINE_OVERRIDE
966 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
967 #else
968 if (builtin_cmdline[0]) {
969 /* append boot loader cmdline to builtin */
970 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
971 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
972 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
973 }
974 #endif
975 #endif
976
977 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
978 *cmdline_p = command_line;
979
980 /*
981 * x86_configure_nx() is called before parse_early_param() to detect
982 * whether hardware doesn't support NX (so that the early EHCI debug
983 * console setup can safely call set_fixmap()). It may then be called
984 * again from within noexec_setup() during parsing early parameters
985 * to honor the respective command line option.
986 */
987 x86_configure_nx();
988
989 parse_early_param();
990
991 #ifdef CONFIG_MEMORY_HOTPLUG
992 /*
993 * Memory used by the kernel cannot be hot-removed because Linux
994 * cannot migrate the kernel pages. When memory hotplug is
995 * enabled, we should prevent memblock from allocating memory
996 * for the kernel.
997 *
998 * ACPI SRAT records all hotpluggable memory ranges. But before
999 * SRAT is parsed, we don't know about it.
1000 *
1001 * The kernel image is loaded into memory at very early time. We
1002 * cannot prevent this anyway. So on NUMA system, we set any
1003 * node the kernel resides in as un-hotpluggable.
1004 *
1005 * Since on modern servers, one node could have double-digit
1006 * gigabytes memory, we can assume the memory around the kernel
1007 * image is also un-hotpluggable. So before SRAT is parsed, just
1008 * allocate memory near the kernel image to try the best to keep
1009 * the kernel away from hotpluggable memory.
1010 */
1011 if (movable_node_is_enabled())
1012 memblock_set_bottom_up(true);
1013 #endif
1014
1015 x86_report_nx();
1016
1017 /* after early param, so could get panic from serial */
1018 memblock_x86_reserve_range_setup_data();
1019
1020 if (acpi_mps_check()) {
1021 #ifdef CONFIG_X86_LOCAL_APIC
1022 disable_apic = 1;
1023 #endif
1024 setup_clear_cpu_cap(X86_FEATURE_APIC);
1025 }
1026
1027 #ifdef CONFIG_PCI
1028 if (pci_early_dump_regs)
1029 early_dump_pci_devices();
1030 #endif
1031
1032 e820__reserve_setup_data();
1033 e820__finish_early_params();
1034
1035 if (efi_enabled(EFI_BOOT))
1036 efi_init();
1037
1038 dmi_scan_machine();
1039 dmi_memdev_walk();
1040 dmi_set_dump_stack_arch_desc();
1041
1042 /*
1043 * VMware detection requires dmi to be available, so this
1044 * needs to be done after dmi_scan_machine, for the BP.
1045 */
1046 init_hypervisor_platform();
1047
1048 simple_udelay_calibration();
1049
1050 x86_init.resources.probe_roms();
1051
1052 /* after parse_early_param, so could debug it */
1053 insert_resource(&iomem_resource, &code_resource);
1054 insert_resource(&iomem_resource, &data_resource);
1055 insert_resource(&iomem_resource, &bss_resource);
1056
1057 e820_add_kernel_range();
1058 trim_bios_range();
1059 #ifdef CONFIG_X86_32
1060 if (ppro_with_ram_bug()) {
1061 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1062 E820_TYPE_RESERVED);
1063 e820__update_table(e820_table);
1064 printk(KERN_INFO "fixed physical RAM map:\n");
1065 e820__print_table("bad_ppro");
1066 }
1067 #else
1068 early_gart_iommu_check();
1069 #endif
1070
1071 /*
1072 * partially used pages are not usable - thus
1073 * we are rounding upwards:
1074 */
1075 max_pfn = e820__end_of_ram_pfn();
1076
1077 /* update e820 for memory not covered by WB MTRRs */
1078 mtrr_bp_init();
1079 if (mtrr_trim_uncached_memory(max_pfn))
1080 max_pfn = e820__end_of_ram_pfn();
1081
1082 max_possible_pfn = max_pfn;
1083
1084 /*
1085 * This call is required when the CPU does not support PAT. If
1086 * mtrr_bp_init() invoked it already via pat_init() the call has no
1087 * effect.
1088 */
1089 init_cache_modes();
1090
1091 /*
1092 * Define random base addresses for memory sections after max_pfn is
1093 * defined and before each memory section base is used.
1094 */
1095 kernel_randomize_memory();
1096
1097 #ifdef CONFIG_X86_32
1098 /* max_low_pfn get updated here */
1099 find_low_pfn_range();
1100 #else
1101 check_x2apic();
1102
1103 /* How many end-of-memory variables you have, grandma! */
1104 /* need this before calling reserve_initrd */
1105 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1106 max_low_pfn = e820__end_of_low_ram_pfn();
1107 else
1108 max_low_pfn = max_pfn;
1109
1110 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1111 #endif
1112
1113 /*
1114 * Find and reserve possible boot-time SMP configuration:
1115 */
1116 find_smp_config();
1117
1118 reserve_ibft_region();
1119
1120 early_alloc_pgt_buf();
1121
1122 /*
1123 * Need to conclude brk, before e820__memblock_setup()
1124 * it could use memblock_find_in_range, could overlap with
1125 * brk area.
1126 */
1127 reserve_brk();
1128
1129 cleanup_highmap();
1130
1131 memblock_set_current_limit(ISA_END_ADDRESS);
1132 e820__memblock_setup();
1133
1134 if (!early_xdbc_setup_hardware())
1135 early_xdbc_register_console();
1136
1137 reserve_bios_regions();
1138
1139 if (efi_enabled(EFI_MEMMAP)) {
1140 efi_fake_memmap();
1141 efi_find_mirror();
1142 efi_esrt_init();
1143
1144 /*
1145 * The EFI specification says that boot service code won't be
1146 * called after ExitBootServices(). This is, in fact, a lie.
1147 */
1148 efi_reserve_boot_services();
1149 }
1150
1151 /* preallocate 4k for mptable mpc */
1152 e820__memblock_alloc_reserved_mpc_new();
1153
1154 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1155 setup_bios_corruption_check();
1156 #endif
1157
1158 #ifdef CONFIG_X86_32
1159 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1160 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1161 #endif
1162
1163 reserve_real_mode();
1164
1165 trim_platform_memory_ranges();
1166 trim_low_memory_range();
1167
1168 init_mem_mapping();
1169
1170 early_trap_pf_init();
1171
1172 /*
1173 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1174 * with the current CR4 value. This may not be necessary, but
1175 * auditing all the early-boot CR4 manipulation would be needed to
1176 * rule it out.
1177 *
1178 * Mask off features that don't work outside long mode (just
1179 * PCIDE for now).
1180 */
1181 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1182
1183 memblock_set_current_limit(get_max_mapped());
1184
1185 /*
1186 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1187 */
1188
1189 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1190 if (init_ohci1394_dma_early)
1191 init_ohci1394_dma_on_all_controllers();
1192 #endif
1193 /* Allocate bigger log buffer */
1194 setup_log_buf(1);
1195
1196 if (efi_enabled(EFI_BOOT)) {
1197 switch (boot_params.secure_boot) {
1198 case efi_secureboot_mode_disabled:
1199 pr_info("Secure boot disabled\n");
1200 break;
1201 case efi_secureboot_mode_enabled:
1202 set_bit(EFI_SECURE_BOOT, &efi.flags);
1203 if (IS_ENABLED(CONFIG_EFI_SECURE_BOOT_LOCK_DOWN)) {
1204 lock_kernel_down();
1205 pr_info("Secure boot enabled and kernel locked down\n");
1206 } else {
1207 pr_info("Secure boot enabled\n");
1208 }
1209 break;
1210 default:
1211 pr_info("Secure boot could not be determined\n");
1212 break;
1213 }
1214 }
1215
1216 reserve_initrd();
1217
1218 acpi_table_upgrade();
1219
1220 vsmp_init();
1221
1222 io_delay_init();
1223
1224 /*
1225 * Parse the ACPI tables for possible boot-time SMP configuration.
1226 */
1227 acpi_boot_table_init();
1228
1229 early_acpi_boot_init();
1230
1231 initmem_init();
1232 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1233
1234 /*
1235 * Reserve memory for crash kernel after SRAT is parsed so that it
1236 * won't consume hotpluggable memory.
1237 */
1238 reserve_crashkernel();
1239
1240 memblock_find_dma_reserve();
1241
1242 #ifdef CONFIG_KVM_GUEST
1243 kvmclock_init();
1244 #endif
1245
1246 x86_init.paging.pagetable_init();
1247
1248 kasan_init();
1249
1250 #ifdef CONFIG_X86_32
1251 /* sync back kernel address range */
1252 clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY,
1253 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
1254 KERNEL_PGD_PTRS);
1255
1256 /*
1257 * sync back low identity map too. It is used for example
1258 * in the 32-bit EFI stub.
1259 */
1260 clone_pgd_range(initial_page_table,
1261 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
1262 min(KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
1263 #endif
1264
1265 tboot_probe();
1266
1267 map_vsyscall();
1268
1269 generic_apic_probe();
1270
1271 early_quirks();
1272
1273 /*
1274 * Read APIC and some other early information from ACPI tables.
1275 */
1276 acpi_boot_init();
1277 sfi_init();
1278 x86_dtb_init();
1279
1280 /*
1281 * get boot-time SMP configuration:
1282 */
1283 get_smp_config();
1284
1285 /*
1286 * Systems w/o ACPI and mptables might not have it mapped the local
1287 * APIC yet, but prefill_possible_map() might need to access it.
1288 */
1289 init_apic_mappings();
1290
1291 prefill_possible_map();
1292
1293 init_cpu_to_node();
1294
1295 io_apic_init_mappings();
1296
1297 kvm_guest_init();
1298
1299 e820__reserve_resources();
1300 e820__register_nosave_regions(max_low_pfn);
1301
1302 x86_init.resources.reserve_resources();
1303
1304 e820__setup_pci_gap();
1305
1306 #ifdef CONFIG_VT
1307 #if defined(CONFIG_VGA_CONSOLE)
1308 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1309 conswitchp = &vga_con;
1310 #elif defined(CONFIG_DUMMY_CONSOLE)
1311 conswitchp = &dummy_con;
1312 #endif
1313 #endif
1314 x86_init.oem.banner();
1315
1316 x86_init.timers.wallclock_init();
1317
1318 mcheck_init();
1319
1320 arch_init_ideal_nops();
1321
1322 register_refined_jiffies(CLOCK_TICK_RATE);
1323
1324 #ifdef CONFIG_EFI
1325 if (efi_enabled(EFI_BOOT))
1326 efi_apply_memmap_quirks();
1327 #endif
1328 }
1329
1330 #ifdef CONFIG_X86_32
1331
1332 static struct resource video_ram_resource = {
1333 .name = "Video RAM area",
1334 .start = 0xa0000,
1335 .end = 0xbffff,
1336 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1337 };
1338
1339 void __init i386_reserve_resources(void)
1340 {
1341 request_resource(&iomem_resource, &video_ram_resource);
1342 reserve_standard_io_resources();
1343 }
1344
1345 #endif /* CONFIG_X86_32 */
1346
1347 #ifdef CONFIG_EFI_ALLOW_SECURE_BOOT_EXIT
1348
1349 static void sysrq_handle_secure_boot(int key)
1350 {
1351 if (!efi_enabled(EFI_SECURE_BOOT))
1352 return;
1353
1354 pr_info("Secure boot disabled\n");
1355 lift_kernel_lockdown();
1356 }
1357 static struct sysrq_key_op secure_boot_sysrq_op = {
1358 .handler = sysrq_handle_secure_boot,
1359 .help_msg = "unSB(x)",
1360 .action_msg = "Disabling Secure Boot restrictions",
1361 .enable_mask = SYSRQ_DISABLE_USERSPACE,
1362 };
1363 static int __init secure_boot_sysrq(void)
1364 {
1365 if (efi_enabled(EFI_SECURE_BOOT))
1366 register_sysrq_key('x', &secure_boot_sysrq_op);
1367 return 0;
1368 }
1369 late_initcall(secure_boot_sysrq);
1370 #endif /*CONFIG_EFI_ALLOW_SECURE_BOOT_EXIT*/
1371
1372
1373 static struct notifier_block kernel_offset_notifier = {
1374 .notifier_call = dump_kernel_offset
1375 };
1376
1377 static int __init register_kernel_offset_dumper(void)
1378 {
1379 atomic_notifier_chain_register(&panic_notifier_list,
1380 &kernel_offset_notifier);
1381 return 0;
1382 }
1383 __initcall(register_kernel_offset_dumper);
1384
1385 void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
1386 {
1387 if (!boot_cpu_has(X86_FEATURE_OSPKE))
1388 return;
1389
1390 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
1391 }