]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/smpboot.c
ASoC: sti: fix missing clk_disable_unprepare() on error in uni_player_start()
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
15 * This code is released under the GNU General Public License version 2 or
16 * later.
17 *
18 * Fixes
19 * Felix Koop : NR_CPUS used properly
20 * Jose Renau : Handle single CPU case.
21 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
22 * Greg Wright : Fix for kernel stacks panic.
23 * Erich Boleyn : MP v1.4 and additional changes.
24 * Matthias Sattler : Changes for 2.1 kernel map.
25 * Michel Lespinasse : Changes for 2.1 kernel map.
26 * Michael Chastain : Change trampoline.S to gnu as.
27 * Alan Cox : Dumb bug: 'B' step PPro's are fine
28 * Ingo Molnar : Added APIC timers, based on code
29 * from Jose Renau
30 * Ingo Molnar : various cleanups and rewrites
31 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
32 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
33 * Andi Kleen : Changed for SMP boot into long mode.
34 * Martin J. Bligh : Added support for multi-quad systems
35 * Dave Jones : Report invalid combinations of Athlon CPUs.
36 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
37 * Andi Kleen : Converted to new state machine.
38 * Ashok Raj : CPU hotplug support
39 * Glauber Costa : i386 and x86_64 integration
40 */
41
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43
44 #include <linux/init.h>
45 #include <linux/smp.h>
46 #include <linux/export.h>
47 #include <linux/sched.h>
48 #include <linux/percpu.h>
49 #include <linux/bootmem.h>
50 #include <linux/err.h>
51 #include <linux/nmi.h>
52 #include <linux/tboot.h>
53 #include <linux/stackprotector.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56
57 #include <asm/acpi.h>
58 #include <asm/desc.h>
59 #include <asm/nmi.h>
60 #include <asm/irq.h>
61 #include <asm/idle.h>
62 #include <asm/realmode.h>
63 #include <asm/cpu.h>
64 #include <asm/numa.h>
65 #include <asm/pgtable.h>
66 #include <asm/tlbflush.h>
67 #include <asm/mtrr.h>
68 #include <asm/mwait.h>
69 #include <asm/apic.h>
70 #include <asm/io_apic.h>
71 #include <asm/fpu/internal.h>
72 #include <asm/setup.h>
73 #include <asm/uv/uv.h>
74 #include <linux/mc146818rtc.h>
75 #include <asm/i8259.h>
76 #include <asm/realmode.h>
77 #include <asm/misc.h>
78
79 /* Number of siblings per CPU package */
80 int smp_num_siblings = 1;
81 EXPORT_SYMBOL(smp_num_siblings);
82
83 /* Last level cache ID of each logical CPU */
84 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
85
86 /* representing HT siblings of each logical CPU */
87 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
88 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
89
90 /* representing HT and core siblings of each logical CPU */
91 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
93
94 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
95
96 /* Per CPU bogomips and other parameters */
97 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
98 EXPORT_PER_CPU_SYMBOL(cpu_info);
99
100 /* Logical package management. We might want to allocate that dynamically */
101 static int *physical_to_logical_pkg __read_mostly;
102 static unsigned long *physical_package_map __read_mostly;;
103 static unsigned long *logical_package_map __read_mostly;
104 static unsigned int max_physical_pkg_id __read_mostly;
105 unsigned int __max_logical_packages __read_mostly;
106 EXPORT_SYMBOL(__max_logical_packages);
107
108 /* Maximum number of SMT threads on any online core */
109 int __max_smt_threads __read_mostly;
110
111 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
112 {
113 unsigned long flags;
114
115 spin_lock_irqsave(&rtc_lock, flags);
116 CMOS_WRITE(0xa, 0xf);
117 spin_unlock_irqrestore(&rtc_lock, flags);
118 local_flush_tlb();
119 pr_debug("1.\n");
120 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
121 start_eip >> 4;
122 pr_debug("2.\n");
123 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
124 start_eip & 0xf;
125 pr_debug("3.\n");
126 }
127
128 static inline void smpboot_restore_warm_reset_vector(void)
129 {
130 unsigned long flags;
131
132 /*
133 * Install writable page 0 entry to set BIOS data area.
134 */
135 local_flush_tlb();
136
137 /*
138 * Paranoid: Set warm reset code and vector here back
139 * to default values.
140 */
141 spin_lock_irqsave(&rtc_lock, flags);
142 CMOS_WRITE(0, 0xf);
143 spin_unlock_irqrestore(&rtc_lock, flags);
144
145 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
146 }
147
148 /*
149 * Report back to the Boot Processor during boot time or to the caller processor
150 * during CPU online.
151 */
152 static void smp_callin(void)
153 {
154 int cpuid, phys_id;
155
156 /*
157 * If waken up by an INIT in an 82489DX configuration
158 * cpu_callout_mask guarantees we don't get here before
159 * an INIT_deassert IPI reaches our local APIC, so it is
160 * now safe to touch our local APIC.
161 */
162 cpuid = smp_processor_id();
163
164 /*
165 * (This works even if the APIC is not enabled.)
166 */
167 phys_id = read_apic_id();
168
169 /*
170 * the boot CPU has finished the init stage and is spinning
171 * on callin_map until we finish. We are free to set up this
172 * CPU, first the APIC. (this is probably redundant on most
173 * boards)
174 */
175 apic_ap_setup();
176
177 /*
178 * Save our processor parameters. Note: this information
179 * is needed for clock calibration.
180 */
181 smp_store_cpu_info(cpuid);
182
183 /*
184 * Get our bogomips.
185 * Update loops_per_jiffy in cpu_data. Previous call to
186 * smp_store_cpu_info() stored a value that is close but not as
187 * accurate as the value just calculated.
188 */
189 calibrate_delay();
190 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
191 pr_debug("Stack at about %p\n", &cpuid);
192
193 /*
194 * This must be done before setting cpu_online_mask
195 * or calling notify_cpu_starting.
196 */
197 set_cpu_sibling_map(raw_smp_processor_id());
198 wmb();
199
200 notify_cpu_starting(cpuid);
201
202 /*
203 * Allow the master to continue.
204 */
205 cpumask_set_cpu(cpuid, cpu_callin_mask);
206 }
207
208 static int cpu0_logical_apicid;
209 static int enable_start_cpu0;
210 /*
211 * Activate a secondary processor.
212 */
213 static void notrace start_secondary(void *unused)
214 {
215 /*
216 * Don't put *anything* before cpu_init(), SMP booting is too
217 * fragile that we want to limit the things done here to the
218 * most necessary things.
219 */
220 cpu_init();
221 x86_cpuinit.early_percpu_clock_init();
222 preempt_disable();
223 smp_callin();
224
225 enable_start_cpu0 = 0;
226
227 #ifdef CONFIG_X86_32
228 /* switch away from the initial page table */
229 load_cr3(swapper_pg_dir);
230 __flush_tlb_all();
231 #endif
232
233 /* otherwise gcc will move up smp_processor_id before the cpu_init */
234 barrier();
235 /*
236 * Check TSC synchronization with the BP:
237 */
238 check_tsc_sync_target();
239
240 /*
241 * Lock vector_lock and initialize the vectors on this cpu
242 * before setting the cpu online. We must set it online with
243 * vector_lock held to prevent a concurrent setup/teardown
244 * from seeing a half valid vector space.
245 */
246 lock_vector_lock();
247 setup_vector_irq(smp_processor_id());
248 set_cpu_online(smp_processor_id(), true);
249 unlock_vector_lock();
250 cpu_set_state_online(smp_processor_id());
251 x86_platform.nmi_init();
252
253 /* enable local interrupts */
254 local_irq_enable();
255
256 /* to prevent fake stack check failure in clock setup */
257 boot_init_stack_canary();
258
259 x86_cpuinit.setup_percpu_clockev();
260
261 wmb();
262 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
263 }
264
265 int topology_update_package_map(unsigned int apicid, unsigned int cpu)
266 {
267 unsigned int new, pkg = apicid >> boot_cpu_data.x86_coreid_bits;
268
269 /* Called from early boot ? */
270 if (!physical_package_map)
271 return 0;
272
273 if (pkg >= max_physical_pkg_id)
274 return -EINVAL;
275
276 /* Set the logical package id */
277 if (test_and_set_bit(pkg, physical_package_map))
278 goto found;
279
280 new = find_first_zero_bit(logical_package_map, __max_logical_packages);
281 if (new >= __max_logical_packages) {
282 physical_to_logical_pkg[pkg] = -1;
283 pr_warn("APIC(%x) Package %u exceeds logical package map\n",
284 apicid, pkg);
285 return -ENOSPC;
286 }
287 set_bit(new, logical_package_map);
288 pr_info("APIC(%x) Converting physical %u to logical package %u\n",
289 apicid, pkg, new);
290 physical_to_logical_pkg[pkg] = new;
291
292 found:
293 cpu_data(cpu).logical_proc_id = physical_to_logical_pkg[pkg];
294 return 0;
295 }
296
297 /**
298 * topology_phys_to_logical_pkg - Map a physical package id to a logical
299 *
300 * Returns logical package id or -1 if not found
301 */
302 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
303 {
304 if (phys_pkg >= max_physical_pkg_id)
305 return -1;
306 return physical_to_logical_pkg[phys_pkg];
307 }
308 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
309
310 static void __init smp_init_package_map(void)
311 {
312 unsigned int ncpus, cpu;
313 size_t size;
314
315 /*
316 * Today neither Intel nor AMD support heterogenous systems. That
317 * might change in the future....
318 *
319 * While ideally we'd want '* smp_num_siblings' in the below @ncpus
320 * computation, this won't actually work since some Intel BIOSes
321 * report inconsistent HT data when they disable HT.
322 *
323 * In particular, they reduce the APIC-IDs to only include the cores,
324 * but leave the CPUID topology to say there are (2) siblings.
325 * This means we don't know how many threads there will be until
326 * after the APIC enumeration.
327 *
328 * By not including this we'll sometimes over-estimate the number of
329 * logical packages by the amount of !present siblings, but this is
330 * still better than MAX_LOCAL_APIC.
331 *
332 * We use total_cpus not nr_cpu_ids because nr_cpu_ids can be limited
333 * on the command line leading to a similar issue as the HT disable
334 * problem because the hyperthreads are usually enumerated after the
335 * primary cores.
336 */
337 ncpus = boot_cpu_data.x86_max_cores;
338 if (!ncpus) {
339 pr_warn("x86_max_cores == zero !?!?");
340 ncpus = 1;
341 }
342
343 __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
344
345 /*
346 * Possibly larger than what we need as the number of apic ids per
347 * package can be smaller than the actual used apic ids.
348 */
349 max_physical_pkg_id = DIV_ROUND_UP(MAX_LOCAL_APIC, ncpus);
350 size = max_physical_pkg_id * sizeof(unsigned int);
351 physical_to_logical_pkg = kmalloc(size, GFP_KERNEL);
352 memset(physical_to_logical_pkg, 0xff, size);
353 size = BITS_TO_LONGS(max_physical_pkg_id) * sizeof(unsigned long);
354 physical_package_map = kzalloc(size, GFP_KERNEL);
355 size = BITS_TO_LONGS(__max_logical_packages) * sizeof(unsigned long);
356 logical_package_map = kzalloc(size, GFP_KERNEL);
357
358 pr_info("Max logical packages: %u\n", __max_logical_packages);
359
360 for_each_present_cpu(cpu) {
361 unsigned int apicid = apic->cpu_present_to_apicid(cpu);
362
363 if (apicid == BAD_APICID || !apic->apic_id_valid(apicid))
364 continue;
365 if (!topology_update_package_map(apicid, cpu))
366 continue;
367 pr_warn("CPU %u APICId %x disabled\n", cpu, apicid);
368 per_cpu(x86_bios_cpu_apicid, cpu) = BAD_APICID;
369 set_cpu_possible(cpu, false);
370 set_cpu_present(cpu, false);
371 }
372 }
373
374 void __init smp_store_boot_cpu_info(void)
375 {
376 int id = 0; /* CPU 0 */
377 struct cpuinfo_x86 *c = &cpu_data(id);
378
379 *c = boot_cpu_data;
380 c->cpu_index = id;
381 smp_init_package_map();
382 }
383
384 /*
385 * The bootstrap kernel entry code has set these up. Save them for
386 * a given CPU
387 */
388 void smp_store_cpu_info(int id)
389 {
390 struct cpuinfo_x86 *c = &cpu_data(id);
391
392 *c = boot_cpu_data;
393 c->cpu_index = id;
394 /*
395 * During boot time, CPU0 has this setup already. Save the info when
396 * bringing up AP or offlined CPU0.
397 */
398 identify_secondary_cpu(c);
399 }
400
401 static bool
402 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
403 {
404 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
405
406 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
407 }
408
409 static bool
410 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
411 {
412 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
413
414 return !WARN_ONCE(!topology_same_node(c, o),
415 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
416 "[node: %d != %d]. Ignoring dependency.\n",
417 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
418 }
419
420 #define link_mask(mfunc, c1, c2) \
421 do { \
422 cpumask_set_cpu((c1), mfunc(c2)); \
423 cpumask_set_cpu((c2), mfunc(c1)); \
424 } while (0)
425
426 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
427 {
428 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
429 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
430
431 if (c->phys_proc_id == o->phys_proc_id &&
432 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2) &&
433 c->cpu_core_id == o->cpu_core_id)
434 return topology_sane(c, o, "smt");
435
436 } else if (c->phys_proc_id == o->phys_proc_id &&
437 c->cpu_core_id == o->cpu_core_id) {
438 return topology_sane(c, o, "smt");
439 }
440
441 return false;
442 }
443
444 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
445 {
446 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
447
448 if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID &&
449 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2))
450 return topology_sane(c, o, "llc");
451
452 return false;
453 }
454
455 /*
456 * Unlike the other levels, we do not enforce keeping a
457 * multicore group inside a NUMA node. If this happens, we will
458 * discard the MC level of the topology later.
459 */
460 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
461 {
462 if (c->phys_proc_id == o->phys_proc_id)
463 return true;
464 return false;
465 }
466
467 static struct sched_domain_topology_level numa_inside_package_topology[] = {
468 #ifdef CONFIG_SCHED_SMT
469 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
470 #endif
471 #ifdef CONFIG_SCHED_MC
472 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
473 #endif
474 { NULL, },
475 };
476 /*
477 * set_sched_topology() sets the topology internal to a CPU. The
478 * NUMA topologies are layered on top of it to build the full
479 * system topology.
480 *
481 * If NUMA nodes are observed to occur within a CPU package, this
482 * function should be called. It forces the sched domain code to
483 * only use the SMT level for the CPU portion of the topology.
484 * This essentially falls back to relying on NUMA information
485 * from the SRAT table to describe the entire system topology
486 * (except for hyperthreads).
487 */
488 static void primarily_use_numa_for_topology(void)
489 {
490 set_sched_topology(numa_inside_package_topology);
491 }
492
493 void set_cpu_sibling_map(int cpu)
494 {
495 bool has_smt = smp_num_siblings > 1;
496 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
497 struct cpuinfo_x86 *c = &cpu_data(cpu);
498 struct cpuinfo_x86 *o;
499 int i, threads;
500
501 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
502
503 if (!has_mp) {
504 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
505 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
506 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
507 c->booted_cores = 1;
508 return;
509 }
510
511 for_each_cpu(i, cpu_sibling_setup_mask) {
512 o = &cpu_data(i);
513
514 if ((i == cpu) || (has_smt && match_smt(c, o)))
515 link_mask(topology_sibling_cpumask, cpu, i);
516
517 if ((i == cpu) || (has_mp && match_llc(c, o)))
518 link_mask(cpu_llc_shared_mask, cpu, i);
519
520 }
521
522 /*
523 * This needs a separate iteration over the cpus because we rely on all
524 * topology_sibling_cpumask links to be set-up.
525 */
526 for_each_cpu(i, cpu_sibling_setup_mask) {
527 o = &cpu_data(i);
528
529 if ((i == cpu) || (has_mp && match_die(c, o))) {
530 link_mask(topology_core_cpumask, cpu, i);
531
532 /*
533 * Does this new cpu bringup a new core?
534 */
535 if (cpumask_weight(
536 topology_sibling_cpumask(cpu)) == 1) {
537 /*
538 * for each core in package, increment
539 * the booted_cores for this new cpu
540 */
541 if (cpumask_first(
542 topology_sibling_cpumask(i)) == i)
543 c->booted_cores++;
544 /*
545 * increment the core count for all
546 * the other cpus in this package
547 */
548 if (i != cpu)
549 cpu_data(i).booted_cores++;
550 } else if (i != cpu && !c->booted_cores)
551 c->booted_cores = cpu_data(i).booted_cores;
552 }
553 if (match_die(c, o) && !topology_same_node(c, o))
554 primarily_use_numa_for_topology();
555 }
556
557 threads = cpumask_weight(topology_sibling_cpumask(cpu));
558 if (threads > __max_smt_threads)
559 __max_smt_threads = threads;
560 }
561
562 /* maps the cpu to the sched domain representing multi-core */
563 const struct cpumask *cpu_coregroup_mask(int cpu)
564 {
565 return cpu_llc_shared_mask(cpu);
566 }
567
568 static void impress_friends(void)
569 {
570 int cpu;
571 unsigned long bogosum = 0;
572 /*
573 * Allow the user to impress friends.
574 */
575 pr_debug("Before bogomips\n");
576 for_each_possible_cpu(cpu)
577 if (cpumask_test_cpu(cpu, cpu_callout_mask))
578 bogosum += cpu_data(cpu).loops_per_jiffy;
579 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
580 num_online_cpus(),
581 bogosum/(500000/HZ),
582 (bogosum/(5000/HZ))%100);
583
584 pr_debug("Before bogocount - setting activated=1\n");
585 }
586
587 void __inquire_remote_apic(int apicid)
588 {
589 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
590 const char * const names[] = { "ID", "VERSION", "SPIV" };
591 int timeout;
592 u32 status;
593
594 pr_info("Inquiring remote APIC 0x%x...\n", apicid);
595
596 for (i = 0; i < ARRAY_SIZE(regs); i++) {
597 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
598
599 /*
600 * Wait for idle.
601 */
602 status = safe_apic_wait_icr_idle();
603 if (status)
604 pr_cont("a previous APIC delivery may have failed\n");
605
606 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
607
608 timeout = 0;
609 do {
610 udelay(100);
611 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
612 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
613
614 switch (status) {
615 case APIC_ICR_RR_VALID:
616 status = apic_read(APIC_RRR);
617 pr_cont("%08x\n", status);
618 break;
619 default:
620 pr_cont("failed\n");
621 }
622 }
623 }
624
625 /*
626 * The Multiprocessor Specification 1.4 (1997) example code suggests
627 * that there should be a 10ms delay between the BSP asserting INIT
628 * and de-asserting INIT, when starting a remote processor.
629 * But that slows boot and resume on modern processors, which include
630 * many cores and don't require that delay.
631 *
632 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
633 * Modern processor families are quirked to remove the delay entirely.
634 */
635 #define UDELAY_10MS_DEFAULT 10000
636
637 static unsigned int init_udelay = UINT_MAX;
638
639 static int __init cpu_init_udelay(char *str)
640 {
641 get_option(&str, &init_udelay);
642
643 return 0;
644 }
645 early_param("cpu_init_udelay", cpu_init_udelay);
646
647 static void __init smp_quirk_init_udelay(void)
648 {
649 /* if cmdline changed it from default, leave it alone */
650 if (init_udelay != UINT_MAX)
651 return;
652
653 /* if modern processor, use no delay */
654 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
655 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
656 init_udelay = 0;
657 return;
658 }
659 /* else, use legacy delay */
660 init_udelay = UDELAY_10MS_DEFAULT;
661 }
662
663 /*
664 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
665 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
666 * won't ... remember to clear down the APIC, etc later.
667 */
668 int
669 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
670 {
671 unsigned long send_status, accept_status = 0;
672 int maxlvt;
673
674 /* Target chip */
675 /* Boot on the stack */
676 /* Kick the second */
677 apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
678
679 pr_debug("Waiting for send to finish...\n");
680 send_status = safe_apic_wait_icr_idle();
681
682 /*
683 * Give the other CPU some time to accept the IPI.
684 */
685 udelay(200);
686 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
687 maxlvt = lapic_get_maxlvt();
688 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
689 apic_write(APIC_ESR, 0);
690 accept_status = (apic_read(APIC_ESR) & 0xEF);
691 }
692 pr_debug("NMI sent\n");
693
694 if (send_status)
695 pr_err("APIC never delivered???\n");
696 if (accept_status)
697 pr_err("APIC delivery error (%lx)\n", accept_status);
698
699 return (send_status | accept_status);
700 }
701
702 static int
703 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
704 {
705 unsigned long send_status = 0, accept_status = 0;
706 int maxlvt, num_starts, j;
707
708 maxlvt = lapic_get_maxlvt();
709
710 /*
711 * Be paranoid about clearing APIC errors.
712 */
713 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
714 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
715 apic_write(APIC_ESR, 0);
716 apic_read(APIC_ESR);
717 }
718
719 pr_debug("Asserting INIT\n");
720
721 /*
722 * Turn INIT on target chip
723 */
724 /*
725 * Send IPI
726 */
727 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
728 phys_apicid);
729
730 pr_debug("Waiting for send to finish...\n");
731 send_status = safe_apic_wait_icr_idle();
732
733 udelay(init_udelay);
734
735 pr_debug("Deasserting INIT\n");
736
737 /* Target chip */
738 /* Send IPI */
739 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
740
741 pr_debug("Waiting for send to finish...\n");
742 send_status = safe_apic_wait_icr_idle();
743
744 mb();
745
746 /*
747 * Should we send STARTUP IPIs ?
748 *
749 * Determine this based on the APIC version.
750 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
751 */
752 if (APIC_INTEGRATED(apic_version[phys_apicid]))
753 num_starts = 2;
754 else
755 num_starts = 0;
756
757 /*
758 * Run STARTUP IPI loop.
759 */
760 pr_debug("#startup loops: %d\n", num_starts);
761
762 for (j = 1; j <= num_starts; j++) {
763 pr_debug("Sending STARTUP #%d\n", j);
764 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
765 apic_write(APIC_ESR, 0);
766 apic_read(APIC_ESR);
767 pr_debug("After apic_write\n");
768
769 /*
770 * STARTUP IPI
771 */
772
773 /* Target chip */
774 /* Boot on the stack */
775 /* Kick the second */
776 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
777 phys_apicid);
778
779 /*
780 * Give the other CPU some time to accept the IPI.
781 */
782 if (init_udelay == 0)
783 udelay(10);
784 else
785 udelay(300);
786
787 pr_debug("Startup point 1\n");
788
789 pr_debug("Waiting for send to finish...\n");
790 send_status = safe_apic_wait_icr_idle();
791
792 /*
793 * Give the other CPU some time to accept the IPI.
794 */
795 if (init_udelay == 0)
796 udelay(10);
797 else
798 udelay(200);
799
800 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
801 apic_write(APIC_ESR, 0);
802 accept_status = (apic_read(APIC_ESR) & 0xEF);
803 if (send_status || accept_status)
804 break;
805 }
806 pr_debug("After Startup\n");
807
808 if (send_status)
809 pr_err("APIC never delivered???\n");
810 if (accept_status)
811 pr_err("APIC delivery error (%lx)\n", accept_status);
812
813 return (send_status | accept_status);
814 }
815
816 void smp_announce(void)
817 {
818 int num_nodes = num_online_nodes();
819
820 printk(KERN_INFO "x86: Booted up %d node%s, %d CPUs\n",
821 num_nodes, (num_nodes > 1 ? "s" : ""), num_online_cpus());
822 }
823
824 /* reduce the number of lines printed when booting a large cpu count system */
825 static void announce_cpu(int cpu, int apicid)
826 {
827 static int current_node = -1;
828 int node = early_cpu_to_node(cpu);
829 static int width, node_width;
830
831 if (!width)
832 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
833
834 if (!node_width)
835 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
836
837 if (cpu == 1)
838 printk(KERN_INFO "x86: Booting SMP configuration:\n");
839
840 if (system_state == SYSTEM_BOOTING) {
841 if (node != current_node) {
842 if (current_node > (-1))
843 pr_cont("\n");
844 current_node = node;
845
846 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
847 node_width - num_digits(node), " ", node);
848 }
849
850 /* Add padding for the BSP */
851 if (cpu == 1)
852 pr_cont("%*s", width + 1, " ");
853
854 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
855
856 } else
857 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
858 node, cpu, apicid);
859 }
860
861 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
862 {
863 int cpu;
864
865 cpu = smp_processor_id();
866 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
867 return NMI_HANDLED;
868
869 return NMI_DONE;
870 }
871
872 /*
873 * Wake up AP by INIT, INIT, STARTUP sequence.
874 *
875 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
876 * boot-strap code which is not a desired behavior for waking up BSP. To
877 * void the boot-strap code, wake up CPU0 by NMI instead.
878 *
879 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
880 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
881 * We'll change this code in the future to wake up hard offlined CPU0 if
882 * real platform and request are available.
883 */
884 static int
885 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
886 int *cpu0_nmi_registered)
887 {
888 int id;
889 int boot_error;
890
891 preempt_disable();
892
893 /*
894 * Wake up AP by INIT, INIT, STARTUP sequence.
895 */
896 if (cpu) {
897 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
898 goto out;
899 }
900
901 /*
902 * Wake up BSP by nmi.
903 *
904 * Register a NMI handler to help wake up CPU0.
905 */
906 boot_error = register_nmi_handler(NMI_LOCAL,
907 wakeup_cpu0_nmi, 0, "wake_cpu0");
908
909 if (!boot_error) {
910 enable_start_cpu0 = 1;
911 *cpu0_nmi_registered = 1;
912 if (apic->dest_logical == APIC_DEST_LOGICAL)
913 id = cpu0_logical_apicid;
914 else
915 id = apicid;
916 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
917 }
918
919 out:
920 preempt_enable();
921
922 return boot_error;
923 }
924
925 void common_cpu_up(unsigned int cpu, struct task_struct *idle)
926 {
927 /* Just in case we booted with a single CPU. */
928 alternatives_enable_smp();
929
930 per_cpu(current_task, cpu) = idle;
931
932 #ifdef CONFIG_X86_32
933 /* Stack for startup_32 can be just as for start_secondary onwards */
934 irq_ctx_init(cpu);
935 per_cpu(cpu_current_top_of_stack, cpu) =
936 (unsigned long)task_stack_page(idle) + THREAD_SIZE;
937 #else
938 clear_tsk_thread_flag(idle, TIF_FORK);
939 initial_gs = per_cpu_offset(cpu);
940 #endif
941 }
942
943 /*
944 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
945 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
946 * Returns zero if CPU booted OK, else error code from
947 * ->wakeup_secondary_cpu.
948 */
949 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
950 {
951 volatile u32 *trampoline_status =
952 (volatile u32 *) __va(real_mode_header->trampoline_status);
953 /* start_ip had better be page-aligned! */
954 unsigned long start_ip = real_mode_header->trampoline_start;
955
956 unsigned long boot_error = 0;
957 int cpu0_nmi_registered = 0;
958 unsigned long timeout;
959
960 idle->thread.sp = (unsigned long) (((struct pt_regs *)
961 (THREAD_SIZE + task_stack_page(idle))) - 1);
962
963 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
964 initial_code = (unsigned long)start_secondary;
965 stack_start = idle->thread.sp;
966
967 /*
968 * Enable the espfix hack for this CPU
969 */
970 #ifdef CONFIG_X86_ESPFIX64
971 init_espfix_ap(cpu);
972 #endif
973
974 /* So we see what's up */
975 announce_cpu(cpu, apicid);
976
977 /*
978 * This grunge runs the startup process for
979 * the targeted processor.
980 */
981
982 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
983
984 pr_debug("Setting warm reset code and vector.\n");
985
986 smpboot_setup_warm_reset_vector(start_ip);
987 /*
988 * Be paranoid about clearing APIC errors.
989 */
990 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
991 apic_write(APIC_ESR, 0);
992 apic_read(APIC_ESR);
993 }
994 }
995
996 /*
997 * AP might wait on cpu_callout_mask in cpu_init() with
998 * cpu_initialized_mask set if previous attempt to online
999 * it timed-out. Clear cpu_initialized_mask so that after
1000 * INIT/SIPI it could start with a clean state.
1001 */
1002 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1003 smp_mb();
1004
1005 /*
1006 * Wake up a CPU in difference cases:
1007 * - Use the method in the APIC driver if it's defined
1008 * Otherwise,
1009 * - Use an INIT boot APIC message for APs or NMI for BSP.
1010 */
1011 if (apic->wakeup_secondary_cpu)
1012 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1013 else
1014 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1015 &cpu0_nmi_registered);
1016
1017 if (!boot_error) {
1018 /*
1019 * Wait 10s total for first sign of life from AP
1020 */
1021 boot_error = -1;
1022 timeout = jiffies + 10*HZ;
1023 while (time_before(jiffies, timeout)) {
1024 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1025 /*
1026 * Tell AP to proceed with initialization
1027 */
1028 cpumask_set_cpu(cpu, cpu_callout_mask);
1029 boot_error = 0;
1030 break;
1031 }
1032 schedule();
1033 }
1034 }
1035
1036 if (!boot_error) {
1037 /*
1038 * Wait till AP completes initial initialization
1039 */
1040 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1041 /*
1042 * Allow other tasks to run while we wait for the
1043 * AP to come online. This also gives a chance
1044 * for the MTRR work(triggered by the AP coming online)
1045 * to be completed in the stop machine context.
1046 */
1047 schedule();
1048 }
1049 }
1050
1051 /* mark "stuck" area as not stuck */
1052 *trampoline_status = 0;
1053
1054 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
1055 /*
1056 * Cleanup possible dangling ends...
1057 */
1058 smpboot_restore_warm_reset_vector();
1059 }
1060 /*
1061 * Clean up the nmi handler. Do this after the callin and callout sync
1062 * to avoid impact of possible long unregister time.
1063 */
1064 if (cpu0_nmi_registered)
1065 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1066
1067 return boot_error;
1068 }
1069
1070 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1071 {
1072 int apicid = apic->cpu_present_to_apicid(cpu);
1073 unsigned long flags;
1074 int err;
1075
1076 WARN_ON(irqs_disabled());
1077
1078 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1079
1080 if (apicid == BAD_APICID ||
1081 !physid_isset(apicid, phys_cpu_present_map) ||
1082 !apic->apic_id_valid(apicid)) {
1083 pr_err("%s: bad cpu %d\n", __func__, cpu);
1084 return -EINVAL;
1085 }
1086
1087 /*
1088 * Already booted CPU?
1089 */
1090 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1091 pr_debug("do_boot_cpu %d Already started\n", cpu);
1092 return -ENOSYS;
1093 }
1094
1095 /*
1096 * Save current MTRR state in case it was changed since early boot
1097 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1098 */
1099 mtrr_save_state();
1100
1101 /* x86 CPUs take themselves offline, so delayed offline is OK. */
1102 err = cpu_check_up_prepare(cpu);
1103 if (err && err != -EBUSY)
1104 return err;
1105
1106 /* the FPU context is blank, nobody can own it */
1107 __cpu_disable_lazy_restore(cpu);
1108
1109 common_cpu_up(cpu, tidle);
1110
1111 /*
1112 * We have to walk the irq descriptors to setup the vector
1113 * space for the cpu which comes online. Prevent irq
1114 * alloc/free across the bringup.
1115 */
1116 irq_lock_sparse();
1117
1118 err = do_boot_cpu(apicid, cpu, tidle);
1119
1120 if (err) {
1121 irq_unlock_sparse();
1122 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1123 return -EIO;
1124 }
1125
1126 /*
1127 * Check TSC synchronization with the AP (keep irqs disabled
1128 * while doing so):
1129 */
1130 local_irq_save(flags);
1131 check_tsc_sync_source(cpu);
1132 local_irq_restore(flags);
1133
1134 while (!cpu_online(cpu)) {
1135 cpu_relax();
1136 touch_nmi_watchdog();
1137 }
1138
1139 irq_unlock_sparse();
1140
1141 return 0;
1142 }
1143
1144 /**
1145 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1146 */
1147 void arch_disable_smp_support(void)
1148 {
1149 disable_ioapic_support();
1150 }
1151
1152 /*
1153 * Fall back to non SMP mode after errors.
1154 *
1155 * RED-PEN audit/test this more. I bet there is more state messed up here.
1156 */
1157 static __init void disable_smp(void)
1158 {
1159 pr_info("SMP disabled\n");
1160
1161 disable_ioapic_support();
1162
1163 init_cpu_present(cpumask_of(0));
1164 init_cpu_possible(cpumask_of(0));
1165
1166 if (smp_found_config)
1167 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1168 else
1169 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1170 cpumask_set_cpu(0, topology_sibling_cpumask(0));
1171 cpumask_set_cpu(0, topology_core_cpumask(0));
1172 }
1173
1174 enum {
1175 SMP_OK,
1176 SMP_NO_CONFIG,
1177 SMP_NO_APIC,
1178 SMP_FORCE_UP,
1179 };
1180
1181 /*
1182 * Various sanity checks.
1183 */
1184 static int __init smp_sanity_check(unsigned max_cpus)
1185 {
1186 preempt_disable();
1187
1188 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1189 if (def_to_bigsmp && nr_cpu_ids > 8) {
1190 unsigned int cpu;
1191 unsigned nr;
1192
1193 pr_warn("More than 8 CPUs detected - skipping them\n"
1194 "Use CONFIG_X86_BIGSMP\n");
1195
1196 nr = 0;
1197 for_each_present_cpu(cpu) {
1198 if (nr >= 8)
1199 set_cpu_present(cpu, false);
1200 nr++;
1201 }
1202
1203 nr = 0;
1204 for_each_possible_cpu(cpu) {
1205 if (nr >= 8)
1206 set_cpu_possible(cpu, false);
1207 nr++;
1208 }
1209
1210 nr_cpu_ids = 8;
1211 }
1212 #endif
1213
1214 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1215 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1216 hard_smp_processor_id());
1217
1218 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1219 }
1220
1221 /*
1222 * If we couldn't find an SMP configuration at boot time,
1223 * get out of here now!
1224 */
1225 if (!smp_found_config && !acpi_lapic) {
1226 preempt_enable();
1227 pr_notice("SMP motherboard not detected\n");
1228 return SMP_NO_CONFIG;
1229 }
1230
1231 /*
1232 * Should not be necessary because the MP table should list the boot
1233 * CPU too, but we do it for the sake of robustness anyway.
1234 */
1235 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1236 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1237 boot_cpu_physical_apicid);
1238 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1239 }
1240 preempt_enable();
1241
1242 /*
1243 * If we couldn't find a local APIC, then get out of here now!
1244 */
1245 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
1246 !boot_cpu_has(X86_FEATURE_APIC)) {
1247 if (!disable_apic) {
1248 pr_err("BIOS bug, local APIC #%d not detected!...\n",
1249 boot_cpu_physical_apicid);
1250 pr_err("... forcing use of dummy APIC emulation (tell your hw vendor)\n");
1251 }
1252 return SMP_NO_APIC;
1253 }
1254
1255 /*
1256 * If SMP should be disabled, then really disable it!
1257 */
1258 if (!max_cpus) {
1259 pr_info("SMP mode deactivated\n");
1260 return SMP_FORCE_UP;
1261 }
1262
1263 return SMP_OK;
1264 }
1265
1266 static void __init smp_cpu_index_default(void)
1267 {
1268 int i;
1269 struct cpuinfo_x86 *c;
1270
1271 for_each_possible_cpu(i) {
1272 c = &cpu_data(i);
1273 /* mark all to hotplug */
1274 c->cpu_index = nr_cpu_ids;
1275 }
1276 }
1277
1278 /*
1279 * Prepare for SMP bootup. The MP table or ACPI has been read
1280 * earlier. Just do some sanity checking here and enable APIC mode.
1281 */
1282 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1283 {
1284 unsigned int i;
1285
1286 smp_cpu_index_default();
1287
1288 /*
1289 * Setup boot CPU information
1290 */
1291 smp_store_boot_cpu_info(); /* Final full version of the data */
1292 cpumask_copy(cpu_callin_mask, cpumask_of(0));
1293 mb();
1294
1295 for_each_possible_cpu(i) {
1296 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1297 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1298 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1299 }
1300 set_cpu_sibling_map(0);
1301
1302 switch (smp_sanity_check(max_cpus)) {
1303 case SMP_NO_CONFIG:
1304 disable_smp();
1305 if (APIC_init_uniprocessor())
1306 pr_notice("Local APIC not detected. Using dummy APIC emulation.\n");
1307 return;
1308 case SMP_NO_APIC:
1309 disable_smp();
1310 return;
1311 case SMP_FORCE_UP:
1312 disable_smp();
1313 apic_bsp_setup(false);
1314 return;
1315 case SMP_OK:
1316 break;
1317 }
1318
1319 default_setup_apic_routing();
1320
1321 if (read_apic_id() != boot_cpu_physical_apicid) {
1322 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1323 read_apic_id(), boot_cpu_physical_apicid);
1324 /* Or can we switch back to PIC here? */
1325 }
1326
1327 cpu0_logical_apicid = apic_bsp_setup(false);
1328
1329 pr_info("CPU%d: ", 0);
1330 print_cpu_info(&cpu_data(0));
1331
1332 if (is_uv_system())
1333 uv_system_init();
1334
1335 set_mtrr_aps_delayed_init();
1336
1337 smp_quirk_init_udelay();
1338 }
1339
1340 void arch_enable_nonboot_cpus_begin(void)
1341 {
1342 set_mtrr_aps_delayed_init();
1343 }
1344
1345 void arch_enable_nonboot_cpus_end(void)
1346 {
1347 mtrr_aps_init();
1348 }
1349
1350 /*
1351 * Early setup to make printk work.
1352 */
1353 void __init native_smp_prepare_boot_cpu(void)
1354 {
1355 int me = smp_processor_id();
1356 switch_to_new_gdt(me);
1357 /* already set me in cpu_online_mask in boot_cpu_init() */
1358 cpumask_set_cpu(me, cpu_callout_mask);
1359 cpu_set_state_online(me);
1360 }
1361
1362 void __init native_smp_cpus_done(unsigned int max_cpus)
1363 {
1364 pr_debug("Boot done\n");
1365
1366 nmi_selftest();
1367 impress_friends();
1368 setup_ioapic_dest();
1369 mtrr_aps_init();
1370 }
1371
1372 static int __initdata setup_possible_cpus = -1;
1373 static int __init _setup_possible_cpus(char *str)
1374 {
1375 get_option(&str, &setup_possible_cpus);
1376 return 0;
1377 }
1378 early_param("possible_cpus", _setup_possible_cpus);
1379
1380
1381 /*
1382 * cpu_possible_mask should be static, it cannot change as cpu's
1383 * are onlined, or offlined. The reason is per-cpu data-structures
1384 * are allocated by some modules at init time, and dont expect to
1385 * do this dynamically on cpu arrival/departure.
1386 * cpu_present_mask on the other hand can change dynamically.
1387 * In case when cpu_hotplug is not compiled, then we resort to current
1388 * behaviour, which is cpu_possible == cpu_present.
1389 * - Ashok Raj
1390 *
1391 * Three ways to find out the number of additional hotplug CPUs:
1392 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1393 * - The user can overwrite it with possible_cpus=NUM
1394 * - Otherwise don't reserve additional CPUs.
1395 * We do this because additional CPUs waste a lot of memory.
1396 * -AK
1397 */
1398 __init void prefill_possible_map(void)
1399 {
1400 int i, possible;
1401
1402 /* no processor from mptable or madt */
1403 if (!num_processors)
1404 num_processors = 1;
1405
1406 i = setup_max_cpus ?: 1;
1407 if (setup_possible_cpus == -1) {
1408 possible = num_processors;
1409 #ifdef CONFIG_HOTPLUG_CPU
1410 if (setup_max_cpus)
1411 possible += disabled_cpus;
1412 #else
1413 if (possible > i)
1414 possible = i;
1415 #endif
1416 } else
1417 possible = setup_possible_cpus;
1418
1419 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1420
1421 /* nr_cpu_ids could be reduced via nr_cpus= */
1422 if (possible > nr_cpu_ids) {
1423 pr_warn("%d Processors exceeds NR_CPUS limit of %d\n",
1424 possible, nr_cpu_ids);
1425 possible = nr_cpu_ids;
1426 }
1427
1428 #ifdef CONFIG_HOTPLUG_CPU
1429 if (!setup_max_cpus)
1430 #endif
1431 if (possible > i) {
1432 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1433 possible, setup_max_cpus);
1434 possible = i;
1435 }
1436
1437 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1438 possible, max_t(int, possible - num_processors, 0));
1439
1440 for (i = 0; i < possible; i++)
1441 set_cpu_possible(i, true);
1442 for (; i < NR_CPUS; i++)
1443 set_cpu_possible(i, false);
1444
1445 nr_cpu_ids = possible;
1446 }
1447
1448 #ifdef CONFIG_HOTPLUG_CPU
1449
1450 /* Recompute SMT state for all CPUs on offline */
1451 static void recompute_smt_state(void)
1452 {
1453 int max_threads, cpu;
1454
1455 max_threads = 0;
1456 for_each_online_cpu (cpu) {
1457 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1458
1459 if (threads > max_threads)
1460 max_threads = threads;
1461 }
1462 __max_smt_threads = max_threads;
1463 }
1464
1465 static void remove_siblinginfo(int cpu)
1466 {
1467 int sibling;
1468 struct cpuinfo_x86 *c = &cpu_data(cpu);
1469
1470 for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1471 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1472 /*/
1473 * last thread sibling in this cpu core going down
1474 */
1475 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1476 cpu_data(sibling).booted_cores--;
1477 }
1478
1479 for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1480 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1481 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1482 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1483 cpumask_clear(cpu_llc_shared_mask(cpu));
1484 cpumask_clear(topology_sibling_cpumask(cpu));
1485 cpumask_clear(topology_core_cpumask(cpu));
1486 c->phys_proc_id = 0;
1487 c->cpu_core_id = 0;
1488 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1489 recompute_smt_state();
1490 }
1491
1492 static void remove_cpu_from_maps(int cpu)
1493 {
1494 set_cpu_online(cpu, false);
1495 cpumask_clear_cpu(cpu, cpu_callout_mask);
1496 cpumask_clear_cpu(cpu, cpu_callin_mask);
1497 /* was set by cpu_init() */
1498 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1499 numa_remove_cpu(cpu);
1500 }
1501
1502 void cpu_disable_common(void)
1503 {
1504 int cpu = smp_processor_id();
1505
1506 remove_siblinginfo(cpu);
1507
1508 /* It's now safe to remove this processor from the online map */
1509 lock_vector_lock();
1510 remove_cpu_from_maps(cpu);
1511 unlock_vector_lock();
1512 fixup_irqs();
1513 }
1514
1515 int native_cpu_disable(void)
1516 {
1517 int ret;
1518
1519 ret = check_irq_vectors_for_cpu_disable();
1520 if (ret)
1521 return ret;
1522
1523 clear_local_APIC();
1524 cpu_disable_common();
1525
1526 return 0;
1527 }
1528
1529 int common_cpu_die(unsigned int cpu)
1530 {
1531 int ret = 0;
1532
1533 /* We don't do anything here: idle task is faking death itself. */
1534
1535 /* They ack this in play_dead() by setting CPU_DEAD */
1536 if (cpu_wait_death(cpu, 5)) {
1537 if (system_state == SYSTEM_RUNNING)
1538 pr_info("CPU %u is now offline\n", cpu);
1539 } else {
1540 pr_err("CPU %u didn't die...\n", cpu);
1541 ret = -1;
1542 }
1543
1544 return ret;
1545 }
1546
1547 void native_cpu_die(unsigned int cpu)
1548 {
1549 common_cpu_die(cpu);
1550 }
1551
1552 void play_dead_common(void)
1553 {
1554 idle_task_exit();
1555 reset_lazy_tlbstate();
1556 amd_e400_remove_cpu(raw_smp_processor_id());
1557
1558 /* Ack it */
1559 (void)cpu_report_death();
1560
1561 /*
1562 * With physical CPU hotplug, we should halt the cpu
1563 */
1564 local_irq_disable();
1565 }
1566
1567 static bool wakeup_cpu0(void)
1568 {
1569 if (smp_processor_id() == 0 && enable_start_cpu0)
1570 return true;
1571
1572 return false;
1573 }
1574
1575 /*
1576 * We need to flush the caches before going to sleep, lest we have
1577 * dirty data in our caches when we come back up.
1578 */
1579 static inline void mwait_play_dead(void)
1580 {
1581 unsigned int eax, ebx, ecx, edx;
1582 unsigned int highest_cstate = 0;
1583 unsigned int highest_subcstate = 0;
1584 void *mwait_ptr;
1585 int i;
1586
1587 if (!this_cpu_has(X86_FEATURE_MWAIT))
1588 return;
1589 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1590 return;
1591 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1592 return;
1593
1594 eax = CPUID_MWAIT_LEAF;
1595 ecx = 0;
1596 native_cpuid(&eax, &ebx, &ecx, &edx);
1597
1598 /*
1599 * eax will be 0 if EDX enumeration is not valid.
1600 * Initialized below to cstate, sub_cstate value when EDX is valid.
1601 */
1602 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1603 eax = 0;
1604 } else {
1605 edx >>= MWAIT_SUBSTATE_SIZE;
1606 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1607 if (edx & MWAIT_SUBSTATE_MASK) {
1608 highest_cstate = i;
1609 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1610 }
1611 }
1612 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1613 (highest_subcstate - 1);
1614 }
1615
1616 /*
1617 * This should be a memory location in a cache line which is
1618 * unlikely to be touched by other processors. The actual
1619 * content is immaterial as it is not actually modified in any way.
1620 */
1621 mwait_ptr = &current_thread_info()->flags;
1622
1623 wbinvd();
1624
1625 while (1) {
1626 /*
1627 * The CLFLUSH is a workaround for erratum AAI65 for
1628 * the Xeon 7400 series. It's not clear it is actually
1629 * needed, but it should be harmless in either case.
1630 * The WBINVD is insufficient due to the spurious-wakeup
1631 * case where we return around the loop.
1632 */
1633 mb();
1634 clflush(mwait_ptr);
1635 mb();
1636 __monitor(mwait_ptr, 0, 0);
1637 mb();
1638 __mwait(eax, 0);
1639 /*
1640 * If NMI wants to wake up CPU0, start CPU0.
1641 */
1642 if (wakeup_cpu0())
1643 start_cpu0();
1644 }
1645 }
1646
1647 void hlt_play_dead(void)
1648 {
1649 if (__this_cpu_read(cpu_info.x86) >= 4)
1650 wbinvd();
1651
1652 while (1) {
1653 native_halt();
1654 /*
1655 * If NMI wants to wake up CPU0, start CPU0.
1656 */
1657 if (wakeup_cpu0())
1658 start_cpu0();
1659 }
1660 }
1661
1662 void native_play_dead(void)
1663 {
1664 play_dead_common();
1665 tboot_shutdown(TB_SHUTDOWN_WFS);
1666
1667 mwait_play_dead(); /* Only returns on failure */
1668 if (cpuidle_play_dead())
1669 hlt_play_dead();
1670 }
1671
1672 #else /* ... !CONFIG_HOTPLUG_CPU */
1673 int native_cpu_disable(void)
1674 {
1675 return -ENOSYS;
1676 }
1677
1678 void native_cpu_die(unsigned int cpu)
1679 {
1680 /* We said "no" in __cpu_disable */
1681 BUG();
1682 }
1683
1684 void native_play_dead(void)
1685 {
1686 BUG();
1687 }
1688
1689 #endif