]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/sev.c
x86/sev: Fix SEV-ES INS/OUTS instructions for word, dword, and qword
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / sev.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AMD Memory Encryption Support
4 *
5 * Copyright (C) 2019 SUSE
6 *
7 * Author: Joerg Roedel <jroedel@suse.de>
8 */
9
10 #define pr_fmt(fmt) "SEV: " fmt
11
12 #include <linux/sched/debug.h> /* For show_regs() */
13 #include <linux/percpu-defs.h>
14 #include <linux/mem_encrypt.h>
15 #include <linux/printk.h>
16 #include <linux/mm_types.h>
17 #include <linux/set_memory.h>
18 #include <linux/memblock.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21
22 #include <asm/cpu_entry_area.h>
23 #include <asm/stacktrace.h>
24 #include <asm/sev.h>
25 #include <asm/insn-eval.h>
26 #include <asm/fpu/internal.h>
27 #include <asm/processor.h>
28 #include <asm/realmode.h>
29 #include <asm/traps.h>
30 #include <asm/svm.h>
31 #include <asm/smp.h>
32 #include <asm/cpu.h>
33
34 #define DR7_RESET_VALUE 0x400
35
36 /* For early boot hypervisor communication in SEV-ES enabled guests */
37 static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
38
39 /*
40 * Needs to be in the .data section because we need it NULL before bss is
41 * cleared
42 */
43 static struct ghcb __initdata *boot_ghcb;
44
45 /* #VC handler runtime per-CPU data */
46 struct sev_es_runtime_data {
47 struct ghcb ghcb_page;
48
49 /*
50 * Reserve one page per CPU as backup storage for the unencrypted GHCB.
51 * It is needed when an NMI happens while the #VC handler uses the real
52 * GHCB, and the NMI handler itself is causing another #VC exception. In
53 * that case the GHCB content of the first handler needs to be backed up
54 * and restored.
55 */
56 struct ghcb backup_ghcb;
57
58 /*
59 * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
60 * There is no need for it to be atomic, because nothing is written to
61 * the GHCB between the read and the write of ghcb_active. So it is safe
62 * to use it when a nested #VC exception happens before the write.
63 *
64 * This is necessary for example in the #VC->NMI->#VC case when the NMI
65 * happens while the first #VC handler uses the GHCB. When the NMI code
66 * raises a second #VC handler it might overwrite the contents of the
67 * GHCB written by the first handler. To avoid this the content of the
68 * GHCB is saved and restored when the GHCB is detected to be in use
69 * already.
70 */
71 bool ghcb_active;
72 bool backup_ghcb_active;
73
74 /*
75 * Cached DR7 value - write it on DR7 writes and return it on reads.
76 * That value will never make it to the real hardware DR7 as debugging
77 * is currently unsupported in SEV-ES guests.
78 */
79 unsigned long dr7;
80 };
81
82 struct ghcb_state {
83 struct ghcb *ghcb;
84 };
85
86 static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
87 DEFINE_STATIC_KEY_FALSE(sev_es_enable_key);
88
89 /* Needed in vc_early_forward_exception */
90 void do_early_exception(struct pt_regs *regs, int trapnr);
91
92 static __always_inline bool on_vc_stack(struct pt_regs *regs)
93 {
94 unsigned long sp = regs->sp;
95
96 /* User-mode RSP is not trusted */
97 if (user_mode(regs))
98 return false;
99
100 /* SYSCALL gap still has user-mode RSP */
101 if (ip_within_syscall_gap(regs))
102 return false;
103
104 return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
105 }
106
107 /*
108 * This function handles the case when an NMI is raised in the #VC
109 * exception handler entry code, before the #VC handler has switched off
110 * its IST stack. In this case, the IST entry for #VC must be adjusted,
111 * so that any nested #VC exception will not overwrite the stack
112 * contents of the interrupted #VC handler.
113 *
114 * The IST entry is adjusted unconditionally so that it can be also be
115 * unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a
116 * nested sev_es_ist_exit() call may adjust back the IST entry too
117 * early.
118 *
119 * The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run
120 * on the NMI IST stack, as they are only called from NMI handling code
121 * right now.
122 */
123 void noinstr __sev_es_ist_enter(struct pt_regs *regs)
124 {
125 unsigned long old_ist, new_ist;
126
127 /* Read old IST entry */
128 new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
129
130 /*
131 * If NMI happened while on the #VC IST stack, set the new IST
132 * value below regs->sp, so that the interrupted stack frame is
133 * not overwritten by subsequent #VC exceptions.
134 */
135 if (on_vc_stack(regs))
136 new_ist = regs->sp;
137
138 /*
139 * Reserve additional 8 bytes and store old IST value so this
140 * adjustment can be unrolled in __sev_es_ist_exit().
141 */
142 new_ist -= sizeof(old_ist);
143 *(unsigned long *)new_ist = old_ist;
144
145 /* Set new IST entry */
146 this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
147 }
148
149 void noinstr __sev_es_ist_exit(void)
150 {
151 unsigned long ist;
152
153 /* Read IST entry */
154 ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
155
156 if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
157 return;
158
159 /* Read back old IST entry and write it to the TSS */
160 this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
161 }
162
163 /*
164 * Nothing shall interrupt this code path while holding the per-CPU
165 * GHCB. The backup GHCB is only for NMIs interrupting this path.
166 *
167 * Callers must disable local interrupts around it.
168 */
169 static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state)
170 {
171 struct sev_es_runtime_data *data;
172 struct ghcb *ghcb;
173
174 WARN_ON(!irqs_disabled());
175
176 data = this_cpu_read(runtime_data);
177 ghcb = &data->ghcb_page;
178
179 if (unlikely(data->ghcb_active)) {
180 /* GHCB is already in use - save its contents */
181
182 if (unlikely(data->backup_ghcb_active)) {
183 /*
184 * Backup-GHCB is also already in use. There is no way
185 * to continue here so just kill the machine. To make
186 * panic() work, mark GHCBs inactive so that messages
187 * can be printed out.
188 */
189 data->ghcb_active = false;
190 data->backup_ghcb_active = false;
191
192 instrumentation_begin();
193 panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
194 instrumentation_end();
195 }
196
197 /* Mark backup_ghcb active before writing to it */
198 data->backup_ghcb_active = true;
199
200 state->ghcb = &data->backup_ghcb;
201
202 /* Backup GHCB content */
203 *state->ghcb = *ghcb;
204 } else {
205 state->ghcb = NULL;
206 data->ghcb_active = true;
207 }
208
209 return ghcb;
210 }
211
212 /* Needed in vc_early_forward_exception */
213 void do_early_exception(struct pt_regs *regs, int trapnr);
214
215 static inline u64 sev_es_rd_ghcb_msr(void)
216 {
217 return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
218 }
219
220 static __always_inline void sev_es_wr_ghcb_msr(u64 val)
221 {
222 u32 low, high;
223
224 low = (u32)(val);
225 high = (u32)(val >> 32);
226
227 native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
228 }
229
230 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
231 unsigned char *buffer)
232 {
233 return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
234 }
235
236 static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
237 {
238 char buffer[MAX_INSN_SIZE];
239 int insn_bytes;
240
241 insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
242 if (insn_bytes == 0) {
243 /* Nothing could be copied */
244 ctxt->fi.vector = X86_TRAP_PF;
245 ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
246 ctxt->fi.cr2 = ctxt->regs->ip;
247 return ES_EXCEPTION;
248 } else if (insn_bytes == -EINVAL) {
249 /* Effective RIP could not be calculated */
250 ctxt->fi.vector = X86_TRAP_GP;
251 ctxt->fi.error_code = 0;
252 ctxt->fi.cr2 = 0;
253 return ES_EXCEPTION;
254 }
255
256 if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
257 return ES_DECODE_FAILED;
258
259 if (ctxt->insn.immediate.got)
260 return ES_OK;
261 else
262 return ES_DECODE_FAILED;
263 }
264
265 static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
266 {
267 char buffer[MAX_INSN_SIZE];
268 int res, ret;
269
270 res = vc_fetch_insn_kernel(ctxt, buffer);
271 if (res) {
272 ctxt->fi.vector = X86_TRAP_PF;
273 ctxt->fi.error_code = X86_PF_INSTR;
274 ctxt->fi.cr2 = ctxt->regs->ip;
275 return ES_EXCEPTION;
276 }
277
278 ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
279 if (ret < 0)
280 return ES_DECODE_FAILED;
281 else
282 return ES_OK;
283 }
284
285 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
286 {
287 if (user_mode(ctxt->regs))
288 return __vc_decode_user_insn(ctxt);
289 else
290 return __vc_decode_kern_insn(ctxt);
291 }
292
293 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
294 char *dst, char *buf, size_t size)
295 {
296 unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
297
298 /*
299 * This function uses __put_user() independent of whether kernel or user
300 * memory is accessed. This works fine because __put_user() does no
301 * sanity checks of the pointer being accessed. All that it does is
302 * to report when the access failed.
303 *
304 * Also, this function runs in atomic context, so __put_user() is not
305 * allowed to sleep. The page-fault handler detects that it is running
306 * in atomic context and will not try to take mmap_sem and handle the
307 * fault, so additional pagefault_enable()/disable() calls are not
308 * needed.
309 *
310 * The access can't be done via copy_to_user() here because
311 * vc_write_mem() must not use string instructions to access unsafe
312 * memory. The reason is that MOVS is emulated by the #VC handler by
313 * splitting the move up into a read and a write and taking a nested #VC
314 * exception on whatever of them is the MMIO access. Using string
315 * instructions here would cause infinite nesting.
316 */
317 switch (size) {
318 case 1: {
319 u8 d1;
320 u8 __user *target = (u8 __user *)dst;
321
322 memcpy(&d1, buf, 1);
323 if (__put_user(d1, target))
324 goto fault;
325 break;
326 }
327 case 2: {
328 u16 d2;
329 u16 __user *target = (u16 __user *)dst;
330
331 memcpy(&d2, buf, 2);
332 if (__put_user(d2, target))
333 goto fault;
334 break;
335 }
336 case 4: {
337 u32 d4;
338 u32 __user *target = (u32 __user *)dst;
339
340 memcpy(&d4, buf, 4);
341 if (__put_user(d4, target))
342 goto fault;
343 break;
344 }
345 case 8: {
346 u64 d8;
347 u64 __user *target = (u64 __user *)dst;
348
349 memcpy(&d8, buf, 8);
350 if (__put_user(d8, target))
351 goto fault;
352 break;
353 }
354 default:
355 WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
356 return ES_UNSUPPORTED;
357 }
358
359 return ES_OK;
360
361 fault:
362 if (user_mode(ctxt->regs))
363 error_code |= X86_PF_USER;
364
365 ctxt->fi.vector = X86_TRAP_PF;
366 ctxt->fi.error_code = error_code;
367 ctxt->fi.cr2 = (unsigned long)dst;
368
369 return ES_EXCEPTION;
370 }
371
372 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
373 char *src, char *buf, size_t size)
374 {
375 unsigned long error_code = X86_PF_PROT;
376
377 /*
378 * This function uses __get_user() independent of whether kernel or user
379 * memory is accessed. This works fine because __get_user() does no
380 * sanity checks of the pointer being accessed. All that it does is
381 * to report when the access failed.
382 *
383 * Also, this function runs in atomic context, so __get_user() is not
384 * allowed to sleep. The page-fault handler detects that it is running
385 * in atomic context and will not try to take mmap_sem and handle the
386 * fault, so additional pagefault_enable()/disable() calls are not
387 * needed.
388 *
389 * The access can't be done via copy_from_user() here because
390 * vc_read_mem() must not use string instructions to access unsafe
391 * memory. The reason is that MOVS is emulated by the #VC handler by
392 * splitting the move up into a read and a write and taking a nested #VC
393 * exception on whatever of them is the MMIO access. Using string
394 * instructions here would cause infinite nesting.
395 */
396 switch (size) {
397 case 1: {
398 u8 d1;
399 u8 __user *s = (u8 __user *)src;
400
401 if (__get_user(d1, s))
402 goto fault;
403 memcpy(buf, &d1, 1);
404 break;
405 }
406 case 2: {
407 u16 d2;
408 u16 __user *s = (u16 __user *)src;
409
410 if (__get_user(d2, s))
411 goto fault;
412 memcpy(buf, &d2, 2);
413 break;
414 }
415 case 4: {
416 u32 d4;
417 u32 __user *s = (u32 __user *)src;
418
419 if (__get_user(d4, s))
420 goto fault;
421 memcpy(buf, &d4, 4);
422 break;
423 }
424 case 8: {
425 u64 d8;
426 u64 __user *s = (u64 __user *)src;
427 if (__get_user(d8, s))
428 goto fault;
429 memcpy(buf, &d8, 8);
430 break;
431 }
432 default:
433 WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
434 return ES_UNSUPPORTED;
435 }
436
437 return ES_OK;
438
439 fault:
440 if (user_mode(ctxt->regs))
441 error_code |= X86_PF_USER;
442
443 ctxt->fi.vector = X86_TRAP_PF;
444 ctxt->fi.error_code = error_code;
445 ctxt->fi.cr2 = (unsigned long)src;
446
447 return ES_EXCEPTION;
448 }
449
450 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
451 unsigned long vaddr, phys_addr_t *paddr)
452 {
453 unsigned long va = (unsigned long)vaddr;
454 unsigned int level;
455 phys_addr_t pa;
456 pgd_t *pgd;
457 pte_t *pte;
458
459 pgd = __va(read_cr3_pa());
460 pgd = &pgd[pgd_index(va)];
461 pte = lookup_address_in_pgd(pgd, va, &level);
462 if (!pte) {
463 ctxt->fi.vector = X86_TRAP_PF;
464 ctxt->fi.cr2 = vaddr;
465 ctxt->fi.error_code = 0;
466
467 if (user_mode(ctxt->regs))
468 ctxt->fi.error_code |= X86_PF_USER;
469
470 return ES_EXCEPTION;
471 }
472
473 if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
474 /* Emulated MMIO to/from encrypted memory not supported */
475 return ES_UNSUPPORTED;
476
477 pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
478 pa |= va & ~page_level_mask(level);
479
480 *paddr = pa;
481
482 return ES_OK;
483 }
484
485 /* Include code shared with pre-decompression boot stage */
486 #include "sev-shared.c"
487
488 static noinstr void __sev_put_ghcb(struct ghcb_state *state)
489 {
490 struct sev_es_runtime_data *data;
491 struct ghcb *ghcb;
492
493 WARN_ON(!irqs_disabled());
494
495 data = this_cpu_read(runtime_data);
496 ghcb = &data->ghcb_page;
497
498 if (state->ghcb) {
499 /* Restore GHCB from Backup */
500 *ghcb = *state->ghcb;
501 data->backup_ghcb_active = false;
502 state->ghcb = NULL;
503 } else {
504 /*
505 * Invalidate the GHCB so a VMGEXIT instruction issued
506 * from userspace won't appear to be valid.
507 */
508 vc_ghcb_invalidate(ghcb);
509 data->ghcb_active = false;
510 }
511 }
512
513 void noinstr __sev_es_nmi_complete(void)
514 {
515 struct ghcb_state state;
516 struct ghcb *ghcb;
517
518 ghcb = __sev_get_ghcb(&state);
519
520 vc_ghcb_invalidate(ghcb);
521 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
522 ghcb_set_sw_exit_info_1(ghcb, 0);
523 ghcb_set_sw_exit_info_2(ghcb, 0);
524
525 sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
526 VMGEXIT();
527
528 __sev_put_ghcb(&state);
529 }
530
531 static u64 get_jump_table_addr(void)
532 {
533 struct ghcb_state state;
534 unsigned long flags;
535 struct ghcb *ghcb;
536 u64 ret = 0;
537
538 local_irq_save(flags);
539
540 ghcb = __sev_get_ghcb(&state);
541
542 vc_ghcb_invalidate(ghcb);
543 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
544 ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
545 ghcb_set_sw_exit_info_2(ghcb, 0);
546
547 sev_es_wr_ghcb_msr(__pa(ghcb));
548 VMGEXIT();
549
550 if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
551 ghcb_sw_exit_info_2_is_valid(ghcb))
552 ret = ghcb->save.sw_exit_info_2;
553
554 __sev_put_ghcb(&state);
555
556 local_irq_restore(flags);
557
558 return ret;
559 }
560
561 int sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
562 {
563 u16 startup_cs, startup_ip;
564 phys_addr_t jump_table_pa;
565 u64 jump_table_addr;
566 u16 __iomem *jump_table;
567
568 jump_table_addr = get_jump_table_addr();
569
570 /* On UP guests there is no jump table so this is not a failure */
571 if (!jump_table_addr)
572 return 0;
573
574 /* Check if AP Jump Table is page-aligned */
575 if (jump_table_addr & ~PAGE_MASK)
576 return -EINVAL;
577
578 jump_table_pa = jump_table_addr & PAGE_MASK;
579
580 startup_cs = (u16)(rmh->trampoline_start >> 4);
581 startup_ip = (u16)(rmh->sev_es_trampoline_start -
582 rmh->trampoline_start);
583
584 jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
585 if (!jump_table)
586 return -EIO;
587
588 writew(startup_ip, &jump_table[0]);
589 writew(startup_cs, &jump_table[1]);
590
591 iounmap(jump_table);
592
593 return 0;
594 }
595
596 /*
597 * This is needed by the OVMF UEFI firmware which will use whatever it finds in
598 * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
599 * runtime GHCBs used by the kernel are also mapped in the EFI page-table.
600 */
601 int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
602 {
603 struct sev_es_runtime_data *data;
604 unsigned long address, pflags;
605 int cpu;
606 u64 pfn;
607
608 if (!sev_es_active())
609 return 0;
610
611 pflags = _PAGE_NX | _PAGE_RW;
612
613 for_each_possible_cpu(cpu) {
614 data = per_cpu(runtime_data, cpu);
615
616 address = __pa(&data->ghcb_page);
617 pfn = address >> PAGE_SHIFT;
618
619 if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
620 return 1;
621 }
622
623 return 0;
624 }
625
626 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
627 {
628 struct pt_regs *regs = ctxt->regs;
629 enum es_result ret;
630 u64 exit_info_1;
631
632 /* Is it a WRMSR? */
633 exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;
634
635 ghcb_set_rcx(ghcb, regs->cx);
636 if (exit_info_1) {
637 ghcb_set_rax(ghcb, regs->ax);
638 ghcb_set_rdx(ghcb, regs->dx);
639 }
640
641 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0);
642
643 if ((ret == ES_OK) && (!exit_info_1)) {
644 regs->ax = ghcb->save.rax;
645 regs->dx = ghcb->save.rdx;
646 }
647
648 return ret;
649 }
650
651 /*
652 * This function runs on the first #VC exception after the kernel
653 * switched to virtual addresses.
654 */
655 static bool __init sev_es_setup_ghcb(void)
656 {
657 /* First make sure the hypervisor talks a supported protocol. */
658 if (!sev_es_negotiate_protocol())
659 return false;
660
661 /*
662 * Clear the boot_ghcb. The first exception comes in before the bss
663 * section is cleared.
664 */
665 memset(&boot_ghcb_page, 0, PAGE_SIZE);
666
667 /* Alright - Make the boot-ghcb public */
668 boot_ghcb = &boot_ghcb_page;
669
670 return true;
671 }
672
673 #ifdef CONFIG_HOTPLUG_CPU
674 static void sev_es_ap_hlt_loop(void)
675 {
676 struct ghcb_state state;
677 struct ghcb *ghcb;
678
679 ghcb = __sev_get_ghcb(&state);
680
681 while (true) {
682 vc_ghcb_invalidate(ghcb);
683 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
684 ghcb_set_sw_exit_info_1(ghcb, 0);
685 ghcb_set_sw_exit_info_2(ghcb, 0);
686
687 sev_es_wr_ghcb_msr(__pa(ghcb));
688 VMGEXIT();
689
690 /* Wakeup signal? */
691 if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
692 ghcb->save.sw_exit_info_2)
693 break;
694 }
695
696 __sev_put_ghcb(&state);
697 }
698
699 /*
700 * Play_dead handler when running under SEV-ES. This is needed because
701 * the hypervisor can't deliver an SIPI request to restart the AP.
702 * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
703 * hypervisor wakes it up again.
704 */
705 static void sev_es_play_dead(void)
706 {
707 play_dead_common();
708
709 /* IRQs now disabled */
710
711 sev_es_ap_hlt_loop();
712
713 /*
714 * If we get here, the VCPU was woken up again. Jump to CPU
715 * startup code to get it back online.
716 */
717 start_cpu0();
718 }
719 #else /* CONFIG_HOTPLUG_CPU */
720 #define sev_es_play_dead native_play_dead
721 #endif /* CONFIG_HOTPLUG_CPU */
722
723 #ifdef CONFIG_SMP
724 static void __init sev_es_setup_play_dead(void)
725 {
726 smp_ops.play_dead = sev_es_play_dead;
727 }
728 #else
729 static inline void sev_es_setup_play_dead(void) { }
730 #endif
731
732 static void __init alloc_runtime_data(int cpu)
733 {
734 struct sev_es_runtime_data *data;
735
736 data = memblock_alloc(sizeof(*data), PAGE_SIZE);
737 if (!data)
738 panic("Can't allocate SEV-ES runtime data");
739
740 per_cpu(runtime_data, cpu) = data;
741 }
742
743 static void __init init_ghcb(int cpu)
744 {
745 struct sev_es_runtime_data *data;
746 int err;
747
748 data = per_cpu(runtime_data, cpu);
749
750 err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
751 sizeof(data->ghcb_page));
752 if (err)
753 panic("Can't map GHCBs unencrypted");
754
755 memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
756
757 data->ghcb_active = false;
758 data->backup_ghcb_active = false;
759 }
760
761 void __init sev_es_init_vc_handling(void)
762 {
763 int cpu;
764
765 BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
766
767 if (!sev_es_active())
768 return;
769
770 if (!sev_es_check_cpu_features())
771 panic("SEV-ES CPU Features missing");
772
773 /* Enable SEV-ES special handling */
774 static_branch_enable(&sev_es_enable_key);
775
776 /* Initialize per-cpu GHCB pages */
777 for_each_possible_cpu(cpu) {
778 alloc_runtime_data(cpu);
779 init_ghcb(cpu);
780 }
781
782 sev_es_setup_play_dead();
783
784 /* Secondary CPUs use the runtime #VC handler */
785 initial_vc_handler = (unsigned long)kernel_exc_vmm_communication;
786 }
787
788 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
789 {
790 int trapnr = ctxt->fi.vector;
791
792 if (trapnr == X86_TRAP_PF)
793 native_write_cr2(ctxt->fi.cr2);
794
795 ctxt->regs->orig_ax = ctxt->fi.error_code;
796 do_early_exception(ctxt->regs, trapnr);
797 }
798
799 static long *vc_insn_get_reg(struct es_em_ctxt *ctxt)
800 {
801 long *reg_array;
802 int offset;
803
804 reg_array = (long *)ctxt->regs;
805 offset = insn_get_modrm_reg_off(&ctxt->insn, ctxt->regs);
806
807 if (offset < 0)
808 return NULL;
809
810 offset /= sizeof(long);
811
812 return reg_array + offset;
813 }
814
815 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
816 {
817 long *reg_array;
818 int offset;
819
820 reg_array = (long *)ctxt->regs;
821 offset = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
822
823 if (offset < 0)
824 return NULL;
825
826 offset /= sizeof(long);
827
828 return reg_array + offset;
829 }
830 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
831 unsigned int bytes, bool read)
832 {
833 u64 exit_code, exit_info_1, exit_info_2;
834 unsigned long ghcb_pa = __pa(ghcb);
835 enum es_result res;
836 phys_addr_t paddr;
837 void __user *ref;
838
839 ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
840 if (ref == (void __user *)-1L)
841 return ES_UNSUPPORTED;
842
843 exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
844
845 res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
846 if (res != ES_OK) {
847 if (res == ES_EXCEPTION && !read)
848 ctxt->fi.error_code |= X86_PF_WRITE;
849
850 return res;
851 }
852
853 exit_info_1 = paddr;
854 /* Can never be greater than 8 */
855 exit_info_2 = bytes;
856
857 ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
858
859 return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
860 }
861
862 static enum es_result vc_handle_mmio_twobyte_ops(struct ghcb *ghcb,
863 struct es_em_ctxt *ctxt)
864 {
865 struct insn *insn = &ctxt->insn;
866 unsigned int bytes = 0;
867 enum es_result ret;
868 int sign_byte;
869 long *reg_data;
870
871 switch (insn->opcode.bytes[1]) {
872 /* MMIO Read w/ zero-extension */
873 case 0xb6:
874 bytes = 1;
875 fallthrough;
876 case 0xb7:
877 if (!bytes)
878 bytes = 2;
879
880 ret = vc_do_mmio(ghcb, ctxt, bytes, true);
881 if (ret)
882 break;
883
884 /* Zero extend based on operand size */
885 reg_data = vc_insn_get_reg(ctxt);
886 if (!reg_data)
887 return ES_DECODE_FAILED;
888
889 memset(reg_data, 0, insn->opnd_bytes);
890
891 memcpy(reg_data, ghcb->shared_buffer, bytes);
892 break;
893
894 /* MMIO Read w/ sign-extension */
895 case 0xbe:
896 bytes = 1;
897 fallthrough;
898 case 0xbf:
899 if (!bytes)
900 bytes = 2;
901
902 ret = vc_do_mmio(ghcb, ctxt, bytes, true);
903 if (ret)
904 break;
905
906 /* Sign extend based on operand size */
907 reg_data = vc_insn_get_reg(ctxt);
908 if (!reg_data)
909 return ES_DECODE_FAILED;
910
911 if (bytes == 1) {
912 u8 *val = (u8 *)ghcb->shared_buffer;
913
914 sign_byte = (*val & 0x80) ? 0xff : 0x00;
915 } else {
916 u16 *val = (u16 *)ghcb->shared_buffer;
917
918 sign_byte = (*val & 0x8000) ? 0xff : 0x00;
919 }
920 memset(reg_data, sign_byte, insn->opnd_bytes);
921
922 memcpy(reg_data, ghcb->shared_buffer, bytes);
923 break;
924
925 default:
926 ret = ES_UNSUPPORTED;
927 }
928
929 return ret;
930 }
931
932 /*
933 * The MOVS instruction has two memory operands, which raises the
934 * problem that it is not known whether the access to the source or the
935 * destination caused the #VC exception (and hence whether an MMIO read
936 * or write operation needs to be emulated).
937 *
938 * Instead of playing games with walking page-tables and trying to guess
939 * whether the source or destination is an MMIO range, split the move
940 * into two operations, a read and a write with only one memory operand.
941 * This will cause a nested #VC exception on the MMIO address which can
942 * then be handled.
943 *
944 * This implementation has the benefit that it also supports MOVS where
945 * source _and_ destination are MMIO regions.
946 *
947 * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
948 * rare operation. If it turns out to be a performance problem the split
949 * operations can be moved to memcpy_fromio() and memcpy_toio().
950 */
951 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
952 unsigned int bytes)
953 {
954 unsigned long ds_base, es_base;
955 unsigned char *src, *dst;
956 unsigned char buffer[8];
957 enum es_result ret;
958 bool rep;
959 int off;
960
961 ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
962 es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
963
964 if (ds_base == -1L || es_base == -1L) {
965 ctxt->fi.vector = X86_TRAP_GP;
966 ctxt->fi.error_code = 0;
967 return ES_EXCEPTION;
968 }
969
970 src = ds_base + (unsigned char *)ctxt->regs->si;
971 dst = es_base + (unsigned char *)ctxt->regs->di;
972
973 ret = vc_read_mem(ctxt, src, buffer, bytes);
974 if (ret != ES_OK)
975 return ret;
976
977 ret = vc_write_mem(ctxt, dst, buffer, bytes);
978 if (ret != ES_OK)
979 return ret;
980
981 if (ctxt->regs->flags & X86_EFLAGS_DF)
982 off = -bytes;
983 else
984 off = bytes;
985
986 ctxt->regs->si += off;
987 ctxt->regs->di += off;
988
989 rep = insn_has_rep_prefix(&ctxt->insn);
990 if (rep)
991 ctxt->regs->cx -= 1;
992
993 if (!rep || ctxt->regs->cx == 0)
994 return ES_OK;
995 else
996 return ES_RETRY;
997 }
998
999 static enum es_result vc_handle_mmio(struct ghcb *ghcb,
1000 struct es_em_ctxt *ctxt)
1001 {
1002 struct insn *insn = &ctxt->insn;
1003 unsigned int bytes = 0;
1004 enum es_result ret;
1005 long *reg_data;
1006
1007 switch (insn->opcode.bytes[0]) {
1008 /* MMIO Write */
1009 case 0x88:
1010 bytes = 1;
1011 fallthrough;
1012 case 0x89:
1013 if (!bytes)
1014 bytes = insn->opnd_bytes;
1015
1016 reg_data = vc_insn_get_reg(ctxt);
1017 if (!reg_data)
1018 return ES_DECODE_FAILED;
1019
1020 memcpy(ghcb->shared_buffer, reg_data, bytes);
1021
1022 ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1023 break;
1024
1025 case 0xc6:
1026 bytes = 1;
1027 fallthrough;
1028 case 0xc7:
1029 if (!bytes)
1030 bytes = insn->opnd_bytes;
1031
1032 memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
1033
1034 ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1035 break;
1036
1037 /* MMIO Read */
1038 case 0x8a:
1039 bytes = 1;
1040 fallthrough;
1041 case 0x8b:
1042 if (!bytes)
1043 bytes = insn->opnd_bytes;
1044
1045 ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1046 if (ret)
1047 break;
1048
1049 reg_data = vc_insn_get_reg(ctxt);
1050 if (!reg_data)
1051 return ES_DECODE_FAILED;
1052
1053 /* Zero-extend for 32-bit operation */
1054 if (bytes == 4)
1055 *reg_data = 0;
1056
1057 memcpy(reg_data, ghcb->shared_buffer, bytes);
1058 break;
1059
1060 /* MOVS instruction */
1061 case 0xa4:
1062 bytes = 1;
1063 fallthrough;
1064 case 0xa5:
1065 if (!bytes)
1066 bytes = insn->opnd_bytes;
1067
1068 ret = vc_handle_mmio_movs(ctxt, bytes);
1069 break;
1070 /* Two-Byte Opcodes */
1071 case 0x0f:
1072 ret = vc_handle_mmio_twobyte_ops(ghcb, ctxt);
1073 break;
1074 default:
1075 ret = ES_UNSUPPORTED;
1076 }
1077
1078 return ret;
1079 }
1080
1081 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
1082 struct es_em_ctxt *ctxt)
1083 {
1084 struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1085 long val, *reg = vc_insn_get_rm(ctxt);
1086 enum es_result ret;
1087
1088 if (!reg)
1089 return ES_DECODE_FAILED;
1090
1091 val = *reg;
1092
1093 /* Upper 32 bits must be written as zeroes */
1094 if (val >> 32) {
1095 ctxt->fi.vector = X86_TRAP_GP;
1096 ctxt->fi.error_code = 0;
1097 return ES_EXCEPTION;
1098 }
1099
1100 /* Clear out other reserved bits and set bit 10 */
1101 val = (val & 0xffff23ffL) | BIT(10);
1102
1103 /* Early non-zero writes to DR7 are not supported */
1104 if (!data && (val & ~DR7_RESET_VALUE))
1105 return ES_UNSUPPORTED;
1106
1107 /* Using a value of 0 for ExitInfo1 means RAX holds the value */
1108 ghcb_set_rax(ghcb, val);
1109 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
1110 if (ret != ES_OK)
1111 return ret;
1112
1113 if (data)
1114 data->dr7 = val;
1115
1116 return ES_OK;
1117 }
1118
1119 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
1120 struct es_em_ctxt *ctxt)
1121 {
1122 struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1123 long *reg = vc_insn_get_rm(ctxt);
1124
1125 if (!reg)
1126 return ES_DECODE_FAILED;
1127
1128 if (data)
1129 *reg = data->dr7;
1130 else
1131 *reg = DR7_RESET_VALUE;
1132
1133 return ES_OK;
1134 }
1135
1136 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
1137 struct es_em_ctxt *ctxt)
1138 {
1139 return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
1140 }
1141
1142 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1143 {
1144 enum es_result ret;
1145
1146 ghcb_set_rcx(ghcb, ctxt->regs->cx);
1147
1148 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
1149 if (ret != ES_OK)
1150 return ret;
1151
1152 if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
1153 return ES_VMM_ERROR;
1154
1155 ctxt->regs->ax = ghcb->save.rax;
1156 ctxt->regs->dx = ghcb->save.rdx;
1157
1158 return ES_OK;
1159 }
1160
1161 static enum es_result vc_handle_monitor(struct ghcb *ghcb,
1162 struct es_em_ctxt *ctxt)
1163 {
1164 /*
1165 * Treat it as a NOP and do not leak a physical address to the
1166 * hypervisor.
1167 */
1168 return ES_OK;
1169 }
1170
1171 static enum es_result vc_handle_mwait(struct ghcb *ghcb,
1172 struct es_em_ctxt *ctxt)
1173 {
1174 /* Treat the same as MONITOR/MONITORX */
1175 return ES_OK;
1176 }
1177
1178 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
1179 struct es_em_ctxt *ctxt)
1180 {
1181 enum es_result ret;
1182
1183 ghcb_set_rax(ghcb, ctxt->regs->ax);
1184 ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
1185
1186 if (x86_platform.hyper.sev_es_hcall_prepare)
1187 x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
1188
1189 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
1190 if (ret != ES_OK)
1191 return ret;
1192
1193 if (!ghcb_rax_is_valid(ghcb))
1194 return ES_VMM_ERROR;
1195
1196 ctxt->regs->ax = ghcb->save.rax;
1197
1198 /*
1199 * Call sev_es_hcall_finish() after regs->ax is already set.
1200 * This allows the hypervisor handler to overwrite it again if
1201 * necessary.
1202 */
1203 if (x86_platform.hyper.sev_es_hcall_finish &&
1204 !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
1205 return ES_VMM_ERROR;
1206
1207 return ES_OK;
1208 }
1209
1210 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
1211 struct es_em_ctxt *ctxt)
1212 {
1213 /*
1214 * Calling ecx_alignment_check() directly does not work, because it
1215 * enables IRQs and the GHCB is active. Forward the exception and call
1216 * it later from vc_forward_exception().
1217 */
1218 ctxt->fi.vector = X86_TRAP_AC;
1219 ctxt->fi.error_code = 0;
1220 return ES_EXCEPTION;
1221 }
1222
1223 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
1224 struct ghcb *ghcb,
1225 unsigned long exit_code)
1226 {
1227 enum es_result result;
1228
1229 switch (exit_code) {
1230 case SVM_EXIT_READ_DR7:
1231 result = vc_handle_dr7_read(ghcb, ctxt);
1232 break;
1233 case SVM_EXIT_WRITE_DR7:
1234 result = vc_handle_dr7_write(ghcb, ctxt);
1235 break;
1236 case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
1237 result = vc_handle_trap_ac(ghcb, ctxt);
1238 break;
1239 case SVM_EXIT_RDTSC:
1240 case SVM_EXIT_RDTSCP:
1241 result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
1242 break;
1243 case SVM_EXIT_RDPMC:
1244 result = vc_handle_rdpmc(ghcb, ctxt);
1245 break;
1246 case SVM_EXIT_INVD:
1247 pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
1248 result = ES_UNSUPPORTED;
1249 break;
1250 case SVM_EXIT_CPUID:
1251 result = vc_handle_cpuid(ghcb, ctxt);
1252 break;
1253 case SVM_EXIT_IOIO:
1254 result = vc_handle_ioio(ghcb, ctxt);
1255 break;
1256 case SVM_EXIT_MSR:
1257 result = vc_handle_msr(ghcb, ctxt);
1258 break;
1259 case SVM_EXIT_VMMCALL:
1260 result = vc_handle_vmmcall(ghcb, ctxt);
1261 break;
1262 case SVM_EXIT_WBINVD:
1263 result = vc_handle_wbinvd(ghcb, ctxt);
1264 break;
1265 case SVM_EXIT_MONITOR:
1266 result = vc_handle_monitor(ghcb, ctxt);
1267 break;
1268 case SVM_EXIT_MWAIT:
1269 result = vc_handle_mwait(ghcb, ctxt);
1270 break;
1271 case SVM_EXIT_NPF:
1272 result = vc_handle_mmio(ghcb, ctxt);
1273 break;
1274 default:
1275 /*
1276 * Unexpected #VC exception
1277 */
1278 result = ES_UNSUPPORTED;
1279 }
1280
1281 return result;
1282 }
1283
1284 static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
1285 {
1286 long error_code = ctxt->fi.error_code;
1287 int trapnr = ctxt->fi.vector;
1288
1289 ctxt->regs->orig_ax = ctxt->fi.error_code;
1290
1291 switch (trapnr) {
1292 case X86_TRAP_GP:
1293 exc_general_protection(ctxt->regs, error_code);
1294 break;
1295 case X86_TRAP_UD:
1296 exc_invalid_op(ctxt->regs);
1297 break;
1298 case X86_TRAP_PF:
1299 write_cr2(ctxt->fi.cr2);
1300 exc_page_fault(ctxt->regs, error_code);
1301 break;
1302 case X86_TRAP_AC:
1303 exc_alignment_check(ctxt->regs, error_code);
1304 break;
1305 default:
1306 pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
1307 BUG();
1308 }
1309 }
1310
1311 static __always_inline bool on_vc_fallback_stack(struct pt_regs *regs)
1312 {
1313 unsigned long sp = (unsigned long)regs;
1314
1315 return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
1316 }
1317
1318 static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
1319 {
1320 struct ghcb_state state;
1321 struct es_em_ctxt ctxt;
1322 enum es_result result;
1323 struct ghcb *ghcb;
1324 bool ret = true;
1325
1326 ghcb = __sev_get_ghcb(&state);
1327
1328 vc_ghcb_invalidate(ghcb);
1329 result = vc_init_em_ctxt(&ctxt, regs, error_code);
1330
1331 if (result == ES_OK)
1332 result = vc_handle_exitcode(&ctxt, ghcb, error_code);
1333
1334 __sev_put_ghcb(&state);
1335
1336 /* Done - now check the result */
1337 switch (result) {
1338 case ES_OK:
1339 vc_finish_insn(&ctxt);
1340 break;
1341 case ES_UNSUPPORTED:
1342 pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
1343 error_code, regs->ip);
1344 ret = false;
1345 break;
1346 case ES_VMM_ERROR:
1347 pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1348 error_code, regs->ip);
1349 ret = false;
1350 break;
1351 case ES_DECODE_FAILED:
1352 pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1353 error_code, regs->ip);
1354 ret = false;
1355 break;
1356 case ES_EXCEPTION:
1357 vc_forward_exception(&ctxt);
1358 break;
1359 case ES_RETRY:
1360 /* Nothing to do */
1361 break;
1362 default:
1363 pr_emerg("Unknown result in %s():%d\n", __func__, result);
1364 /*
1365 * Emulating the instruction which caused the #VC exception
1366 * failed - can't continue so print debug information
1367 */
1368 BUG();
1369 }
1370
1371 return ret;
1372 }
1373
1374 static __always_inline bool vc_is_db(unsigned long error_code)
1375 {
1376 return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
1377 }
1378
1379 /*
1380 * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
1381 * and will panic when an error happens.
1382 */
1383 DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
1384 {
1385 irqentry_state_t irq_state;
1386
1387 /*
1388 * With the current implementation it is always possible to switch to a
1389 * safe stack because #VC exceptions only happen at known places, like
1390 * intercepted instructions or accesses to MMIO areas/IO ports. They can
1391 * also happen with code instrumentation when the hypervisor intercepts
1392 * #DB, but the critical paths are forbidden to be instrumented, so #DB
1393 * exceptions currently also only happen in safe places.
1394 *
1395 * But keep this here in case the noinstr annotations are violated due
1396 * to bug elsewhere.
1397 */
1398 if (unlikely(on_vc_fallback_stack(regs))) {
1399 instrumentation_begin();
1400 panic("Can't handle #VC exception from unsupported context\n");
1401 instrumentation_end();
1402 }
1403
1404 /*
1405 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1406 */
1407 if (vc_is_db(error_code)) {
1408 exc_debug(regs);
1409 return;
1410 }
1411
1412 irq_state = irqentry_nmi_enter(regs);
1413
1414 instrumentation_begin();
1415
1416 if (!vc_raw_handle_exception(regs, error_code)) {
1417 /* Show some debug info */
1418 show_regs(regs);
1419
1420 /* Ask hypervisor to sev_es_terminate */
1421 sev_es_terminate(GHCB_SEV_ES_REASON_GENERAL_REQUEST);
1422
1423 /* If that fails and we get here - just panic */
1424 panic("Returned from Terminate-Request to Hypervisor\n");
1425 }
1426
1427 instrumentation_end();
1428 irqentry_nmi_exit(regs, irq_state);
1429 }
1430
1431 /*
1432 * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
1433 * and will kill the current task with SIGBUS when an error happens.
1434 */
1435 DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
1436 {
1437 /*
1438 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1439 */
1440 if (vc_is_db(error_code)) {
1441 noist_exc_debug(regs);
1442 return;
1443 }
1444
1445 irqentry_enter_from_user_mode(regs);
1446 instrumentation_begin();
1447
1448 if (!vc_raw_handle_exception(regs, error_code)) {
1449 /*
1450 * Do not kill the machine if user-space triggered the
1451 * exception. Send SIGBUS instead and let user-space deal with
1452 * it.
1453 */
1454 force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
1455 }
1456
1457 instrumentation_end();
1458 irqentry_exit_to_user_mode(regs);
1459 }
1460
1461 bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
1462 {
1463 unsigned long exit_code = regs->orig_ax;
1464 struct es_em_ctxt ctxt;
1465 enum es_result result;
1466
1467 /* Do initial setup or terminate the guest */
1468 if (unlikely(boot_ghcb == NULL && !sev_es_setup_ghcb()))
1469 sev_es_terminate(GHCB_SEV_ES_REASON_GENERAL_REQUEST);
1470
1471 vc_ghcb_invalidate(boot_ghcb);
1472
1473 result = vc_init_em_ctxt(&ctxt, regs, exit_code);
1474 if (result == ES_OK)
1475 result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
1476
1477 /* Done - now check the result */
1478 switch (result) {
1479 case ES_OK:
1480 vc_finish_insn(&ctxt);
1481 break;
1482 case ES_UNSUPPORTED:
1483 early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
1484 exit_code, regs->ip);
1485 goto fail;
1486 case ES_VMM_ERROR:
1487 early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1488 exit_code, regs->ip);
1489 goto fail;
1490 case ES_DECODE_FAILED:
1491 early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1492 exit_code, regs->ip);
1493 goto fail;
1494 case ES_EXCEPTION:
1495 vc_early_forward_exception(&ctxt);
1496 break;
1497 case ES_RETRY:
1498 /* Nothing to do */
1499 break;
1500 default:
1501 BUG();
1502 }
1503
1504 return true;
1505
1506 fail:
1507 show_regs(regs);
1508
1509 while (true)
1510 halt();
1511 }