]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/smpboot.c
29f105f0d9fbcb49c58c8f7969addbcd65dc5b3c
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
15 * This code is released under the GNU General Public License version 2 or
16 * later.
17 *
18 * Fixes
19 * Felix Koop : NR_CPUS used properly
20 * Jose Renau : Handle single CPU case.
21 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
22 * Greg Wright : Fix for kernel stacks panic.
23 * Erich Boleyn : MP v1.4 and additional changes.
24 * Matthias Sattler : Changes for 2.1 kernel map.
25 * Michel Lespinasse : Changes for 2.1 kernel map.
26 * Michael Chastain : Change trampoline.S to gnu as.
27 * Alan Cox : Dumb bug: 'B' step PPro's are fine
28 * Ingo Molnar : Added APIC timers, based on code
29 * from Jose Renau
30 * Ingo Molnar : various cleanups and rewrites
31 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
32 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
33 * Andi Kleen : Changed for SMP boot into long mode.
34 * Martin J. Bligh : Added support for multi-quad systems
35 * Dave Jones : Report invalid combinations of Athlon CPUs.
36 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
37 * Andi Kleen : Converted to new state machine.
38 * Ashok Raj : CPU hotplug support
39 * Glauber Costa : i386 and x86_64 integration
40 */
41
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43
44 #include <linux/init.h>
45 #include <linux/smp.h>
46 #include <linux/module.h>
47 #include <linux/sched.h>
48 #include <linux/percpu.h>
49 #include <linux/bootmem.h>
50 #include <linux/err.h>
51 #include <linux/nmi.h>
52 #include <linux/tboot.h>
53 #include <linux/stackprotector.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56
57 #include <asm/acpi.h>
58 #include <asm/desc.h>
59 #include <asm/nmi.h>
60 #include <asm/irq.h>
61 #include <asm/idle.h>
62 #include <asm/realmode.h>
63 #include <asm/cpu.h>
64 #include <asm/numa.h>
65 #include <asm/pgtable.h>
66 #include <asm/tlbflush.h>
67 #include <asm/mtrr.h>
68 #include <asm/mwait.h>
69 #include <asm/apic.h>
70 #include <asm/io_apic.h>
71 #include <asm/fpu/internal.h>
72 #include <asm/setup.h>
73 #include <asm/uv/uv.h>
74 #include <linux/mc146818rtc.h>
75 #include <asm/i8259.h>
76 #include <asm/realmode.h>
77 #include <asm/misc.h>
78
79 /* Number of siblings per CPU package */
80 int smp_num_siblings = 1;
81 EXPORT_SYMBOL(smp_num_siblings);
82
83 /* Last level cache ID of each logical CPU */
84 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
85
86 /* representing HT siblings of each logical CPU */
87 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
88 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
89
90 /* representing HT and core siblings of each logical CPU */
91 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
93
94 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
95
96 /* Per CPU bogomips and other parameters */
97 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
98 EXPORT_PER_CPU_SYMBOL(cpu_info);
99
100 atomic_t init_deasserted;
101
102 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
103 {
104 unsigned long flags;
105
106 spin_lock_irqsave(&rtc_lock, flags);
107 CMOS_WRITE(0xa, 0xf);
108 spin_unlock_irqrestore(&rtc_lock, flags);
109 local_flush_tlb();
110 pr_debug("1.\n");
111 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
112 start_eip >> 4;
113 pr_debug("2.\n");
114 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
115 start_eip & 0xf;
116 pr_debug("3.\n");
117 }
118
119 static inline void smpboot_restore_warm_reset_vector(void)
120 {
121 unsigned long flags;
122
123 /*
124 * Install writable page 0 entry to set BIOS data area.
125 */
126 local_flush_tlb();
127
128 /*
129 * Paranoid: Set warm reset code and vector here back
130 * to default values.
131 */
132 spin_lock_irqsave(&rtc_lock, flags);
133 CMOS_WRITE(0, 0xf);
134 spin_unlock_irqrestore(&rtc_lock, flags);
135
136 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
137 }
138
139 /*
140 * Report back to the Boot Processor during boot time or to the caller processor
141 * during CPU online.
142 */
143 static void smp_callin(void)
144 {
145 int cpuid, phys_id;
146
147 /*
148 * If waken up by an INIT in an 82489DX configuration
149 * we may get here before an INIT-deassert IPI reaches
150 * our local APIC. We have to wait for the IPI or we'll
151 * lock up on an APIC access.
152 *
153 * Since CPU0 is not wakened up by INIT, it doesn't wait for the IPI.
154 */
155 cpuid = smp_processor_id();
156 if (apic->wait_for_init_deassert && cpuid)
157 while (!atomic_read(&init_deasserted))
158 cpu_relax();
159
160 /*
161 * (This works even if the APIC is not enabled.)
162 */
163 phys_id = read_apic_id();
164
165 /*
166 * the boot CPU has finished the init stage and is spinning
167 * on callin_map until we finish. We are free to set up this
168 * CPU, first the APIC. (this is probably redundant on most
169 * boards)
170 */
171 apic_ap_setup();
172
173 /*
174 * Need to setup vector mappings before we enable interrupts.
175 */
176 setup_vector_irq(smp_processor_id());
177
178 /*
179 * Save our processor parameters. Note: this information
180 * is needed for clock calibration.
181 */
182 smp_store_cpu_info(cpuid);
183
184 /*
185 * Get our bogomips.
186 * Update loops_per_jiffy in cpu_data. Previous call to
187 * smp_store_cpu_info() stored a value that is close but not as
188 * accurate as the value just calculated.
189 */
190 calibrate_delay();
191 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
192 pr_debug("Stack at about %p\n", &cpuid);
193
194 /*
195 * This must be done before setting cpu_online_mask
196 * or calling notify_cpu_starting.
197 */
198 set_cpu_sibling_map(raw_smp_processor_id());
199 wmb();
200
201 notify_cpu_starting(cpuid);
202
203 /*
204 * Allow the master to continue.
205 */
206 cpumask_set_cpu(cpuid, cpu_callin_mask);
207 }
208
209 static int cpu0_logical_apicid;
210 static int enable_start_cpu0;
211 /*
212 * Activate a secondary processor.
213 */
214 static void notrace start_secondary(void *unused)
215 {
216 /*
217 * Don't put *anything* before cpu_init(), SMP booting is too
218 * fragile that we want to limit the things done here to the
219 * most necessary things.
220 */
221 cpu_init();
222 x86_cpuinit.early_percpu_clock_init();
223 preempt_disable();
224 smp_callin();
225
226 enable_start_cpu0 = 0;
227
228 #ifdef CONFIG_X86_32
229 /* switch away from the initial page table */
230 load_cr3(swapper_pg_dir);
231 __flush_tlb_all();
232 #endif
233
234 /* otherwise gcc will move up smp_processor_id before the cpu_init */
235 barrier();
236 /*
237 * Check TSC synchronization with the BP:
238 */
239 check_tsc_sync_target();
240
241 /*
242 * Enable the espfix hack for this CPU
243 */
244 #ifdef CONFIG_X86_ESPFIX64
245 init_espfix_ap();
246 #endif
247
248 /*
249 * We need to hold vector_lock so there the set of online cpus
250 * does not change while we are assigning vectors to cpus. Holding
251 * this lock ensures we don't half assign or remove an irq from a cpu.
252 */
253 lock_vector_lock();
254 set_cpu_online(smp_processor_id(), true);
255 unlock_vector_lock();
256 cpu_set_state_online(smp_processor_id());
257 x86_platform.nmi_init();
258
259 /* enable local interrupts */
260 local_irq_enable();
261
262 /* to prevent fake stack check failure in clock setup */
263 boot_init_stack_canary();
264
265 x86_cpuinit.setup_percpu_clockev();
266
267 wmb();
268 cpu_startup_entry(CPUHP_ONLINE);
269 }
270
271 void __init smp_store_boot_cpu_info(void)
272 {
273 int id = 0; /* CPU 0 */
274 struct cpuinfo_x86 *c = &cpu_data(id);
275
276 *c = boot_cpu_data;
277 c->cpu_index = id;
278 }
279
280 /*
281 * The bootstrap kernel entry code has set these up. Save them for
282 * a given CPU
283 */
284 void smp_store_cpu_info(int id)
285 {
286 struct cpuinfo_x86 *c = &cpu_data(id);
287
288 *c = boot_cpu_data;
289 c->cpu_index = id;
290 /*
291 * During boot time, CPU0 has this setup already. Save the info when
292 * bringing up AP or offlined CPU0.
293 */
294 identify_secondary_cpu(c);
295 }
296
297 static bool
298 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
299 {
300 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
301
302 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
303 }
304
305 static bool
306 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
307 {
308 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
309
310 return !WARN_ONCE(!topology_same_node(c, o),
311 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
312 "[node: %d != %d]. Ignoring dependency.\n",
313 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
314 }
315
316 #define link_mask(_m, c1, c2) \
317 do { \
318 cpumask_set_cpu((c1), cpu_##_m##_mask(c2)); \
319 cpumask_set_cpu((c2), cpu_##_m##_mask(c1)); \
320 } while (0)
321
322 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
323 {
324 if (cpu_has_topoext) {
325 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
326
327 if (c->phys_proc_id == o->phys_proc_id &&
328 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2) &&
329 c->compute_unit_id == o->compute_unit_id)
330 return topology_sane(c, o, "smt");
331
332 } else if (c->phys_proc_id == o->phys_proc_id &&
333 c->cpu_core_id == o->cpu_core_id) {
334 return topology_sane(c, o, "smt");
335 }
336
337 return false;
338 }
339
340 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
341 {
342 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
343
344 if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID &&
345 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2))
346 return topology_sane(c, o, "llc");
347
348 return false;
349 }
350
351 /*
352 * Unlike the other levels, we do not enforce keeping a
353 * multicore group inside a NUMA node. If this happens, we will
354 * discard the MC level of the topology later.
355 */
356 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
357 {
358 if (c->phys_proc_id == o->phys_proc_id)
359 return true;
360 return false;
361 }
362
363 static struct sched_domain_topology_level numa_inside_package_topology[] = {
364 #ifdef CONFIG_SCHED_SMT
365 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
366 #endif
367 #ifdef CONFIG_SCHED_MC
368 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
369 #endif
370 { NULL, },
371 };
372 /*
373 * set_sched_topology() sets the topology internal to a CPU. The
374 * NUMA topologies are layered on top of it to build the full
375 * system topology.
376 *
377 * If NUMA nodes are observed to occur within a CPU package, this
378 * function should be called. It forces the sched domain code to
379 * only use the SMT level for the CPU portion of the topology.
380 * This essentially falls back to relying on NUMA information
381 * from the SRAT table to describe the entire system topology
382 * (except for hyperthreads).
383 */
384 static void primarily_use_numa_for_topology(void)
385 {
386 set_sched_topology(numa_inside_package_topology);
387 }
388
389 void set_cpu_sibling_map(int cpu)
390 {
391 bool has_smt = smp_num_siblings > 1;
392 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
393 struct cpuinfo_x86 *c = &cpu_data(cpu);
394 struct cpuinfo_x86 *o;
395 int i;
396
397 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
398
399 if (!has_mp) {
400 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
401 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
402 cpumask_set_cpu(cpu, cpu_core_mask(cpu));
403 c->booted_cores = 1;
404 return;
405 }
406
407 for_each_cpu(i, cpu_sibling_setup_mask) {
408 o = &cpu_data(i);
409
410 if ((i == cpu) || (has_smt && match_smt(c, o)))
411 link_mask(sibling, cpu, i);
412
413 if ((i == cpu) || (has_mp && match_llc(c, o)))
414 link_mask(llc_shared, cpu, i);
415
416 }
417
418 /*
419 * This needs a separate iteration over the cpus because we rely on all
420 * cpu_sibling_mask links to be set-up.
421 */
422 for_each_cpu(i, cpu_sibling_setup_mask) {
423 o = &cpu_data(i);
424
425 if ((i == cpu) || (has_mp && match_die(c, o))) {
426 link_mask(core, cpu, i);
427
428 /*
429 * Does this new cpu bringup a new core?
430 */
431 if (cpumask_weight(cpu_sibling_mask(cpu)) == 1) {
432 /*
433 * for each core in package, increment
434 * the booted_cores for this new cpu
435 */
436 if (cpumask_first(cpu_sibling_mask(i)) == i)
437 c->booted_cores++;
438 /*
439 * increment the core count for all
440 * the other cpus in this package
441 */
442 if (i != cpu)
443 cpu_data(i).booted_cores++;
444 } else if (i != cpu && !c->booted_cores)
445 c->booted_cores = cpu_data(i).booted_cores;
446 }
447 if (match_die(c, o) && !topology_same_node(c, o))
448 primarily_use_numa_for_topology();
449 }
450 }
451
452 /* maps the cpu to the sched domain representing multi-core */
453 const struct cpumask *cpu_coregroup_mask(int cpu)
454 {
455 return cpu_llc_shared_mask(cpu);
456 }
457
458 static void impress_friends(void)
459 {
460 int cpu;
461 unsigned long bogosum = 0;
462 /*
463 * Allow the user to impress friends.
464 */
465 pr_debug("Before bogomips\n");
466 for_each_possible_cpu(cpu)
467 if (cpumask_test_cpu(cpu, cpu_callout_mask))
468 bogosum += cpu_data(cpu).loops_per_jiffy;
469 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
470 num_online_cpus(),
471 bogosum/(500000/HZ),
472 (bogosum/(5000/HZ))%100);
473
474 pr_debug("Before bogocount - setting activated=1\n");
475 }
476
477 void __inquire_remote_apic(int apicid)
478 {
479 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
480 const char * const names[] = { "ID", "VERSION", "SPIV" };
481 int timeout;
482 u32 status;
483
484 pr_info("Inquiring remote APIC 0x%x...\n", apicid);
485
486 for (i = 0; i < ARRAY_SIZE(regs); i++) {
487 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
488
489 /*
490 * Wait for idle.
491 */
492 status = safe_apic_wait_icr_idle();
493 if (status)
494 pr_cont("a previous APIC delivery may have failed\n");
495
496 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
497
498 timeout = 0;
499 do {
500 udelay(100);
501 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
502 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
503
504 switch (status) {
505 case APIC_ICR_RR_VALID:
506 status = apic_read(APIC_RRR);
507 pr_cont("%08x\n", status);
508 break;
509 default:
510 pr_cont("failed\n");
511 }
512 }
513 }
514
515 /*
516 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
517 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
518 * won't ... remember to clear down the APIC, etc later.
519 */
520 int
521 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
522 {
523 unsigned long send_status, accept_status = 0;
524 int maxlvt;
525
526 /* Target chip */
527 /* Boot on the stack */
528 /* Kick the second */
529 apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
530
531 pr_debug("Waiting for send to finish...\n");
532 send_status = safe_apic_wait_icr_idle();
533
534 /*
535 * Give the other CPU some time to accept the IPI.
536 */
537 udelay(200);
538 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
539 maxlvt = lapic_get_maxlvt();
540 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
541 apic_write(APIC_ESR, 0);
542 accept_status = (apic_read(APIC_ESR) & 0xEF);
543 }
544 pr_debug("NMI sent\n");
545
546 if (send_status)
547 pr_err("APIC never delivered???\n");
548 if (accept_status)
549 pr_err("APIC delivery error (%lx)\n", accept_status);
550
551 return (send_status | accept_status);
552 }
553
554 static int
555 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
556 {
557 unsigned long send_status, accept_status = 0;
558 int maxlvt, num_starts, j;
559
560 maxlvt = lapic_get_maxlvt();
561
562 /*
563 * Be paranoid about clearing APIC errors.
564 */
565 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
566 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
567 apic_write(APIC_ESR, 0);
568 apic_read(APIC_ESR);
569 }
570
571 pr_debug("Asserting INIT\n");
572
573 /*
574 * Turn INIT on target chip
575 */
576 /*
577 * Send IPI
578 */
579 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
580 phys_apicid);
581
582 pr_debug("Waiting for send to finish...\n");
583 send_status = safe_apic_wait_icr_idle();
584
585 mdelay(10);
586
587 pr_debug("Deasserting INIT\n");
588
589 /* Target chip */
590 /* Send IPI */
591 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
592
593 pr_debug("Waiting for send to finish...\n");
594 send_status = safe_apic_wait_icr_idle();
595
596 mb();
597 atomic_set(&init_deasserted, 1);
598
599 /*
600 * Should we send STARTUP IPIs ?
601 *
602 * Determine this based on the APIC version.
603 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
604 */
605 if (APIC_INTEGRATED(apic_version[phys_apicid]))
606 num_starts = 2;
607 else
608 num_starts = 0;
609
610 /*
611 * Paravirt / VMI wants a startup IPI hook here to set up the
612 * target processor state.
613 */
614 startup_ipi_hook(phys_apicid, (unsigned long) start_secondary,
615 stack_start);
616
617 /*
618 * Run STARTUP IPI loop.
619 */
620 pr_debug("#startup loops: %d\n", num_starts);
621
622 for (j = 1; j <= num_starts; j++) {
623 pr_debug("Sending STARTUP #%d\n", j);
624 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
625 apic_write(APIC_ESR, 0);
626 apic_read(APIC_ESR);
627 pr_debug("After apic_write\n");
628
629 /*
630 * STARTUP IPI
631 */
632
633 /* Target chip */
634 /* Boot on the stack */
635 /* Kick the second */
636 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
637 phys_apicid);
638
639 /*
640 * Give the other CPU some time to accept the IPI.
641 */
642 udelay(300);
643
644 pr_debug("Startup point 1\n");
645
646 pr_debug("Waiting for send to finish...\n");
647 send_status = safe_apic_wait_icr_idle();
648
649 /*
650 * Give the other CPU some time to accept the IPI.
651 */
652 udelay(200);
653 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
654 apic_write(APIC_ESR, 0);
655 accept_status = (apic_read(APIC_ESR) & 0xEF);
656 if (send_status || accept_status)
657 break;
658 }
659 pr_debug("After Startup\n");
660
661 if (send_status)
662 pr_err("APIC never delivered???\n");
663 if (accept_status)
664 pr_err("APIC delivery error (%lx)\n", accept_status);
665
666 return (send_status | accept_status);
667 }
668
669 void smp_announce(void)
670 {
671 int num_nodes = num_online_nodes();
672
673 printk(KERN_INFO "x86: Booted up %d node%s, %d CPUs\n",
674 num_nodes, (num_nodes > 1 ? "s" : ""), num_online_cpus());
675 }
676
677 /* reduce the number of lines printed when booting a large cpu count system */
678 static void announce_cpu(int cpu, int apicid)
679 {
680 static int current_node = -1;
681 int node = early_cpu_to_node(cpu);
682 static int width, node_width;
683
684 if (!width)
685 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
686
687 if (!node_width)
688 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
689
690 if (cpu == 1)
691 printk(KERN_INFO "x86: Booting SMP configuration:\n");
692
693 if (system_state == SYSTEM_BOOTING) {
694 if (node != current_node) {
695 if (current_node > (-1))
696 pr_cont("\n");
697 current_node = node;
698
699 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
700 node_width - num_digits(node), " ", node);
701 }
702
703 /* Add padding for the BSP */
704 if (cpu == 1)
705 pr_cont("%*s", width + 1, " ");
706
707 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
708
709 } else
710 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
711 node, cpu, apicid);
712 }
713
714 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
715 {
716 int cpu;
717
718 cpu = smp_processor_id();
719 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
720 return NMI_HANDLED;
721
722 return NMI_DONE;
723 }
724
725 /*
726 * Wake up AP by INIT, INIT, STARTUP sequence.
727 *
728 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
729 * boot-strap code which is not a desired behavior for waking up BSP. To
730 * void the boot-strap code, wake up CPU0 by NMI instead.
731 *
732 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
733 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
734 * We'll change this code in the future to wake up hard offlined CPU0 if
735 * real platform and request are available.
736 */
737 static int
738 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
739 int *cpu0_nmi_registered)
740 {
741 int id;
742 int boot_error;
743
744 preempt_disable();
745
746 /*
747 * Wake up AP by INIT, INIT, STARTUP sequence.
748 */
749 if (cpu) {
750 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
751 goto out;
752 }
753
754 /*
755 * Wake up BSP by nmi.
756 *
757 * Register a NMI handler to help wake up CPU0.
758 */
759 boot_error = register_nmi_handler(NMI_LOCAL,
760 wakeup_cpu0_nmi, 0, "wake_cpu0");
761
762 if (!boot_error) {
763 enable_start_cpu0 = 1;
764 *cpu0_nmi_registered = 1;
765 if (apic->dest_logical == APIC_DEST_LOGICAL)
766 id = cpu0_logical_apicid;
767 else
768 id = apicid;
769 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
770 }
771
772 out:
773 preempt_enable();
774
775 return boot_error;
776 }
777
778 void common_cpu_up(unsigned int cpu, struct task_struct *idle)
779 {
780 /* Just in case we booted with a single CPU. */
781 alternatives_enable_smp();
782
783 per_cpu(current_task, cpu) = idle;
784
785 #ifdef CONFIG_X86_32
786 /* Stack for startup_32 can be just as for start_secondary onwards */
787 irq_ctx_init(cpu);
788 per_cpu(cpu_current_top_of_stack, cpu) =
789 (unsigned long)task_stack_page(idle) + THREAD_SIZE;
790 #else
791 clear_tsk_thread_flag(idle, TIF_FORK);
792 initial_gs = per_cpu_offset(cpu);
793 #endif
794 per_cpu(kernel_stack, cpu) =
795 (unsigned long)task_stack_page(idle) + THREAD_SIZE;
796 }
797
798 /*
799 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
800 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
801 * Returns zero if CPU booted OK, else error code from
802 * ->wakeup_secondary_cpu.
803 */
804 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
805 {
806 volatile u32 *trampoline_status =
807 (volatile u32 *) __va(real_mode_header->trampoline_status);
808 /* start_ip had better be page-aligned! */
809 unsigned long start_ip = real_mode_header->trampoline_start;
810
811 unsigned long boot_error = 0;
812 int cpu0_nmi_registered = 0;
813 unsigned long timeout;
814
815 idle->thread.sp = (unsigned long) (((struct pt_regs *)
816 (THREAD_SIZE + task_stack_page(idle))) - 1);
817
818 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
819 initial_code = (unsigned long)start_secondary;
820 stack_start = idle->thread.sp;
821
822 /* So we see what's up */
823 announce_cpu(cpu, apicid);
824
825 /*
826 * This grunge runs the startup process for
827 * the targeted processor.
828 */
829
830 atomic_set(&init_deasserted, 0);
831
832 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
833
834 pr_debug("Setting warm reset code and vector.\n");
835
836 smpboot_setup_warm_reset_vector(start_ip);
837 /*
838 * Be paranoid about clearing APIC errors.
839 */
840 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
841 apic_write(APIC_ESR, 0);
842 apic_read(APIC_ESR);
843 }
844 }
845
846 /*
847 * AP might wait on cpu_callout_mask in cpu_init() with
848 * cpu_initialized_mask set if previous attempt to online
849 * it timed-out. Clear cpu_initialized_mask so that after
850 * INIT/SIPI it could start with a clean state.
851 */
852 cpumask_clear_cpu(cpu, cpu_initialized_mask);
853 smp_mb();
854
855 /*
856 * Wake up a CPU in difference cases:
857 * - Use the method in the APIC driver if it's defined
858 * Otherwise,
859 * - Use an INIT boot APIC message for APs or NMI for BSP.
860 */
861 if (apic->wakeup_secondary_cpu)
862 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
863 else
864 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
865 &cpu0_nmi_registered);
866
867 if (!boot_error) {
868 /*
869 * Wait 10s total for a response from AP
870 */
871 boot_error = -1;
872 timeout = jiffies + 10*HZ;
873 while (time_before(jiffies, timeout)) {
874 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
875 /*
876 * Tell AP to proceed with initialization
877 */
878 cpumask_set_cpu(cpu, cpu_callout_mask);
879 boot_error = 0;
880 break;
881 }
882 udelay(100);
883 schedule();
884 }
885 }
886
887 if (!boot_error) {
888 /*
889 * Wait till AP completes initial initialization
890 */
891 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
892 /*
893 * Allow other tasks to run while we wait for the
894 * AP to come online. This also gives a chance
895 * for the MTRR work(triggered by the AP coming online)
896 * to be completed in the stop machine context.
897 */
898 udelay(100);
899 schedule();
900 }
901 }
902
903 /* mark "stuck" area as not stuck */
904 *trampoline_status = 0;
905
906 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
907 /*
908 * Cleanup possible dangling ends...
909 */
910 smpboot_restore_warm_reset_vector();
911 }
912 /*
913 * Clean up the nmi handler. Do this after the callin and callout sync
914 * to avoid impact of possible long unregister time.
915 */
916 if (cpu0_nmi_registered)
917 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
918
919 return boot_error;
920 }
921
922 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
923 {
924 int apicid = apic->cpu_present_to_apicid(cpu);
925 unsigned long flags;
926 int err;
927
928 WARN_ON(irqs_disabled());
929
930 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
931
932 if (apicid == BAD_APICID ||
933 !physid_isset(apicid, phys_cpu_present_map) ||
934 !apic->apic_id_valid(apicid)) {
935 pr_err("%s: bad cpu %d\n", __func__, cpu);
936 return -EINVAL;
937 }
938
939 /*
940 * Already booted CPU?
941 */
942 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
943 pr_debug("do_boot_cpu %d Already started\n", cpu);
944 return -ENOSYS;
945 }
946
947 /*
948 * Save current MTRR state in case it was changed since early boot
949 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
950 */
951 mtrr_save_state();
952
953 /* x86 CPUs take themselves offline, so delayed offline is OK. */
954 err = cpu_check_up_prepare(cpu);
955 if (err && err != -EBUSY)
956 return err;
957
958 /* the FPU context is blank, nobody can own it */
959 __cpu_disable_lazy_restore(cpu);
960
961 common_cpu_up(cpu, tidle);
962
963 err = do_boot_cpu(apicid, cpu, tidle);
964 if (err) {
965 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
966 return -EIO;
967 }
968
969 /*
970 * Check TSC synchronization with the AP (keep irqs disabled
971 * while doing so):
972 */
973 local_irq_save(flags);
974 check_tsc_sync_source(cpu);
975 local_irq_restore(flags);
976
977 while (!cpu_online(cpu)) {
978 cpu_relax();
979 touch_nmi_watchdog();
980 }
981
982 return 0;
983 }
984
985 /**
986 * arch_disable_smp_support() - disables SMP support for x86 at runtime
987 */
988 void arch_disable_smp_support(void)
989 {
990 disable_ioapic_support();
991 }
992
993 /*
994 * Fall back to non SMP mode after errors.
995 *
996 * RED-PEN audit/test this more. I bet there is more state messed up here.
997 */
998 static __init void disable_smp(void)
999 {
1000 pr_info("SMP disabled\n");
1001
1002 disable_ioapic_support();
1003
1004 init_cpu_present(cpumask_of(0));
1005 init_cpu_possible(cpumask_of(0));
1006
1007 if (smp_found_config)
1008 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1009 else
1010 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1011 cpumask_set_cpu(0, cpu_sibling_mask(0));
1012 cpumask_set_cpu(0, cpu_core_mask(0));
1013 }
1014
1015 enum {
1016 SMP_OK,
1017 SMP_NO_CONFIG,
1018 SMP_NO_APIC,
1019 SMP_FORCE_UP,
1020 };
1021
1022 /*
1023 * Various sanity checks.
1024 */
1025 static int __init smp_sanity_check(unsigned max_cpus)
1026 {
1027 preempt_disable();
1028
1029 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1030 if (def_to_bigsmp && nr_cpu_ids > 8) {
1031 unsigned int cpu;
1032 unsigned nr;
1033
1034 pr_warn("More than 8 CPUs detected - skipping them\n"
1035 "Use CONFIG_X86_BIGSMP\n");
1036
1037 nr = 0;
1038 for_each_present_cpu(cpu) {
1039 if (nr >= 8)
1040 set_cpu_present(cpu, false);
1041 nr++;
1042 }
1043
1044 nr = 0;
1045 for_each_possible_cpu(cpu) {
1046 if (nr >= 8)
1047 set_cpu_possible(cpu, false);
1048 nr++;
1049 }
1050
1051 nr_cpu_ids = 8;
1052 }
1053 #endif
1054
1055 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1056 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1057 hard_smp_processor_id());
1058
1059 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1060 }
1061
1062 /*
1063 * If we couldn't find an SMP configuration at boot time,
1064 * get out of here now!
1065 */
1066 if (!smp_found_config && !acpi_lapic) {
1067 preempt_enable();
1068 pr_notice("SMP motherboard not detected\n");
1069 return SMP_NO_CONFIG;
1070 }
1071
1072 /*
1073 * Should not be necessary because the MP table should list the boot
1074 * CPU too, but we do it for the sake of robustness anyway.
1075 */
1076 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1077 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1078 boot_cpu_physical_apicid);
1079 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1080 }
1081 preempt_enable();
1082
1083 /*
1084 * If we couldn't find a local APIC, then get out of here now!
1085 */
1086 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
1087 !cpu_has_apic) {
1088 if (!disable_apic) {
1089 pr_err("BIOS bug, local APIC #%d not detected!...\n",
1090 boot_cpu_physical_apicid);
1091 pr_err("... forcing use of dummy APIC emulation (tell your hw vendor)\n");
1092 }
1093 return SMP_NO_APIC;
1094 }
1095
1096 /*
1097 * If SMP should be disabled, then really disable it!
1098 */
1099 if (!max_cpus) {
1100 pr_info("SMP mode deactivated\n");
1101 return SMP_FORCE_UP;
1102 }
1103
1104 return SMP_OK;
1105 }
1106
1107 static void __init smp_cpu_index_default(void)
1108 {
1109 int i;
1110 struct cpuinfo_x86 *c;
1111
1112 for_each_possible_cpu(i) {
1113 c = &cpu_data(i);
1114 /* mark all to hotplug */
1115 c->cpu_index = nr_cpu_ids;
1116 }
1117 }
1118
1119 /*
1120 * Prepare for SMP bootup. The MP table or ACPI has been read
1121 * earlier. Just do some sanity checking here and enable APIC mode.
1122 */
1123 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1124 {
1125 unsigned int i;
1126
1127 smp_cpu_index_default();
1128
1129 /*
1130 * Setup boot CPU information
1131 */
1132 smp_store_boot_cpu_info(); /* Final full version of the data */
1133 cpumask_copy(cpu_callin_mask, cpumask_of(0));
1134 mb();
1135
1136 current_thread_info()->cpu = 0; /* needed? */
1137 for_each_possible_cpu(i) {
1138 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1139 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1140 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1141 }
1142 set_cpu_sibling_map(0);
1143
1144 switch (smp_sanity_check(max_cpus)) {
1145 case SMP_NO_CONFIG:
1146 disable_smp();
1147 if (APIC_init_uniprocessor())
1148 pr_notice("Local APIC not detected. Using dummy APIC emulation.\n");
1149 return;
1150 case SMP_NO_APIC:
1151 disable_smp();
1152 return;
1153 case SMP_FORCE_UP:
1154 disable_smp();
1155 apic_bsp_setup(false);
1156 return;
1157 case SMP_OK:
1158 break;
1159 }
1160
1161 default_setup_apic_routing();
1162
1163 if (read_apic_id() != boot_cpu_physical_apicid) {
1164 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1165 read_apic_id(), boot_cpu_physical_apicid);
1166 /* Or can we switch back to PIC here? */
1167 }
1168
1169 cpu0_logical_apicid = apic_bsp_setup(false);
1170
1171 pr_info("CPU%d: ", 0);
1172 print_cpu_info(&cpu_data(0));
1173
1174 if (is_uv_system())
1175 uv_system_init();
1176
1177 set_mtrr_aps_delayed_init();
1178 }
1179
1180 void arch_enable_nonboot_cpus_begin(void)
1181 {
1182 set_mtrr_aps_delayed_init();
1183 }
1184
1185 void arch_enable_nonboot_cpus_end(void)
1186 {
1187 mtrr_aps_init();
1188 }
1189
1190 /*
1191 * Early setup to make printk work.
1192 */
1193 void __init native_smp_prepare_boot_cpu(void)
1194 {
1195 int me = smp_processor_id();
1196 switch_to_new_gdt(me);
1197 /* already set me in cpu_online_mask in boot_cpu_init() */
1198 cpumask_set_cpu(me, cpu_callout_mask);
1199 cpu_set_state_online(me);
1200 }
1201
1202 void __init native_smp_cpus_done(unsigned int max_cpus)
1203 {
1204 pr_debug("Boot done\n");
1205
1206 nmi_selftest();
1207 impress_friends();
1208 setup_ioapic_dest();
1209 mtrr_aps_init();
1210 }
1211
1212 static int __initdata setup_possible_cpus = -1;
1213 static int __init _setup_possible_cpus(char *str)
1214 {
1215 get_option(&str, &setup_possible_cpus);
1216 return 0;
1217 }
1218 early_param("possible_cpus", _setup_possible_cpus);
1219
1220
1221 /*
1222 * cpu_possible_mask should be static, it cannot change as cpu's
1223 * are onlined, or offlined. The reason is per-cpu data-structures
1224 * are allocated by some modules at init time, and dont expect to
1225 * do this dynamically on cpu arrival/departure.
1226 * cpu_present_mask on the other hand can change dynamically.
1227 * In case when cpu_hotplug is not compiled, then we resort to current
1228 * behaviour, which is cpu_possible == cpu_present.
1229 * - Ashok Raj
1230 *
1231 * Three ways to find out the number of additional hotplug CPUs:
1232 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1233 * - The user can overwrite it with possible_cpus=NUM
1234 * - Otherwise don't reserve additional CPUs.
1235 * We do this because additional CPUs waste a lot of memory.
1236 * -AK
1237 */
1238 __init void prefill_possible_map(void)
1239 {
1240 int i, possible;
1241
1242 /* no processor from mptable or madt */
1243 if (!num_processors)
1244 num_processors = 1;
1245
1246 i = setup_max_cpus ?: 1;
1247 if (setup_possible_cpus == -1) {
1248 possible = num_processors;
1249 #ifdef CONFIG_HOTPLUG_CPU
1250 if (setup_max_cpus)
1251 possible += disabled_cpus;
1252 #else
1253 if (possible > i)
1254 possible = i;
1255 #endif
1256 } else
1257 possible = setup_possible_cpus;
1258
1259 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1260
1261 /* nr_cpu_ids could be reduced via nr_cpus= */
1262 if (possible > nr_cpu_ids) {
1263 pr_warn("%d Processors exceeds NR_CPUS limit of %d\n",
1264 possible, nr_cpu_ids);
1265 possible = nr_cpu_ids;
1266 }
1267
1268 #ifdef CONFIG_HOTPLUG_CPU
1269 if (!setup_max_cpus)
1270 #endif
1271 if (possible > i) {
1272 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1273 possible, setup_max_cpus);
1274 possible = i;
1275 }
1276
1277 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1278 possible, max_t(int, possible - num_processors, 0));
1279
1280 for (i = 0; i < possible; i++)
1281 set_cpu_possible(i, true);
1282 for (; i < NR_CPUS; i++)
1283 set_cpu_possible(i, false);
1284
1285 nr_cpu_ids = possible;
1286 }
1287
1288 #ifdef CONFIG_HOTPLUG_CPU
1289
1290 static void remove_siblinginfo(int cpu)
1291 {
1292 int sibling;
1293 struct cpuinfo_x86 *c = &cpu_data(cpu);
1294
1295 for_each_cpu(sibling, cpu_core_mask(cpu)) {
1296 cpumask_clear_cpu(cpu, cpu_core_mask(sibling));
1297 /*/
1298 * last thread sibling in this cpu core going down
1299 */
1300 if (cpumask_weight(cpu_sibling_mask(cpu)) == 1)
1301 cpu_data(sibling).booted_cores--;
1302 }
1303
1304 for_each_cpu(sibling, cpu_sibling_mask(cpu))
1305 cpumask_clear_cpu(cpu, cpu_sibling_mask(sibling));
1306 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1307 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1308 cpumask_clear(cpu_llc_shared_mask(cpu));
1309 cpumask_clear(cpu_sibling_mask(cpu));
1310 cpumask_clear(cpu_core_mask(cpu));
1311 c->phys_proc_id = 0;
1312 c->cpu_core_id = 0;
1313 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1314 }
1315
1316 static void __ref remove_cpu_from_maps(int cpu)
1317 {
1318 set_cpu_online(cpu, false);
1319 cpumask_clear_cpu(cpu, cpu_callout_mask);
1320 cpumask_clear_cpu(cpu, cpu_callin_mask);
1321 /* was set by cpu_init() */
1322 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1323 numa_remove_cpu(cpu);
1324 }
1325
1326 void cpu_disable_common(void)
1327 {
1328 int cpu = smp_processor_id();
1329
1330 remove_siblinginfo(cpu);
1331
1332 /* It's now safe to remove this processor from the online map */
1333 lock_vector_lock();
1334 remove_cpu_from_maps(cpu);
1335 unlock_vector_lock();
1336 fixup_irqs();
1337 }
1338
1339 int native_cpu_disable(void)
1340 {
1341 int ret;
1342
1343 ret = check_irq_vectors_for_cpu_disable();
1344 if (ret)
1345 return ret;
1346
1347 clear_local_APIC();
1348 cpu_disable_common();
1349
1350 return 0;
1351 }
1352
1353 int common_cpu_die(unsigned int cpu)
1354 {
1355 int ret = 0;
1356
1357 /* We don't do anything here: idle task is faking death itself. */
1358
1359 /* They ack this in play_dead() by setting CPU_DEAD */
1360 if (cpu_wait_death(cpu, 5)) {
1361 if (system_state == SYSTEM_RUNNING)
1362 pr_info("CPU %u is now offline\n", cpu);
1363 } else {
1364 pr_err("CPU %u didn't die...\n", cpu);
1365 ret = -1;
1366 }
1367
1368 return ret;
1369 }
1370
1371 void native_cpu_die(unsigned int cpu)
1372 {
1373 common_cpu_die(cpu);
1374 }
1375
1376 void play_dead_common(void)
1377 {
1378 idle_task_exit();
1379 reset_lazy_tlbstate();
1380 amd_e400_remove_cpu(raw_smp_processor_id());
1381
1382 /* Ack it */
1383 (void)cpu_report_death();
1384
1385 /*
1386 * With physical CPU hotplug, we should halt the cpu
1387 */
1388 local_irq_disable();
1389 }
1390
1391 static bool wakeup_cpu0(void)
1392 {
1393 if (smp_processor_id() == 0 && enable_start_cpu0)
1394 return true;
1395
1396 return false;
1397 }
1398
1399 /*
1400 * We need to flush the caches before going to sleep, lest we have
1401 * dirty data in our caches when we come back up.
1402 */
1403 static inline void mwait_play_dead(void)
1404 {
1405 unsigned int eax, ebx, ecx, edx;
1406 unsigned int highest_cstate = 0;
1407 unsigned int highest_subcstate = 0;
1408 void *mwait_ptr;
1409 int i;
1410
1411 if (!this_cpu_has(X86_FEATURE_MWAIT))
1412 return;
1413 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1414 return;
1415 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1416 return;
1417
1418 eax = CPUID_MWAIT_LEAF;
1419 ecx = 0;
1420 native_cpuid(&eax, &ebx, &ecx, &edx);
1421
1422 /*
1423 * eax will be 0 if EDX enumeration is not valid.
1424 * Initialized below to cstate, sub_cstate value when EDX is valid.
1425 */
1426 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1427 eax = 0;
1428 } else {
1429 edx >>= MWAIT_SUBSTATE_SIZE;
1430 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1431 if (edx & MWAIT_SUBSTATE_MASK) {
1432 highest_cstate = i;
1433 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1434 }
1435 }
1436 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1437 (highest_subcstate - 1);
1438 }
1439
1440 /*
1441 * This should be a memory location in a cache line which is
1442 * unlikely to be touched by other processors. The actual
1443 * content is immaterial as it is not actually modified in any way.
1444 */
1445 mwait_ptr = &current_thread_info()->flags;
1446
1447 wbinvd();
1448
1449 while (1) {
1450 /*
1451 * The CLFLUSH is a workaround for erratum AAI65 for
1452 * the Xeon 7400 series. It's not clear it is actually
1453 * needed, but it should be harmless in either case.
1454 * The WBINVD is insufficient due to the spurious-wakeup
1455 * case where we return around the loop.
1456 */
1457 mb();
1458 clflush(mwait_ptr);
1459 mb();
1460 __monitor(mwait_ptr, 0, 0);
1461 mb();
1462 __mwait(eax, 0);
1463 /*
1464 * If NMI wants to wake up CPU0, start CPU0.
1465 */
1466 if (wakeup_cpu0())
1467 start_cpu0();
1468 }
1469 }
1470
1471 static inline void hlt_play_dead(void)
1472 {
1473 if (__this_cpu_read(cpu_info.x86) >= 4)
1474 wbinvd();
1475
1476 while (1) {
1477 native_halt();
1478 /*
1479 * If NMI wants to wake up CPU0, start CPU0.
1480 */
1481 if (wakeup_cpu0())
1482 start_cpu0();
1483 }
1484 }
1485
1486 void native_play_dead(void)
1487 {
1488 play_dead_common();
1489 tboot_shutdown(TB_SHUTDOWN_WFS);
1490
1491 mwait_play_dead(); /* Only returns on failure */
1492 if (cpuidle_play_dead())
1493 hlt_play_dead();
1494 }
1495
1496 #else /* ... !CONFIG_HOTPLUG_CPU */
1497 int native_cpu_disable(void)
1498 {
1499 return -ENOSYS;
1500 }
1501
1502 void native_cpu_die(unsigned int cpu)
1503 {
1504 /* We said "no" in __cpu_disable */
1505 BUG();
1506 }
1507
1508 void native_play_dead(void)
1509 {
1510 BUG();
1511 }
1512
1513 #endif