]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - arch/x86/kernel/setup_64.c
a775fe3de955d03e727defa842177f247da05eb2
[mirror_ubuntu-kernels.git] / arch / x86 / kernel / setup_64.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 */
4
5 /*
6 * This file handles the architecture-dependent parts of initialization
7 */
8
9 #include <linux/errno.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/stddef.h>
14 #include <linux/unistd.h>
15 #include <linux/ptrace.h>
16 #include <linux/slab.h>
17 #include <linux/user.h>
18 #include <linux/screen_info.h>
19 #include <linux/ioport.h>
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/initrd.h>
23 #include <linux/highmem.h>
24 #include <linux/bootmem.h>
25 #include <linux/module.h>
26 #include <asm/processor.h>
27 #include <linux/console.h>
28 #include <linux/seq_file.h>
29 #include <linux/crash_dump.h>
30 #include <linux/root_dev.h>
31 #include <linux/pci.h>
32 #include <linux/efi.h>
33 #include <linux/acpi.h>
34 #include <linux/kallsyms.h>
35 #include <linux/edd.h>
36 #include <linux/mmzone.h>
37 #include <linux/kexec.h>
38 #include <linux/cpufreq.h>
39 #include <linux/dmi.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/ctype.h>
42 #include <linux/uaccess.h>
43 #include <linux/init_ohci1394_dma.h>
44
45 #include <asm/mtrr.h>
46 #include <asm/uaccess.h>
47 #include <asm/system.h>
48 #include <asm/vsyscall.h>
49 #include <asm/io.h>
50 #include <asm/smp.h>
51 #include <asm/msr.h>
52 #include <asm/desc.h>
53 #include <video/edid.h>
54 #include <asm/e820.h>
55 #include <asm/dma.h>
56 #include <asm/gart.h>
57 #include <asm/mpspec.h>
58 #include <asm/mmu_context.h>
59 #include <asm/proto.h>
60 #include <asm/setup.h>
61 #include <asm/mach_apic.h>
62 #include <asm/numa.h>
63 #include <asm/sections.h>
64 #include <asm/dmi.h>
65 #include <asm/cacheflush.h>
66 #include <asm/mce.h>
67 #include <asm/ds.h>
68 #include <asm/topology.h>
69
70 #ifdef CONFIG_PARAVIRT
71 #include <asm/paravirt.h>
72 #else
73 #define ARCH_SETUP
74 #endif
75
76 /*
77 * Machine setup..
78 */
79
80 struct cpuinfo_x86 boot_cpu_data __read_mostly;
81 EXPORT_SYMBOL(boot_cpu_data);
82
83 __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
84
85 unsigned long mmu_cr4_features;
86
87 /* Boot loader ID as an integer, for the benefit of proc_dointvec */
88 int bootloader_type;
89
90 unsigned long saved_video_mode;
91
92 int force_mwait __cpuinitdata;
93
94 /*
95 * Early DMI memory
96 */
97 int dmi_alloc_index;
98 char dmi_alloc_data[DMI_MAX_DATA];
99
100 /*
101 * Setup options
102 */
103 struct screen_info screen_info;
104 EXPORT_SYMBOL(screen_info);
105 struct sys_desc_table_struct {
106 unsigned short length;
107 unsigned char table[0];
108 };
109
110 struct edid_info edid_info;
111 EXPORT_SYMBOL_GPL(edid_info);
112
113 extern int root_mountflags;
114
115 char __initdata command_line[COMMAND_LINE_SIZE];
116
117 struct resource standard_io_resources[] = {
118 { .name = "dma1", .start = 0x00, .end = 0x1f,
119 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
120 { .name = "pic1", .start = 0x20, .end = 0x21,
121 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
122 { .name = "timer0", .start = 0x40, .end = 0x43,
123 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
124 { .name = "timer1", .start = 0x50, .end = 0x53,
125 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
126 { .name = "keyboard", .start = 0x60, .end = 0x6f,
127 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
128 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
129 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
130 { .name = "pic2", .start = 0xa0, .end = 0xa1,
131 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
132 { .name = "dma2", .start = 0xc0, .end = 0xdf,
133 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
134 { .name = "fpu", .start = 0xf0, .end = 0xff,
135 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
136 };
137
138 #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
139
140 static struct resource data_resource = {
141 .name = "Kernel data",
142 .start = 0,
143 .end = 0,
144 .flags = IORESOURCE_RAM,
145 };
146 static struct resource code_resource = {
147 .name = "Kernel code",
148 .start = 0,
149 .end = 0,
150 .flags = IORESOURCE_RAM,
151 };
152 static struct resource bss_resource = {
153 .name = "Kernel bss",
154 .start = 0,
155 .end = 0,
156 .flags = IORESOURCE_RAM,
157 };
158
159 static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c);
160
161 #ifdef CONFIG_PROC_VMCORE
162 /* elfcorehdr= specifies the location of elf core header
163 * stored by the crashed kernel. This option will be passed
164 * by kexec loader to the capture kernel.
165 */
166 static int __init setup_elfcorehdr(char *arg)
167 {
168 char *end;
169 if (!arg)
170 return -EINVAL;
171 elfcorehdr_addr = memparse(arg, &end);
172 return end > arg ? 0 : -EINVAL;
173 }
174 early_param("elfcorehdr", setup_elfcorehdr);
175 #endif
176
177 #ifndef CONFIG_NUMA
178 static void __init
179 contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
180 {
181 unsigned long bootmap_size, bootmap;
182
183 bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
184 bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
185 PAGE_SIZE);
186 if (bootmap == -1L)
187 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
188 bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
189 e820_register_active_regions(0, start_pfn, end_pfn);
190 free_bootmem_with_active_regions(0, end_pfn);
191 reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
192 }
193 #endif
194
195 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
196 struct edd edd;
197 #ifdef CONFIG_EDD_MODULE
198 EXPORT_SYMBOL(edd);
199 #endif
200 /**
201 * copy_edd() - Copy the BIOS EDD information
202 * from boot_params into a safe place.
203 *
204 */
205 static inline void copy_edd(void)
206 {
207 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
208 sizeof(edd.mbr_signature));
209 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
210 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
211 edd.edd_info_nr = boot_params.eddbuf_entries;
212 }
213 #else
214 static inline void copy_edd(void)
215 {
216 }
217 #endif
218
219 #ifdef CONFIG_KEXEC
220 static void __init reserve_crashkernel(void)
221 {
222 unsigned long long total_mem;
223 unsigned long long crash_size, crash_base;
224 int ret;
225
226 total_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
227
228 ret = parse_crashkernel(boot_command_line, total_mem,
229 &crash_size, &crash_base);
230 if (ret == 0 && crash_size) {
231 if (crash_base <= 0) {
232 printk(KERN_INFO "crashkernel reservation failed - "
233 "you have to specify a base address\n");
234 return;
235 }
236
237 if (reserve_bootmem(crash_base, crash_size,
238 BOOTMEM_EXCLUSIVE) < 0) {
239 printk(KERN_INFO "crashkernel reservation failed - "
240 "memory is in use\n");
241 return;
242 }
243
244 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
245 "for crashkernel (System RAM: %ldMB)\n",
246 (unsigned long)(crash_size >> 20),
247 (unsigned long)(crash_base >> 20),
248 (unsigned long)(total_mem >> 20));
249 crashk_res.start = crash_base;
250 crashk_res.end = crash_base + crash_size - 1;
251 }
252 }
253 #else
254 static inline void __init reserve_crashkernel(void)
255 {}
256 #endif
257
258 /* Overridden in paravirt.c if CONFIG_PARAVIRT */
259 void __attribute__((weak)) __init memory_setup(void)
260 {
261 machine_specific_memory_setup();
262 }
263
264 /*
265 * setup_arch - architecture-specific boot-time initializations
266 *
267 * Note: On x86_64, fixmaps are ready for use even before this is called.
268 */
269 void __init setup_arch(char **cmdline_p)
270 {
271 unsigned i;
272
273 printk(KERN_INFO "Command line: %s\n", boot_command_line);
274
275 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
276 screen_info = boot_params.screen_info;
277 edid_info = boot_params.edid_info;
278 saved_video_mode = boot_params.hdr.vid_mode;
279 bootloader_type = boot_params.hdr.type_of_loader;
280
281 #ifdef CONFIG_BLK_DEV_RAM
282 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
283 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
284 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
285 #endif
286 #ifdef CONFIG_EFI
287 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
288 "EL64", 4))
289 efi_enabled = 1;
290 #endif
291
292 ARCH_SETUP
293
294 memory_setup();
295 copy_edd();
296
297 if (!boot_params.hdr.root_flags)
298 root_mountflags &= ~MS_RDONLY;
299 init_mm.start_code = (unsigned long) &_text;
300 init_mm.end_code = (unsigned long) &_etext;
301 init_mm.end_data = (unsigned long) &_edata;
302 init_mm.brk = (unsigned long) &_end;
303
304 code_resource.start = virt_to_phys(&_text);
305 code_resource.end = virt_to_phys(&_etext)-1;
306 data_resource.start = virt_to_phys(&_etext);
307 data_resource.end = virt_to_phys(&_edata)-1;
308 bss_resource.start = virt_to_phys(&__bss_start);
309 bss_resource.end = virt_to_phys(&__bss_stop)-1;
310
311 early_identify_cpu(&boot_cpu_data);
312
313 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
314 *cmdline_p = command_line;
315
316 parse_early_param();
317
318 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
319 if (init_ohci1394_dma_early)
320 init_ohci1394_dma_on_all_controllers();
321 #endif
322
323 finish_e820_parsing();
324
325 early_gart_iommu_check();
326
327 e820_register_active_regions(0, 0, -1UL);
328 /*
329 * partially used pages are not usable - thus
330 * we are rounding upwards:
331 */
332 end_pfn = e820_end_of_ram();
333 /* update e820 for memory not covered by WB MTRRs */
334 mtrr_bp_init();
335 if (mtrr_trim_uncached_memory(end_pfn)) {
336 e820_register_active_regions(0, 0, -1UL);
337 end_pfn = e820_end_of_ram();
338 }
339
340 num_physpages = end_pfn;
341
342 check_efer();
343
344 init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
345 if (efi_enabled)
346 efi_init();
347
348 dmi_scan_machine();
349
350 io_delay_init();
351
352 #ifdef CONFIG_SMP
353 /* setup to use the early static init tables during kernel startup */
354 x86_cpu_to_apicid_early_ptr = (void *)x86_cpu_to_apicid_init;
355 x86_bios_cpu_apicid_early_ptr = (void *)x86_bios_cpu_apicid_init;
356 #ifdef CONFIG_NUMA
357 x86_cpu_to_node_map_early_ptr = (void *)x86_cpu_to_node_map_init;
358 #endif
359 #endif
360
361 #ifdef CONFIG_ACPI
362 /*
363 * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
364 * Call this early for SRAT node setup.
365 */
366 acpi_boot_table_init();
367 #endif
368
369 /* How many end-of-memory variables you have, grandma! */
370 max_low_pfn = end_pfn;
371 max_pfn = end_pfn;
372 high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
373
374 /* Remove active ranges so rediscovery with NUMA-awareness happens */
375 remove_all_active_ranges();
376
377 #ifdef CONFIG_ACPI_NUMA
378 /*
379 * Parse SRAT to discover nodes.
380 */
381 acpi_numa_init();
382 #endif
383
384 #ifdef CONFIG_NUMA
385 numa_initmem_init(0, end_pfn);
386 #else
387 contig_initmem_init(0, end_pfn);
388 #endif
389
390 early_res_to_bootmem();
391
392 dma32_reserve_bootmem();
393
394 #ifdef CONFIG_ACPI_SLEEP
395 /*
396 * Reserve low memory region for sleep support.
397 */
398 acpi_reserve_bootmem();
399 #endif
400
401 if (efi_enabled)
402 efi_reserve_bootmem();
403
404 /*
405 * Find and reserve possible boot-time SMP configuration:
406 */
407 find_smp_config();
408 #ifdef CONFIG_BLK_DEV_INITRD
409 if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) {
410 unsigned long ramdisk_image = boot_params.hdr.ramdisk_image;
411 unsigned long ramdisk_size = boot_params.hdr.ramdisk_size;
412 unsigned long ramdisk_end = ramdisk_image + ramdisk_size;
413 unsigned long end_of_mem = end_pfn << PAGE_SHIFT;
414
415 if (ramdisk_end <= end_of_mem) {
416 reserve_bootmem_generic(ramdisk_image, ramdisk_size);
417 initrd_start = ramdisk_image + PAGE_OFFSET;
418 initrd_end = initrd_start+ramdisk_size;
419 } else {
420 /* Assumes everything on node 0 */
421 free_bootmem(ramdisk_image, ramdisk_size);
422 printk(KERN_ERR "initrd extends beyond end of memory "
423 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
424 ramdisk_end, end_of_mem);
425 initrd_start = 0;
426 }
427 }
428 #endif
429 reserve_crashkernel();
430 paging_init();
431 map_vsyscall();
432
433 early_quirks();
434
435 #ifdef CONFIG_ACPI
436 /*
437 * Read APIC and some other early information from ACPI tables.
438 */
439 acpi_boot_init();
440 #endif
441
442 init_cpu_to_node();
443
444 /*
445 * get boot-time SMP configuration:
446 */
447 if (smp_found_config)
448 get_smp_config();
449 init_apic_mappings();
450 ioapic_init_mappings();
451
452 /*
453 * We trust e820 completely. No explicit ROM probing in memory.
454 */
455 e820_reserve_resources(&code_resource, &data_resource, &bss_resource);
456 e820_mark_nosave_regions();
457
458 /* request I/O space for devices used on all i[345]86 PCs */
459 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
460 request_resource(&ioport_resource, &standard_io_resources[i]);
461
462 e820_setup_gap();
463
464 #ifdef CONFIG_VT
465 #if defined(CONFIG_VGA_CONSOLE)
466 if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
467 conswitchp = &vga_con;
468 #elif defined(CONFIG_DUMMY_CONSOLE)
469 conswitchp = &dummy_con;
470 #endif
471 #endif
472 }
473
474 static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
475 {
476 unsigned int *v;
477
478 if (c->extended_cpuid_level < 0x80000004)
479 return 0;
480
481 v = (unsigned int *) c->x86_model_id;
482 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
483 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
484 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
485 c->x86_model_id[48] = 0;
486 return 1;
487 }
488
489
490 static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
491 {
492 unsigned int n, dummy, eax, ebx, ecx, edx;
493
494 n = c->extended_cpuid_level;
495
496 if (n >= 0x80000005) {
497 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
498 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), "
499 "D cache %dK (%d bytes/line)\n",
500 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
501 c->x86_cache_size = (ecx>>24) + (edx>>24);
502 /* On K8 L1 TLB is inclusive, so don't count it */
503 c->x86_tlbsize = 0;
504 }
505
506 if (n >= 0x80000006) {
507 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
508 ecx = cpuid_ecx(0x80000006);
509 c->x86_cache_size = ecx >> 16;
510 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
511
512 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
513 c->x86_cache_size, ecx & 0xFF);
514 }
515 if (n >= 0x80000008) {
516 cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
517 c->x86_virt_bits = (eax >> 8) & 0xff;
518 c->x86_phys_bits = eax & 0xff;
519 }
520 }
521
522 #ifdef CONFIG_NUMA
523 static int __cpuinit nearby_node(int apicid)
524 {
525 int i, node;
526
527 for (i = apicid - 1; i >= 0; i--) {
528 node = apicid_to_node[i];
529 if (node != NUMA_NO_NODE && node_online(node))
530 return node;
531 }
532 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
533 node = apicid_to_node[i];
534 if (node != NUMA_NO_NODE && node_online(node))
535 return node;
536 }
537 return first_node(node_online_map); /* Shouldn't happen */
538 }
539 #endif
540
541 /*
542 * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
543 * Assumes number of cores is a power of two.
544 */
545 static void __cpuinit amd_detect_cmp(struct cpuinfo_x86 *c)
546 {
547 #ifdef CONFIG_SMP
548 unsigned bits;
549 #ifdef CONFIG_NUMA
550 int cpu = smp_processor_id();
551 int node = 0;
552 unsigned apicid = hard_smp_processor_id();
553 #endif
554 bits = c->x86_coreid_bits;
555
556 /* Low order bits define the core id (index of core in socket) */
557 c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
558 /* Convert the APIC ID into the socket ID */
559 c->phys_proc_id = phys_pkg_id(bits);
560
561 #ifdef CONFIG_NUMA
562 node = c->phys_proc_id;
563 if (apicid_to_node[apicid] != NUMA_NO_NODE)
564 node = apicid_to_node[apicid];
565 if (!node_online(node)) {
566 /* Two possibilities here:
567 - The CPU is missing memory and no node was created.
568 In that case try picking one from a nearby CPU
569 - The APIC IDs differ from the HyperTransport node IDs
570 which the K8 northbridge parsing fills in.
571 Assume they are all increased by a constant offset,
572 but in the same order as the HT nodeids.
573 If that doesn't result in a usable node fall back to the
574 path for the previous case. */
575
576 int ht_nodeid = apicid - (cpu_data(0).phys_proc_id << bits);
577
578 if (ht_nodeid >= 0 &&
579 apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
580 node = apicid_to_node[ht_nodeid];
581 /* Pick a nearby node */
582 if (!node_online(node))
583 node = nearby_node(apicid);
584 }
585 numa_set_node(cpu, node);
586
587 printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
588 #endif
589 #endif
590 }
591
592 static void __cpuinit early_init_amd_mc(struct cpuinfo_x86 *c)
593 {
594 #ifdef CONFIG_SMP
595 unsigned bits, ecx;
596
597 /* Multi core CPU? */
598 if (c->extended_cpuid_level < 0x80000008)
599 return;
600
601 ecx = cpuid_ecx(0x80000008);
602
603 c->x86_max_cores = (ecx & 0xff) + 1;
604
605 /* CPU telling us the core id bits shift? */
606 bits = (ecx >> 12) & 0xF;
607
608 /* Otherwise recompute */
609 if (bits == 0) {
610 while ((1 << bits) < c->x86_max_cores)
611 bits++;
612 }
613
614 c->x86_coreid_bits = bits;
615
616 #endif
617 }
618
619 #define ENABLE_C1E_MASK 0x18000000
620 #define CPUID_PROCESSOR_SIGNATURE 1
621 #define CPUID_XFAM 0x0ff00000
622 #define CPUID_XFAM_K8 0x00000000
623 #define CPUID_XFAM_10H 0x00100000
624 #define CPUID_XFAM_11H 0x00200000
625 #define CPUID_XMOD 0x000f0000
626 #define CPUID_XMOD_REV_F 0x00040000
627
628 /* AMD systems with C1E don't have a working lAPIC timer. Check for that. */
629 static __cpuinit int amd_apic_timer_broken(void)
630 {
631 u32 lo, hi, eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
632
633 switch (eax & CPUID_XFAM) {
634 case CPUID_XFAM_K8:
635 if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F)
636 break;
637 case CPUID_XFAM_10H:
638 case CPUID_XFAM_11H:
639 rdmsr(MSR_K8_ENABLE_C1E, lo, hi);
640 if (lo & ENABLE_C1E_MASK)
641 return 1;
642 break;
643 default:
644 /* err on the side of caution */
645 return 1;
646 }
647 return 0;
648 }
649
650 static void __cpuinit early_init_amd(struct cpuinfo_x86 *c)
651 {
652 early_init_amd_mc(c);
653
654 /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
655 if (c->x86_power & (1<<8))
656 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
657 }
658
659 static void __cpuinit init_amd(struct cpuinfo_x86 *c)
660 {
661 unsigned level;
662
663 #ifdef CONFIG_SMP
664 unsigned long value;
665
666 /*
667 * Disable TLB flush filter by setting HWCR.FFDIS on K8
668 * bit 6 of msr C001_0015
669 *
670 * Errata 63 for SH-B3 steppings
671 * Errata 122 for all steppings (F+ have it disabled by default)
672 */
673 if (c->x86 == 15) {
674 rdmsrl(MSR_K8_HWCR, value);
675 value |= 1 << 6;
676 wrmsrl(MSR_K8_HWCR, value);
677 }
678 #endif
679
680 /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
681 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
682 clear_bit(0*32+31, (unsigned long *)&c->x86_capability);
683
684 /* On C+ stepping K8 rep microcode works well for copy/memset */
685 level = cpuid_eax(1);
686 if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) ||
687 level >= 0x0f58))
688 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
689 if (c->x86 == 0x10 || c->x86 == 0x11)
690 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
691
692 /* Enable workaround for FXSAVE leak */
693 if (c->x86 >= 6)
694 set_cpu_cap(c, X86_FEATURE_FXSAVE_LEAK);
695
696 level = get_model_name(c);
697 if (!level) {
698 switch (c->x86) {
699 case 15:
700 /* Should distinguish Models here, but this is only
701 a fallback anyways. */
702 strcpy(c->x86_model_id, "Hammer");
703 break;
704 }
705 }
706 display_cacheinfo(c);
707
708 /* Multi core CPU? */
709 if (c->extended_cpuid_level >= 0x80000008)
710 amd_detect_cmp(c);
711
712 if (c->extended_cpuid_level >= 0x80000006 &&
713 (cpuid_edx(0x80000006) & 0xf000))
714 num_cache_leaves = 4;
715 else
716 num_cache_leaves = 3;
717
718 if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11)
719 set_cpu_cap(c, X86_FEATURE_K8);
720
721 /* MFENCE stops RDTSC speculation */
722 set_cpu_cap(c, X86_FEATURE_MFENCE_RDTSC);
723
724 if (amd_apic_timer_broken())
725 disable_apic_timer = 1;
726 }
727
728 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
729 {
730 #ifdef CONFIG_SMP
731 u32 eax, ebx, ecx, edx;
732 int index_msb, core_bits;
733
734 cpuid(1, &eax, &ebx, &ecx, &edx);
735
736
737 if (!cpu_has(c, X86_FEATURE_HT))
738 return;
739 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
740 goto out;
741
742 smp_num_siblings = (ebx & 0xff0000) >> 16;
743
744 if (smp_num_siblings == 1) {
745 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
746 } else if (smp_num_siblings > 1) {
747
748 if (smp_num_siblings > NR_CPUS) {
749 printk(KERN_WARNING "CPU: Unsupported number of "
750 "siblings %d", smp_num_siblings);
751 smp_num_siblings = 1;
752 return;
753 }
754
755 index_msb = get_count_order(smp_num_siblings);
756 c->phys_proc_id = phys_pkg_id(index_msb);
757
758 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
759
760 index_msb = get_count_order(smp_num_siblings);
761
762 core_bits = get_count_order(c->x86_max_cores);
763
764 c->cpu_core_id = phys_pkg_id(index_msb) &
765 ((1 << core_bits) - 1);
766 }
767 out:
768 if ((c->x86_max_cores * smp_num_siblings) > 1) {
769 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
770 c->phys_proc_id);
771 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
772 c->cpu_core_id);
773 }
774
775 #endif
776 }
777
778 /*
779 * find out the number of processor cores on the die
780 */
781 static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
782 {
783 unsigned int eax, t;
784
785 if (c->cpuid_level < 4)
786 return 1;
787
788 cpuid_count(4, 0, &eax, &t, &t, &t);
789
790 if (eax & 0x1f)
791 return ((eax >> 26) + 1);
792 else
793 return 1;
794 }
795
796 static void __cpuinit srat_detect_node(void)
797 {
798 #ifdef CONFIG_NUMA
799 unsigned node;
800 int cpu = smp_processor_id();
801 int apicid = hard_smp_processor_id();
802
803 /* Don't do the funky fallback heuristics the AMD version employs
804 for now. */
805 node = apicid_to_node[apicid];
806 if (node == NUMA_NO_NODE)
807 node = first_node(node_online_map);
808 numa_set_node(cpu, node);
809
810 printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
811 #endif
812 }
813
814 static void __cpuinit early_init_intel(struct cpuinfo_x86 *c)
815 {
816 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
817 (c->x86 == 0x6 && c->x86_model >= 0x0e))
818 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
819 }
820
821 static void __cpuinit init_intel(struct cpuinfo_x86 *c)
822 {
823 /* Cache sizes */
824 unsigned n;
825
826 init_intel_cacheinfo(c);
827 if (c->cpuid_level > 9) {
828 unsigned eax = cpuid_eax(10);
829 /* Check for version and the number of counters */
830 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
831 set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
832 }
833
834 if (cpu_has_ds) {
835 unsigned int l1, l2;
836 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
837 if (!(l1 & (1<<11)))
838 set_cpu_cap(c, X86_FEATURE_BTS);
839 if (!(l1 & (1<<12)))
840 set_cpu_cap(c, X86_FEATURE_PEBS);
841 }
842
843
844 if (cpu_has_bts)
845 ds_init_intel(c);
846
847 n = c->extended_cpuid_level;
848 if (n >= 0x80000008) {
849 unsigned eax = cpuid_eax(0x80000008);
850 c->x86_virt_bits = (eax >> 8) & 0xff;
851 c->x86_phys_bits = eax & 0xff;
852 /* CPUID workaround for Intel 0F34 CPU */
853 if (c->x86_vendor == X86_VENDOR_INTEL &&
854 c->x86 == 0xF && c->x86_model == 0x3 &&
855 c->x86_mask == 0x4)
856 c->x86_phys_bits = 36;
857 }
858
859 if (c->x86 == 15)
860 c->x86_cache_alignment = c->x86_clflush_size * 2;
861 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
862 (c->x86 == 0x6 && c->x86_model >= 0x0e))
863 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
864 if (c->x86 == 6)
865 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
866 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
867 c->x86_max_cores = intel_num_cpu_cores(c);
868
869 srat_detect_node();
870 }
871
872 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
873 {
874 char *v = c->x86_vendor_id;
875
876 if (!strcmp(v, "AuthenticAMD"))
877 c->x86_vendor = X86_VENDOR_AMD;
878 else if (!strcmp(v, "GenuineIntel"))
879 c->x86_vendor = X86_VENDOR_INTEL;
880 else
881 c->x86_vendor = X86_VENDOR_UNKNOWN;
882 }
883
884 /* Do some early cpuid on the boot CPU to get some parameter that are
885 needed before check_bugs. Everything advanced is in identify_cpu
886 below. */
887 static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
888 {
889 u32 tfms, xlvl;
890
891 c->loops_per_jiffy = loops_per_jiffy;
892 c->x86_cache_size = -1;
893 c->x86_vendor = X86_VENDOR_UNKNOWN;
894 c->x86_model = c->x86_mask = 0; /* So far unknown... */
895 c->x86_vendor_id[0] = '\0'; /* Unset */
896 c->x86_model_id[0] = '\0'; /* Unset */
897 c->x86_clflush_size = 64;
898 c->x86_cache_alignment = c->x86_clflush_size;
899 c->x86_max_cores = 1;
900 c->x86_coreid_bits = 0;
901 c->extended_cpuid_level = 0;
902 memset(&c->x86_capability, 0, sizeof c->x86_capability);
903
904 /* Get vendor name */
905 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
906 (unsigned int *)&c->x86_vendor_id[0],
907 (unsigned int *)&c->x86_vendor_id[8],
908 (unsigned int *)&c->x86_vendor_id[4]);
909
910 get_cpu_vendor(c);
911
912 /* Initialize the standard set of capabilities */
913 /* Note that the vendor-specific code below might override */
914
915 /* Intel-defined flags: level 0x00000001 */
916 if (c->cpuid_level >= 0x00000001) {
917 __u32 misc;
918 cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
919 &c->x86_capability[0]);
920 c->x86 = (tfms >> 8) & 0xf;
921 c->x86_model = (tfms >> 4) & 0xf;
922 c->x86_mask = tfms & 0xf;
923 if (c->x86 == 0xf)
924 c->x86 += (tfms >> 20) & 0xff;
925 if (c->x86 >= 0x6)
926 c->x86_model += ((tfms >> 16) & 0xF) << 4;
927 if (c->x86_capability[0] & (1<<19))
928 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
929 } else {
930 /* Have CPUID level 0 only - unheard of */
931 c->x86 = 4;
932 }
933
934 #ifdef CONFIG_SMP
935 c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
936 #endif
937 /* AMD-defined flags: level 0x80000001 */
938 xlvl = cpuid_eax(0x80000000);
939 c->extended_cpuid_level = xlvl;
940 if ((xlvl & 0xffff0000) == 0x80000000) {
941 if (xlvl >= 0x80000001) {
942 c->x86_capability[1] = cpuid_edx(0x80000001);
943 c->x86_capability[6] = cpuid_ecx(0x80000001);
944 }
945 if (xlvl >= 0x80000004)
946 get_model_name(c); /* Default name */
947 }
948
949 /* Transmeta-defined flags: level 0x80860001 */
950 xlvl = cpuid_eax(0x80860000);
951 if ((xlvl & 0xffff0000) == 0x80860000) {
952 /* Don't set x86_cpuid_level here for now to not confuse. */
953 if (xlvl >= 0x80860001)
954 c->x86_capability[2] = cpuid_edx(0x80860001);
955 }
956
957 c->extended_cpuid_level = cpuid_eax(0x80000000);
958 if (c->extended_cpuid_level >= 0x80000007)
959 c->x86_power = cpuid_edx(0x80000007);
960
961 switch (c->x86_vendor) {
962 case X86_VENDOR_AMD:
963 early_init_amd(c);
964 break;
965 case X86_VENDOR_INTEL:
966 early_init_intel(c);
967 break;
968 }
969
970 }
971
972 /*
973 * This does the hard work of actually picking apart the CPU stuff...
974 */
975 void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
976 {
977 int i;
978
979 early_identify_cpu(c);
980
981 init_scattered_cpuid_features(c);
982
983 c->apicid = phys_pkg_id(0);
984
985 /*
986 * Vendor-specific initialization. In this section we
987 * canonicalize the feature flags, meaning if there are
988 * features a certain CPU supports which CPUID doesn't
989 * tell us, CPUID claiming incorrect flags, or other bugs,
990 * we handle them here.
991 *
992 * At the end of this section, c->x86_capability better
993 * indicate the features this CPU genuinely supports!
994 */
995 switch (c->x86_vendor) {
996 case X86_VENDOR_AMD:
997 init_amd(c);
998 break;
999
1000 case X86_VENDOR_INTEL:
1001 init_intel(c);
1002 break;
1003
1004 case X86_VENDOR_UNKNOWN:
1005 default:
1006 display_cacheinfo(c);
1007 break;
1008 }
1009
1010 detect_ht(c);
1011
1012 /*
1013 * On SMP, boot_cpu_data holds the common feature set between
1014 * all CPUs; so make sure that we indicate which features are
1015 * common between the CPUs. The first time this routine gets
1016 * executed, c == &boot_cpu_data.
1017 */
1018 if (c != &boot_cpu_data) {
1019 /* AND the already accumulated flags with these */
1020 for (i = 0; i < NCAPINTS; i++)
1021 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1022 }
1023
1024 /* Clear all flags overriden by options */
1025 for (i = 0; i < NCAPINTS; i++)
1026 c->x86_capability[i] &= ~cleared_cpu_caps[i];
1027
1028 #ifdef CONFIG_X86_MCE
1029 mcheck_init(c);
1030 #endif
1031 select_idle_routine(c);
1032
1033 if (c != &boot_cpu_data)
1034 mtrr_ap_init();
1035 #ifdef CONFIG_NUMA
1036 numa_add_cpu(smp_processor_id());
1037 #endif
1038
1039 }
1040
1041 static __init int setup_noclflush(char *arg)
1042 {
1043 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
1044 return 1;
1045 }
1046 __setup("noclflush", setup_noclflush);
1047
1048 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
1049 {
1050 if (c->x86_model_id[0])
1051 printk(KERN_CONT "%s", c->x86_model_id);
1052
1053 if (c->x86_mask || c->cpuid_level >= 0)
1054 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
1055 else
1056 printk(KERN_CONT "\n");
1057 }
1058
1059 static __init int setup_disablecpuid(char *arg)
1060 {
1061 int bit;
1062 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1063 setup_clear_cpu_cap(bit);
1064 else
1065 return 0;
1066 return 1;
1067 }
1068 __setup("clearcpuid=", setup_disablecpuid);
1069
1070 /*
1071 * Get CPU information for use by the procfs.
1072 */
1073
1074 static int show_cpuinfo(struct seq_file *m, void *v)
1075 {
1076 struct cpuinfo_x86 *c = v;
1077 int cpu = 0, i;
1078
1079 #ifdef CONFIG_SMP
1080 cpu = c->cpu_index;
1081 #endif
1082
1083 seq_printf(m, "processor\t: %u\n"
1084 "vendor_id\t: %s\n"
1085 "cpu family\t: %d\n"
1086 "model\t\t: %d\n"
1087 "model name\t: %s\n",
1088 (unsigned)cpu,
1089 c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
1090 c->x86,
1091 (int)c->x86_model,
1092 c->x86_model_id[0] ? c->x86_model_id : "unknown");
1093
1094 if (c->x86_mask || c->cpuid_level >= 0)
1095 seq_printf(m, "stepping\t: %d\n", c->x86_mask);
1096 else
1097 seq_printf(m, "stepping\t: unknown\n");
1098
1099 if (cpu_has(c, X86_FEATURE_TSC)) {
1100 unsigned int freq = cpufreq_quick_get((unsigned)cpu);
1101
1102 if (!freq)
1103 freq = cpu_khz;
1104 seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
1105 freq / 1000, (freq % 1000));
1106 }
1107
1108 /* Cache size */
1109 if (c->x86_cache_size >= 0)
1110 seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
1111
1112 #ifdef CONFIG_SMP
1113 if (smp_num_siblings * c->x86_max_cores > 1) {
1114 seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
1115 seq_printf(m, "siblings\t: %d\n",
1116 cpus_weight(per_cpu(cpu_core_map, cpu)));
1117 seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
1118 seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
1119 }
1120 #endif
1121
1122 seq_printf(m,
1123 "fpu\t\t: yes\n"
1124 "fpu_exception\t: yes\n"
1125 "cpuid level\t: %d\n"
1126 "wp\t\t: yes\n"
1127 "flags\t\t:",
1128 c->cpuid_level);
1129
1130 for (i = 0; i < 32*NCAPINTS; i++)
1131 if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
1132 seq_printf(m, " %s", x86_cap_flags[i]);
1133
1134 seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
1135 c->loops_per_jiffy/(500000/HZ),
1136 (c->loops_per_jiffy/(5000/HZ)) % 100);
1137
1138 if (c->x86_tlbsize > 0)
1139 seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
1140 seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
1141 seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
1142
1143 seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
1144 c->x86_phys_bits, c->x86_virt_bits);
1145
1146 seq_printf(m, "power management:");
1147 for (i = 0; i < 32; i++) {
1148 if (c->x86_power & (1 << i)) {
1149 if (i < ARRAY_SIZE(x86_power_flags) &&
1150 x86_power_flags[i])
1151 seq_printf(m, "%s%s",
1152 x86_power_flags[i][0]?" ":"",
1153 x86_power_flags[i]);
1154 else
1155 seq_printf(m, " [%d]", i);
1156 }
1157 }
1158
1159 seq_printf(m, "\n\n");
1160
1161 return 0;
1162 }
1163
1164 static void *c_start(struct seq_file *m, loff_t *pos)
1165 {
1166 if (*pos == 0) /* just in case, cpu 0 is not the first */
1167 *pos = first_cpu(cpu_online_map);
1168 if ((*pos) < NR_CPUS && cpu_online(*pos))
1169 return &cpu_data(*pos);
1170 return NULL;
1171 }
1172
1173 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1174 {
1175 *pos = next_cpu(*pos, cpu_online_map);
1176 return c_start(m, pos);
1177 }
1178
1179 static void c_stop(struct seq_file *m, void *v)
1180 {
1181 }
1182
1183 const struct seq_operations cpuinfo_op = {
1184 .start = c_start,
1185 .next = c_next,
1186 .stop = c_stop,
1187 .show = show_cpuinfo,
1188 };