]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/smpboot.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / smpboot.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * x86 SMP booting functions
4 *
5 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7 * Copyright 2001 Andi Kleen, SuSE Labs.
8 *
9 * Much of the core SMP work is based on previous work by Thomas Radke, to
10 * whom a great many thanks are extended.
11 *
12 * Thanks to Intel for making available several different Pentium,
13 * Pentium Pro and Pentium-II/Xeon MP machines.
14 * Original development of Linux SMP code supported by Caldera.
15 *
16 * Fixes
17 * Felix Koop : NR_CPUS used properly
18 * Jose Renau : Handle single CPU case.
19 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
20 * Greg Wright : Fix for kernel stacks panic.
21 * Erich Boleyn : MP v1.4 and additional changes.
22 * Matthias Sattler : Changes for 2.1 kernel map.
23 * Michel Lespinasse : Changes for 2.1 kernel map.
24 * Michael Chastain : Change trampoline.S to gnu as.
25 * Alan Cox : Dumb bug: 'B' step PPro's are fine
26 * Ingo Molnar : Added APIC timers, based on code
27 * from Jose Renau
28 * Ingo Molnar : various cleanups and rewrites
29 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
30 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
31 * Andi Kleen : Changed for SMP boot into long mode.
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
35 * Andi Kleen : Converted to new state machine.
36 * Ashok Raj : CPU hotplug support
37 * Glauber Costa : i386 and x86_64 integration
38 */
39
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/stackprotector.h>
55 #include <linux/gfp.h>
56 #include <linux/cpuidle.h>
57 #include <linux/numa.h>
58
59 #include <asm/acpi.h>
60 #include <asm/desc.h>
61 #include <asm/nmi.h>
62 #include <asm/irq.h>
63 #include <asm/realmode.h>
64 #include <asm/cpu.h>
65 #include <asm/numa.h>
66 #include <asm/pgtable.h>
67 #include <asm/tlbflush.h>
68 #include <asm/mtrr.h>
69 #include <asm/mwait.h>
70 #include <asm/apic.h>
71 #include <asm/io_apic.h>
72 #include <asm/fpu/internal.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 #include <asm/i8259.h>
77 #include <asm/misc.h>
78 #include <asm/qspinlock.h>
79 #include <asm/intel-family.h>
80 #include <asm/cpu_device_id.h>
81 #include <asm/spec-ctrl.h>
82 #include <asm/hw_irq.h>
83
84 /* representing HT siblings of each logical CPU */
85 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
86 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
87
88 /* representing HT and core siblings of each logical CPU */
89 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
90 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
91
92 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
93
94 /* Per CPU bogomips and other parameters */
95 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
96 EXPORT_PER_CPU_SYMBOL(cpu_info);
97
98 /* Logical package management. We might want to allocate that dynamically */
99 unsigned int __max_logical_packages __read_mostly;
100 EXPORT_SYMBOL(__max_logical_packages);
101 static unsigned int logical_packages __read_mostly;
102
103 /* Maximum number of SMT threads on any online core */
104 int __read_mostly __max_smt_threads = 1;
105
106 /* Flag to indicate if a complete sched domain rebuild is required */
107 bool x86_topology_update;
108
109 int arch_update_cpu_topology(void)
110 {
111 int retval = x86_topology_update;
112
113 x86_topology_update = false;
114 return retval;
115 }
116
117 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
118 {
119 unsigned long flags;
120
121 spin_lock_irqsave(&rtc_lock, flags);
122 CMOS_WRITE(0xa, 0xf);
123 spin_unlock_irqrestore(&rtc_lock, flags);
124 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
125 start_eip >> 4;
126 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
127 start_eip & 0xf;
128 }
129
130 static inline void smpboot_restore_warm_reset_vector(void)
131 {
132 unsigned long flags;
133
134 /*
135 * Paranoid: Set warm reset code and vector here back
136 * to default values.
137 */
138 spin_lock_irqsave(&rtc_lock, flags);
139 CMOS_WRITE(0, 0xf);
140 spin_unlock_irqrestore(&rtc_lock, flags);
141
142 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
143 }
144
145 /*
146 * Report back to the Boot Processor during boot time or to the caller processor
147 * during CPU online.
148 */
149 static void smp_callin(void)
150 {
151 int cpuid;
152
153 /*
154 * If waken up by an INIT in an 82489DX configuration
155 * cpu_callout_mask guarantees we don't get here before
156 * an INIT_deassert IPI reaches our local APIC, so it is
157 * now safe to touch our local APIC.
158 */
159 cpuid = smp_processor_id();
160
161 /*
162 * the boot CPU has finished the init stage and is spinning
163 * on callin_map until we finish. We are free to set up this
164 * CPU, first the APIC. (this is probably redundant on most
165 * boards)
166 */
167 apic_ap_setup();
168
169 /*
170 * Save our processor parameters. Note: this information
171 * is needed for clock calibration.
172 */
173 smp_store_cpu_info(cpuid);
174
175 /*
176 * The topology information must be up to date before
177 * calibrate_delay() and notify_cpu_starting().
178 */
179 set_cpu_sibling_map(raw_smp_processor_id());
180
181 /*
182 * Get our bogomips.
183 * Update loops_per_jiffy in cpu_data. Previous call to
184 * smp_store_cpu_info() stored a value that is close but not as
185 * accurate as the value just calculated.
186 */
187 calibrate_delay();
188 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
189 pr_debug("Stack at about %p\n", &cpuid);
190
191 wmb();
192
193 notify_cpu_starting(cpuid);
194
195 /*
196 * Allow the master to continue.
197 */
198 cpumask_set_cpu(cpuid, cpu_callin_mask);
199 }
200
201 static int cpu0_logical_apicid;
202 static int enable_start_cpu0;
203 /*
204 * Activate a secondary processor.
205 */
206 static void notrace start_secondary(void *unused)
207 {
208 /*
209 * Don't put *anything* except direct CPU state initialization
210 * before cpu_init(), SMP booting is too fragile that we want to
211 * limit the things done here to the most necessary things.
212 */
213 if (boot_cpu_has(X86_FEATURE_PCID))
214 __write_cr4(__read_cr4() | X86_CR4_PCIDE);
215
216 #ifdef CONFIG_X86_32
217 /* switch away from the initial page table */
218 load_cr3(swapper_pg_dir);
219 /*
220 * Initialize the CR4 shadow before doing anything that could
221 * try to read it.
222 */
223 cr4_init_shadow();
224 __flush_tlb_all();
225 #endif
226 load_current_idt();
227 cpu_init();
228 x86_cpuinit.early_percpu_clock_init();
229 preempt_disable();
230 smp_callin();
231
232 enable_start_cpu0 = 0;
233
234 /* otherwise gcc will move up smp_processor_id before the cpu_init */
235 barrier();
236 /*
237 * Check TSC synchronization with the boot CPU:
238 */
239 check_tsc_sync_target();
240
241 speculative_store_bypass_ht_init();
242
243 /*
244 * Lock vector_lock, set CPU online and bring the vector
245 * allocator online. Online must be set with vector_lock held
246 * to prevent a concurrent irq setup/teardown from seeing a
247 * half valid vector space.
248 */
249 lock_vector_lock();
250 set_cpu_online(smp_processor_id(), true);
251 lapic_online();
252 unlock_vector_lock();
253 cpu_set_state_online(smp_processor_id());
254 x86_platform.nmi_init();
255
256 /* enable local interrupts */
257 local_irq_enable();
258
259 /* to prevent fake stack check failure in clock setup */
260 boot_init_stack_canary();
261
262 x86_cpuinit.setup_percpu_clockev();
263
264 wmb();
265 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
266 }
267
268 /**
269 * topology_is_primary_thread - Check whether CPU is the primary SMT thread
270 * @cpu: CPU to check
271 */
272 bool topology_is_primary_thread(unsigned int cpu)
273 {
274 return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
275 }
276
277 /**
278 * topology_smt_supported - Check whether SMT is supported by the CPUs
279 */
280 bool topology_smt_supported(void)
281 {
282 return smp_num_siblings > 1;
283 }
284
285 /**
286 * topology_phys_to_logical_pkg - Map a physical package id to a logical
287 *
288 * Returns logical package id or -1 if not found
289 */
290 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
291 {
292 int cpu;
293
294 for_each_possible_cpu(cpu) {
295 struct cpuinfo_x86 *c = &cpu_data(cpu);
296
297 if (c->initialized && c->phys_proc_id == phys_pkg)
298 return c->logical_proc_id;
299 }
300 return -1;
301 }
302 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
303
304 /**
305 * topology_update_package_map - Update the physical to logical package map
306 * @pkg: The physical package id as retrieved via CPUID
307 * @cpu: The cpu for which this is updated
308 */
309 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
310 {
311 int new;
312
313 /* Already available somewhere? */
314 new = topology_phys_to_logical_pkg(pkg);
315 if (new >= 0)
316 goto found;
317
318 new = logical_packages++;
319 if (new != pkg) {
320 pr_info("CPU %u Converting physical %u to logical package %u\n",
321 cpu, pkg, new);
322 }
323 found:
324 cpu_data(cpu).logical_proc_id = new;
325 return 0;
326 }
327
328 void __init smp_store_boot_cpu_info(void)
329 {
330 int id = 0; /* CPU 0 */
331 struct cpuinfo_x86 *c = &cpu_data(id);
332
333 *c = boot_cpu_data;
334 c->cpu_index = id;
335 topology_update_package_map(c->phys_proc_id, id);
336 c->initialized = true;
337 }
338
339 /*
340 * The bootstrap kernel entry code has set these up. Save them for
341 * a given CPU
342 */
343 void smp_store_cpu_info(int id)
344 {
345 struct cpuinfo_x86 *c = &cpu_data(id);
346
347 /* Copy boot_cpu_data only on the first bringup */
348 if (!c->initialized)
349 *c = boot_cpu_data;
350 c->cpu_index = id;
351 /*
352 * During boot time, CPU0 has this setup already. Save the info when
353 * bringing up AP or offlined CPU0.
354 */
355 identify_secondary_cpu(c);
356 c->initialized = true;
357 }
358
359 static bool
360 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
361 {
362 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
363
364 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
365 }
366
367 static bool
368 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
369 {
370 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
371
372 return !WARN_ONCE(!topology_same_node(c, o),
373 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
374 "[node: %d != %d]. Ignoring dependency.\n",
375 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
376 }
377
378 #define link_mask(mfunc, c1, c2) \
379 do { \
380 cpumask_set_cpu((c1), mfunc(c2)); \
381 cpumask_set_cpu((c2), mfunc(c1)); \
382 } while (0)
383
384 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
385 {
386 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
387 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
388
389 if (c->phys_proc_id == o->phys_proc_id &&
390 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
391 if (c->cpu_core_id == o->cpu_core_id)
392 return topology_sane(c, o, "smt");
393
394 if ((c->cu_id != 0xff) &&
395 (o->cu_id != 0xff) &&
396 (c->cu_id == o->cu_id))
397 return topology_sane(c, o, "smt");
398 }
399
400 } else if (c->phys_proc_id == o->phys_proc_id &&
401 c->cpu_core_id == o->cpu_core_id) {
402 return topology_sane(c, o, "smt");
403 }
404
405 return false;
406 }
407
408 /*
409 * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
410 *
411 * These are Intel CPUs that enumerate an LLC that is shared by
412 * multiple NUMA nodes. The LLC on these systems is shared for
413 * off-package data access but private to the NUMA node (half
414 * of the package) for on-package access.
415 *
416 * CPUID (the source of the information about the LLC) can only
417 * enumerate the cache as being shared *or* unshared, but not
418 * this particular configuration. The CPU in this case enumerates
419 * the cache to be shared across the entire package (spanning both
420 * NUMA nodes).
421 */
422
423 static const struct x86_cpu_id snc_cpu[] = {
424 { X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X },
425 {}
426 };
427
428 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
429 {
430 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
431
432 /* Do not match if we do not have a valid APICID for cpu: */
433 if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
434 return false;
435
436 /* Do not match if LLC id does not match: */
437 if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
438 return false;
439
440 /*
441 * Allow the SNC topology without warning. Return of false
442 * means 'c' does not share the LLC of 'o'. This will be
443 * reflected to userspace.
444 */
445 if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
446 return false;
447
448 return topology_sane(c, o, "llc");
449 }
450
451 /*
452 * Unlike the other levels, we do not enforce keeping a
453 * multicore group inside a NUMA node. If this happens, we will
454 * discard the MC level of the topology later.
455 */
456 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
457 {
458 if (c->phys_proc_id == o->phys_proc_id)
459 return true;
460 return false;
461 }
462
463 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
464 static inline int x86_sched_itmt_flags(void)
465 {
466 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
467 }
468
469 #ifdef CONFIG_SCHED_MC
470 static int x86_core_flags(void)
471 {
472 return cpu_core_flags() | x86_sched_itmt_flags();
473 }
474 #endif
475 #ifdef CONFIG_SCHED_SMT
476 static int x86_smt_flags(void)
477 {
478 return cpu_smt_flags() | x86_sched_itmt_flags();
479 }
480 #endif
481 #endif
482
483 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
484 #ifdef CONFIG_SCHED_SMT
485 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
486 #endif
487 #ifdef CONFIG_SCHED_MC
488 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
489 #endif
490 { NULL, },
491 };
492
493 static struct sched_domain_topology_level x86_topology[] = {
494 #ifdef CONFIG_SCHED_SMT
495 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
496 #endif
497 #ifdef CONFIG_SCHED_MC
498 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
499 #endif
500 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
501 { NULL, },
502 };
503
504 /*
505 * Set if a package/die has multiple NUMA nodes inside.
506 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
507 * Sub-NUMA Clustering have this.
508 */
509 static bool x86_has_numa_in_package;
510
511 void set_cpu_sibling_map(int cpu)
512 {
513 bool has_smt = smp_num_siblings > 1;
514 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
515 struct cpuinfo_x86 *c = &cpu_data(cpu);
516 struct cpuinfo_x86 *o;
517 int i, threads;
518
519 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
520
521 if (!has_mp) {
522 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
523 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
524 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
525 c->booted_cores = 1;
526 return;
527 }
528
529 for_each_cpu(i, cpu_sibling_setup_mask) {
530 o = &cpu_data(i);
531
532 if ((i == cpu) || (has_smt && match_smt(c, o)))
533 link_mask(topology_sibling_cpumask, cpu, i);
534
535 if ((i == cpu) || (has_mp && match_llc(c, o)))
536 link_mask(cpu_llc_shared_mask, cpu, i);
537
538 }
539
540 /*
541 * This needs a separate iteration over the cpus because we rely on all
542 * topology_sibling_cpumask links to be set-up.
543 */
544 for_each_cpu(i, cpu_sibling_setup_mask) {
545 o = &cpu_data(i);
546
547 if ((i == cpu) || (has_mp && match_pkg(c, o))) {
548 link_mask(topology_core_cpumask, cpu, i);
549
550 /*
551 * Does this new cpu bringup a new core?
552 */
553 if (cpumask_weight(
554 topology_sibling_cpumask(cpu)) == 1) {
555 /*
556 * for each core in package, increment
557 * the booted_cores for this new cpu
558 */
559 if (cpumask_first(
560 topology_sibling_cpumask(i)) == i)
561 c->booted_cores++;
562 /*
563 * increment the core count for all
564 * the other cpus in this package
565 */
566 if (i != cpu)
567 cpu_data(i).booted_cores++;
568 } else if (i != cpu && !c->booted_cores)
569 c->booted_cores = cpu_data(i).booted_cores;
570 }
571 if (match_pkg(c, o) && !topology_same_node(c, o))
572 x86_has_numa_in_package = true;
573 }
574
575 threads = cpumask_weight(topology_sibling_cpumask(cpu));
576 if (threads > __max_smt_threads)
577 __max_smt_threads = threads;
578 }
579
580 /* maps the cpu to the sched domain representing multi-core */
581 const struct cpumask *cpu_coregroup_mask(int cpu)
582 {
583 return cpu_llc_shared_mask(cpu);
584 }
585
586 static void impress_friends(void)
587 {
588 int cpu;
589 unsigned long bogosum = 0;
590 /*
591 * Allow the user to impress friends.
592 */
593 pr_debug("Before bogomips\n");
594 for_each_possible_cpu(cpu)
595 if (cpumask_test_cpu(cpu, cpu_callout_mask))
596 bogosum += cpu_data(cpu).loops_per_jiffy;
597 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
598 num_online_cpus(),
599 bogosum/(500000/HZ),
600 (bogosum/(5000/HZ))%100);
601
602 pr_debug("Before bogocount - setting activated=1\n");
603 }
604
605 void __inquire_remote_apic(int apicid)
606 {
607 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
608 const char * const names[] = { "ID", "VERSION", "SPIV" };
609 int timeout;
610 u32 status;
611
612 pr_info("Inquiring remote APIC 0x%x...\n", apicid);
613
614 for (i = 0; i < ARRAY_SIZE(regs); i++) {
615 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
616
617 /*
618 * Wait for idle.
619 */
620 status = safe_apic_wait_icr_idle();
621 if (status)
622 pr_cont("a previous APIC delivery may have failed\n");
623
624 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
625
626 timeout = 0;
627 do {
628 udelay(100);
629 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
630 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
631
632 switch (status) {
633 case APIC_ICR_RR_VALID:
634 status = apic_read(APIC_RRR);
635 pr_cont("%08x\n", status);
636 break;
637 default:
638 pr_cont("failed\n");
639 }
640 }
641 }
642
643 /*
644 * The Multiprocessor Specification 1.4 (1997) example code suggests
645 * that there should be a 10ms delay between the BSP asserting INIT
646 * and de-asserting INIT, when starting a remote processor.
647 * But that slows boot and resume on modern processors, which include
648 * many cores and don't require that delay.
649 *
650 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
651 * Modern processor families are quirked to remove the delay entirely.
652 */
653 #define UDELAY_10MS_DEFAULT 10000
654
655 static unsigned int init_udelay = UINT_MAX;
656
657 static int __init cpu_init_udelay(char *str)
658 {
659 get_option(&str, &init_udelay);
660
661 return 0;
662 }
663 early_param("cpu_init_udelay", cpu_init_udelay);
664
665 static void __init smp_quirk_init_udelay(void)
666 {
667 /* if cmdline changed it from default, leave it alone */
668 if (init_udelay != UINT_MAX)
669 return;
670
671 /* if modern processor, use no delay */
672 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
673 ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
674 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
675 init_udelay = 0;
676 return;
677 }
678 /* else, use legacy delay */
679 init_udelay = UDELAY_10MS_DEFAULT;
680 }
681
682 /*
683 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
684 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
685 * won't ... remember to clear down the APIC, etc later.
686 */
687 int
688 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
689 {
690 unsigned long send_status, accept_status = 0;
691 int maxlvt;
692
693 /* Target chip */
694 /* Boot on the stack */
695 /* Kick the second */
696 apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
697
698 pr_debug("Waiting for send to finish...\n");
699 send_status = safe_apic_wait_icr_idle();
700
701 /*
702 * Give the other CPU some time to accept the IPI.
703 */
704 udelay(200);
705 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
706 maxlvt = lapic_get_maxlvt();
707 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
708 apic_write(APIC_ESR, 0);
709 accept_status = (apic_read(APIC_ESR) & 0xEF);
710 }
711 pr_debug("NMI sent\n");
712
713 if (send_status)
714 pr_err("APIC never delivered???\n");
715 if (accept_status)
716 pr_err("APIC delivery error (%lx)\n", accept_status);
717
718 return (send_status | accept_status);
719 }
720
721 static int
722 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
723 {
724 unsigned long send_status = 0, accept_status = 0;
725 int maxlvt, num_starts, j;
726
727 maxlvt = lapic_get_maxlvt();
728
729 /*
730 * Be paranoid about clearing APIC errors.
731 */
732 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
733 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
734 apic_write(APIC_ESR, 0);
735 apic_read(APIC_ESR);
736 }
737
738 pr_debug("Asserting INIT\n");
739
740 /*
741 * Turn INIT on target chip
742 */
743 /*
744 * Send IPI
745 */
746 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
747 phys_apicid);
748
749 pr_debug("Waiting for send to finish...\n");
750 send_status = safe_apic_wait_icr_idle();
751
752 udelay(init_udelay);
753
754 pr_debug("Deasserting INIT\n");
755
756 /* Target chip */
757 /* Send IPI */
758 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
759
760 pr_debug("Waiting for send to finish...\n");
761 send_status = safe_apic_wait_icr_idle();
762
763 mb();
764
765 /*
766 * Should we send STARTUP IPIs ?
767 *
768 * Determine this based on the APIC version.
769 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
770 */
771 if (APIC_INTEGRATED(boot_cpu_apic_version))
772 num_starts = 2;
773 else
774 num_starts = 0;
775
776 /*
777 * Run STARTUP IPI loop.
778 */
779 pr_debug("#startup loops: %d\n", num_starts);
780
781 for (j = 1; j <= num_starts; j++) {
782 pr_debug("Sending STARTUP #%d\n", j);
783 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
784 apic_write(APIC_ESR, 0);
785 apic_read(APIC_ESR);
786 pr_debug("After apic_write\n");
787
788 /*
789 * STARTUP IPI
790 */
791
792 /* Target chip */
793 /* Boot on the stack */
794 /* Kick the second */
795 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
796 phys_apicid);
797
798 /*
799 * Give the other CPU some time to accept the IPI.
800 */
801 if (init_udelay == 0)
802 udelay(10);
803 else
804 udelay(300);
805
806 pr_debug("Startup point 1\n");
807
808 pr_debug("Waiting for send to finish...\n");
809 send_status = safe_apic_wait_icr_idle();
810
811 /*
812 * Give the other CPU some time to accept the IPI.
813 */
814 if (init_udelay == 0)
815 udelay(10);
816 else
817 udelay(200);
818
819 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
820 apic_write(APIC_ESR, 0);
821 accept_status = (apic_read(APIC_ESR) & 0xEF);
822 if (send_status || accept_status)
823 break;
824 }
825 pr_debug("After Startup\n");
826
827 if (send_status)
828 pr_err("APIC never delivered???\n");
829 if (accept_status)
830 pr_err("APIC delivery error (%lx)\n", accept_status);
831
832 return (send_status | accept_status);
833 }
834
835 /* reduce the number of lines printed when booting a large cpu count system */
836 static void announce_cpu(int cpu, int apicid)
837 {
838 static int current_node = NUMA_NO_NODE;
839 int node = early_cpu_to_node(cpu);
840 static int width, node_width;
841
842 if (!width)
843 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
844
845 if (!node_width)
846 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
847
848 if (cpu == 1)
849 printk(KERN_INFO "x86: Booting SMP configuration:\n");
850
851 if (system_state < SYSTEM_RUNNING) {
852 if (node != current_node) {
853 if (current_node > (-1))
854 pr_cont("\n");
855 current_node = node;
856
857 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
858 node_width - num_digits(node), " ", node);
859 }
860
861 /* Add padding for the BSP */
862 if (cpu == 1)
863 pr_cont("%*s", width + 1, " ");
864
865 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
866
867 } else
868 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
869 node, cpu, apicid);
870 }
871
872 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
873 {
874 int cpu;
875
876 cpu = smp_processor_id();
877 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
878 return NMI_HANDLED;
879
880 return NMI_DONE;
881 }
882
883 /*
884 * Wake up AP by INIT, INIT, STARTUP sequence.
885 *
886 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
887 * boot-strap code which is not a desired behavior for waking up BSP. To
888 * void the boot-strap code, wake up CPU0 by NMI instead.
889 *
890 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
891 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
892 * We'll change this code in the future to wake up hard offlined CPU0 if
893 * real platform and request are available.
894 */
895 static int
896 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
897 int *cpu0_nmi_registered)
898 {
899 int id;
900 int boot_error;
901
902 preempt_disable();
903
904 /*
905 * Wake up AP by INIT, INIT, STARTUP sequence.
906 */
907 if (cpu) {
908 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
909 goto out;
910 }
911
912 /*
913 * Wake up BSP by nmi.
914 *
915 * Register a NMI handler to help wake up CPU0.
916 */
917 boot_error = register_nmi_handler(NMI_LOCAL,
918 wakeup_cpu0_nmi, 0, "wake_cpu0");
919
920 if (!boot_error) {
921 enable_start_cpu0 = 1;
922 *cpu0_nmi_registered = 1;
923 if (apic->dest_logical == APIC_DEST_LOGICAL)
924 id = cpu0_logical_apicid;
925 else
926 id = apicid;
927 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
928 }
929
930 out:
931 preempt_enable();
932
933 return boot_error;
934 }
935
936 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
937 {
938 int ret;
939
940 /* Just in case we booted with a single CPU. */
941 alternatives_enable_smp();
942
943 per_cpu(current_task, cpu) = idle;
944
945 /* Initialize the interrupt stack(s) */
946 ret = irq_init_percpu_irqstack(cpu);
947 if (ret)
948 return ret;
949
950 #ifdef CONFIG_X86_32
951 /* Stack for startup_32 can be just as for start_secondary onwards */
952 per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
953 #else
954 initial_gs = per_cpu_offset(cpu);
955 #endif
956 return 0;
957 }
958
959 /*
960 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
961 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
962 * Returns zero if CPU booted OK, else error code from
963 * ->wakeup_secondary_cpu.
964 */
965 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
966 int *cpu0_nmi_registered)
967 {
968 volatile u32 *trampoline_status =
969 (volatile u32 *) __va(real_mode_header->trampoline_status);
970 /* start_ip had better be page-aligned! */
971 unsigned long start_ip = real_mode_header->trampoline_start;
972
973 unsigned long boot_error = 0;
974 unsigned long timeout;
975
976 idle->thread.sp = (unsigned long)task_pt_regs(idle);
977 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
978 initial_code = (unsigned long)start_secondary;
979 initial_stack = idle->thread.sp;
980
981 /* Enable the espfix hack for this CPU */
982 init_espfix_ap(cpu);
983
984 /* So we see what's up */
985 announce_cpu(cpu, apicid);
986
987 /*
988 * This grunge runs the startup process for
989 * the targeted processor.
990 */
991
992 if (x86_platform.legacy.warm_reset) {
993
994 pr_debug("Setting warm reset code and vector.\n");
995
996 smpboot_setup_warm_reset_vector(start_ip);
997 /*
998 * Be paranoid about clearing APIC errors.
999 */
1000 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1001 apic_write(APIC_ESR, 0);
1002 apic_read(APIC_ESR);
1003 }
1004 }
1005
1006 /*
1007 * AP might wait on cpu_callout_mask in cpu_init() with
1008 * cpu_initialized_mask set if previous attempt to online
1009 * it timed-out. Clear cpu_initialized_mask so that after
1010 * INIT/SIPI it could start with a clean state.
1011 */
1012 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1013 smp_mb();
1014
1015 /*
1016 * Wake up a CPU in difference cases:
1017 * - Use the method in the APIC driver if it's defined
1018 * Otherwise,
1019 * - Use an INIT boot APIC message for APs or NMI for BSP.
1020 */
1021 if (apic->wakeup_secondary_cpu)
1022 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1023 else
1024 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1025 cpu0_nmi_registered);
1026
1027 if (!boot_error) {
1028 /*
1029 * Wait 10s total for first sign of life from AP
1030 */
1031 boot_error = -1;
1032 timeout = jiffies + 10*HZ;
1033 while (time_before(jiffies, timeout)) {
1034 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1035 /*
1036 * Tell AP to proceed with initialization
1037 */
1038 cpumask_set_cpu(cpu, cpu_callout_mask);
1039 boot_error = 0;
1040 break;
1041 }
1042 schedule();
1043 }
1044 }
1045
1046 if (!boot_error) {
1047 /*
1048 * Wait till AP completes initial initialization
1049 */
1050 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1051 /*
1052 * Allow other tasks to run while we wait for the
1053 * AP to come online. This also gives a chance
1054 * for the MTRR work(triggered by the AP coming online)
1055 * to be completed in the stop machine context.
1056 */
1057 schedule();
1058 }
1059 }
1060
1061 /* mark "stuck" area as not stuck */
1062 *trampoline_status = 0;
1063
1064 if (x86_platform.legacy.warm_reset) {
1065 /*
1066 * Cleanup possible dangling ends...
1067 */
1068 smpboot_restore_warm_reset_vector();
1069 }
1070
1071 return boot_error;
1072 }
1073
1074 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1075 {
1076 int apicid = apic->cpu_present_to_apicid(cpu);
1077 int cpu0_nmi_registered = 0;
1078 unsigned long flags;
1079 int err, ret = 0;
1080
1081 lockdep_assert_irqs_enabled();
1082
1083 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1084
1085 if (apicid == BAD_APICID ||
1086 !physid_isset(apicid, phys_cpu_present_map) ||
1087 !apic->apic_id_valid(apicid)) {
1088 pr_err("%s: bad cpu %d\n", __func__, cpu);
1089 return -EINVAL;
1090 }
1091
1092 /*
1093 * Already booted CPU?
1094 */
1095 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1096 pr_debug("do_boot_cpu %d Already started\n", cpu);
1097 return -ENOSYS;
1098 }
1099
1100 /*
1101 * Save current MTRR state in case it was changed since early boot
1102 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1103 */
1104 mtrr_save_state();
1105
1106 /* x86 CPUs take themselves offline, so delayed offline is OK. */
1107 err = cpu_check_up_prepare(cpu);
1108 if (err && err != -EBUSY)
1109 return err;
1110
1111 /* the FPU context is blank, nobody can own it */
1112 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1113
1114 err = common_cpu_up(cpu, tidle);
1115 if (err)
1116 return err;
1117
1118 err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1119 if (err) {
1120 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1121 ret = -EIO;
1122 goto unreg_nmi;
1123 }
1124
1125 /*
1126 * Check TSC synchronization with the AP (keep irqs disabled
1127 * while doing so):
1128 */
1129 local_irq_save(flags);
1130 check_tsc_sync_source(cpu);
1131 local_irq_restore(flags);
1132
1133 while (!cpu_online(cpu)) {
1134 cpu_relax();
1135 touch_nmi_watchdog();
1136 }
1137
1138 unreg_nmi:
1139 /*
1140 * Clean up the nmi handler. Do this after the callin and callout sync
1141 * to avoid impact of possible long unregister time.
1142 */
1143 if (cpu0_nmi_registered)
1144 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1145
1146 return ret;
1147 }
1148
1149 /**
1150 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1151 */
1152 void arch_disable_smp_support(void)
1153 {
1154 disable_ioapic_support();
1155 }
1156
1157 /*
1158 * Fall back to non SMP mode after errors.
1159 *
1160 * RED-PEN audit/test this more. I bet there is more state messed up here.
1161 */
1162 static __init void disable_smp(void)
1163 {
1164 pr_info("SMP disabled\n");
1165
1166 disable_ioapic_support();
1167
1168 init_cpu_present(cpumask_of(0));
1169 init_cpu_possible(cpumask_of(0));
1170
1171 if (smp_found_config)
1172 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1173 else
1174 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1175 cpumask_set_cpu(0, topology_sibling_cpumask(0));
1176 cpumask_set_cpu(0, topology_core_cpumask(0));
1177 }
1178
1179 /*
1180 * Various sanity checks.
1181 */
1182 static void __init smp_sanity_check(void)
1183 {
1184 preempt_disable();
1185
1186 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1187 if (def_to_bigsmp && nr_cpu_ids > 8) {
1188 unsigned int cpu;
1189 unsigned nr;
1190
1191 pr_warn("More than 8 CPUs detected - skipping them\n"
1192 "Use CONFIG_X86_BIGSMP\n");
1193
1194 nr = 0;
1195 for_each_present_cpu(cpu) {
1196 if (nr >= 8)
1197 set_cpu_present(cpu, false);
1198 nr++;
1199 }
1200
1201 nr = 0;
1202 for_each_possible_cpu(cpu) {
1203 if (nr >= 8)
1204 set_cpu_possible(cpu, false);
1205 nr++;
1206 }
1207
1208 nr_cpu_ids = 8;
1209 }
1210 #endif
1211
1212 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1213 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1214 hard_smp_processor_id());
1215
1216 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1217 }
1218
1219 /*
1220 * Should not be necessary because the MP table should list the boot
1221 * CPU too, but we do it for the sake of robustness anyway.
1222 */
1223 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1224 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1225 boot_cpu_physical_apicid);
1226 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1227 }
1228 preempt_enable();
1229 }
1230
1231 static void __init smp_cpu_index_default(void)
1232 {
1233 int i;
1234 struct cpuinfo_x86 *c;
1235
1236 for_each_possible_cpu(i) {
1237 c = &cpu_data(i);
1238 /* mark all to hotplug */
1239 c->cpu_index = nr_cpu_ids;
1240 }
1241 }
1242
1243 static void __init smp_get_logical_apicid(void)
1244 {
1245 if (x2apic_mode)
1246 cpu0_logical_apicid = apic_read(APIC_LDR);
1247 else
1248 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1249 }
1250
1251 /*
1252 * Prepare for SMP bootup.
1253 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1254 * for common interface support.
1255 */
1256 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1257 {
1258 unsigned int i;
1259
1260 smp_cpu_index_default();
1261
1262 /*
1263 * Setup boot CPU information
1264 */
1265 smp_store_boot_cpu_info(); /* Final full version of the data */
1266 cpumask_copy(cpu_callin_mask, cpumask_of(0));
1267 mb();
1268
1269 for_each_possible_cpu(i) {
1270 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1271 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1272 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1273 }
1274
1275 /*
1276 * Set 'default' x86 topology, this matches default_topology() in that
1277 * it has NUMA nodes as a topology level. See also
1278 * native_smp_cpus_done().
1279 *
1280 * Must be done before set_cpus_sibling_map() is ran.
1281 */
1282 set_sched_topology(x86_topology);
1283
1284 set_cpu_sibling_map(0);
1285
1286 smp_sanity_check();
1287
1288 switch (apic_intr_mode) {
1289 case APIC_PIC:
1290 case APIC_VIRTUAL_WIRE_NO_CONFIG:
1291 disable_smp();
1292 return;
1293 case APIC_SYMMETRIC_IO_NO_ROUTING:
1294 disable_smp();
1295 /* Setup local timer */
1296 x86_init.timers.setup_percpu_clockev();
1297 return;
1298 case APIC_VIRTUAL_WIRE:
1299 case APIC_SYMMETRIC_IO:
1300 break;
1301 }
1302
1303 /* Setup local timer */
1304 x86_init.timers.setup_percpu_clockev();
1305
1306 smp_get_logical_apicid();
1307
1308 pr_info("CPU0: ");
1309 print_cpu_info(&cpu_data(0));
1310
1311 native_pv_lock_init();
1312
1313 uv_system_init();
1314
1315 set_mtrr_aps_delayed_init();
1316
1317 smp_quirk_init_udelay();
1318
1319 speculative_store_bypass_ht_init();
1320 }
1321
1322 void arch_enable_nonboot_cpus_begin(void)
1323 {
1324 set_mtrr_aps_delayed_init();
1325 }
1326
1327 void arch_enable_nonboot_cpus_end(void)
1328 {
1329 mtrr_aps_init();
1330 }
1331
1332 /*
1333 * Early setup to make printk work.
1334 */
1335 void __init native_smp_prepare_boot_cpu(void)
1336 {
1337 int me = smp_processor_id();
1338 switch_to_new_gdt(me);
1339 /* already set me in cpu_online_mask in boot_cpu_init() */
1340 cpumask_set_cpu(me, cpu_callout_mask);
1341 cpu_set_state_online(me);
1342 }
1343
1344 void __init calculate_max_logical_packages(void)
1345 {
1346 int ncpus;
1347
1348 /*
1349 * Today neither Intel nor AMD support heterogenous systems so
1350 * extrapolate the boot cpu's data to all packages.
1351 */
1352 ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1353 __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1354 pr_info("Max logical packages: %u\n", __max_logical_packages);
1355 }
1356
1357 void __init native_smp_cpus_done(unsigned int max_cpus)
1358 {
1359 pr_debug("Boot done\n");
1360
1361 calculate_max_logical_packages();
1362
1363 if (x86_has_numa_in_package)
1364 set_sched_topology(x86_numa_in_package_topology);
1365
1366 nmi_selftest();
1367 impress_friends();
1368 mtrr_aps_init();
1369 }
1370
1371 static int __initdata setup_possible_cpus = -1;
1372 static int __init _setup_possible_cpus(char *str)
1373 {
1374 get_option(&str, &setup_possible_cpus);
1375 return 0;
1376 }
1377 early_param("possible_cpus", _setup_possible_cpus);
1378
1379
1380 /*
1381 * cpu_possible_mask should be static, it cannot change as cpu's
1382 * are onlined, or offlined. The reason is per-cpu data-structures
1383 * are allocated by some modules at init time, and dont expect to
1384 * do this dynamically on cpu arrival/departure.
1385 * cpu_present_mask on the other hand can change dynamically.
1386 * In case when cpu_hotplug is not compiled, then we resort to current
1387 * behaviour, which is cpu_possible == cpu_present.
1388 * - Ashok Raj
1389 *
1390 * Three ways to find out the number of additional hotplug CPUs:
1391 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1392 * - The user can overwrite it with possible_cpus=NUM
1393 * - Otherwise don't reserve additional CPUs.
1394 * We do this because additional CPUs waste a lot of memory.
1395 * -AK
1396 */
1397 __init void prefill_possible_map(void)
1398 {
1399 int i, possible;
1400
1401 /* No boot processor was found in mptable or ACPI MADT */
1402 if (!num_processors) {
1403 if (boot_cpu_has(X86_FEATURE_APIC)) {
1404 int apicid = boot_cpu_physical_apicid;
1405 int cpu = hard_smp_processor_id();
1406
1407 pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1408
1409 /* Make sure boot cpu is enumerated */
1410 if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1411 apic->apic_id_valid(apicid))
1412 generic_processor_info(apicid, boot_cpu_apic_version);
1413 }
1414
1415 if (!num_processors)
1416 num_processors = 1;
1417 }
1418
1419 i = setup_max_cpus ?: 1;
1420 if (setup_possible_cpus == -1) {
1421 possible = num_processors;
1422 #ifdef CONFIG_HOTPLUG_CPU
1423 if (setup_max_cpus)
1424 possible += disabled_cpus;
1425 #else
1426 if (possible > i)
1427 possible = i;
1428 #endif
1429 } else
1430 possible = setup_possible_cpus;
1431
1432 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1433
1434 /* nr_cpu_ids could be reduced via nr_cpus= */
1435 if (possible > nr_cpu_ids) {
1436 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1437 possible, nr_cpu_ids);
1438 possible = nr_cpu_ids;
1439 }
1440
1441 #ifdef CONFIG_HOTPLUG_CPU
1442 if (!setup_max_cpus)
1443 #endif
1444 if (possible > i) {
1445 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1446 possible, setup_max_cpus);
1447 possible = i;
1448 }
1449
1450 nr_cpu_ids = possible;
1451
1452 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1453 possible, max_t(int, possible - num_processors, 0));
1454
1455 reset_cpu_possible_mask();
1456
1457 for (i = 0; i < possible; i++)
1458 set_cpu_possible(i, true);
1459 }
1460
1461 #ifdef CONFIG_HOTPLUG_CPU
1462
1463 /* Recompute SMT state for all CPUs on offline */
1464 static void recompute_smt_state(void)
1465 {
1466 int max_threads, cpu;
1467
1468 max_threads = 0;
1469 for_each_online_cpu (cpu) {
1470 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1471
1472 if (threads > max_threads)
1473 max_threads = threads;
1474 }
1475 __max_smt_threads = max_threads;
1476 }
1477
1478 static void remove_siblinginfo(int cpu)
1479 {
1480 int sibling;
1481 struct cpuinfo_x86 *c = &cpu_data(cpu);
1482
1483 for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1484 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1485 /*/
1486 * last thread sibling in this cpu core going down
1487 */
1488 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1489 cpu_data(sibling).booted_cores--;
1490 }
1491
1492 for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1493 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1494 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1495 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1496 cpumask_clear(cpu_llc_shared_mask(cpu));
1497 cpumask_clear(topology_sibling_cpumask(cpu));
1498 cpumask_clear(topology_core_cpumask(cpu));
1499 c->cpu_core_id = 0;
1500 c->booted_cores = 0;
1501 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1502 recompute_smt_state();
1503 }
1504
1505 static void remove_cpu_from_maps(int cpu)
1506 {
1507 set_cpu_online(cpu, false);
1508 cpumask_clear_cpu(cpu, cpu_callout_mask);
1509 cpumask_clear_cpu(cpu, cpu_callin_mask);
1510 /* was set by cpu_init() */
1511 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1512 numa_remove_cpu(cpu);
1513 }
1514
1515 void cpu_disable_common(void)
1516 {
1517 int cpu = smp_processor_id();
1518
1519 remove_siblinginfo(cpu);
1520
1521 /* It's now safe to remove this processor from the online map */
1522 lock_vector_lock();
1523 remove_cpu_from_maps(cpu);
1524 unlock_vector_lock();
1525 fixup_irqs();
1526 lapic_offline();
1527 }
1528
1529 int native_cpu_disable(void)
1530 {
1531 int ret;
1532
1533 ret = lapic_can_unplug_cpu();
1534 if (ret)
1535 return ret;
1536
1537 clear_local_APIC();
1538 cpu_disable_common();
1539
1540 return 0;
1541 }
1542
1543 int common_cpu_die(unsigned int cpu)
1544 {
1545 int ret = 0;
1546
1547 /* We don't do anything here: idle task is faking death itself. */
1548
1549 /* They ack this in play_dead() by setting CPU_DEAD */
1550 if (cpu_wait_death(cpu, 5)) {
1551 if (system_state == SYSTEM_RUNNING)
1552 pr_info("CPU %u is now offline\n", cpu);
1553 } else {
1554 pr_err("CPU %u didn't die...\n", cpu);
1555 ret = -1;
1556 }
1557
1558 return ret;
1559 }
1560
1561 void native_cpu_die(unsigned int cpu)
1562 {
1563 common_cpu_die(cpu);
1564 }
1565
1566 void play_dead_common(void)
1567 {
1568 idle_task_exit();
1569
1570 /* Ack it */
1571 (void)cpu_report_death();
1572
1573 /*
1574 * With physical CPU hotplug, we should halt the cpu
1575 */
1576 local_irq_disable();
1577 }
1578
1579 static bool wakeup_cpu0(void)
1580 {
1581 if (smp_processor_id() == 0 && enable_start_cpu0)
1582 return true;
1583
1584 return false;
1585 }
1586
1587 /*
1588 * We need to flush the caches before going to sleep, lest we have
1589 * dirty data in our caches when we come back up.
1590 */
1591 static inline void mwait_play_dead(void)
1592 {
1593 unsigned int eax, ebx, ecx, edx;
1594 unsigned int highest_cstate = 0;
1595 unsigned int highest_subcstate = 0;
1596 void *mwait_ptr;
1597 int i;
1598
1599 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1600 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1601 return;
1602 if (!this_cpu_has(X86_FEATURE_MWAIT))
1603 return;
1604 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1605 return;
1606 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1607 return;
1608
1609 eax = CPUID_MWAIT_LEAF;
1610 ecx = 0;
1611 native_cpuid(&eax, &ebx, &ecx, &edx);
1612
1613 /*
1614 * eax will be 0 if EDX enumeration is not valid.
1615 * Initialized below to cstate, sub_cstate value when EDX is valid.
1616 */
1617 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1618 eax = 0;
1619 } else {
1620 edx >>= MWAIT_SUBSTATE_SIZE;
1621 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1622 if (edx & MWAIT_SUBSTATE_MASK) {
1623 highest_cstate = i;
1624 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1625 }
1626 }
1627 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1628 (highest_subcstate - 1);
1629 }
1630
1631 /*
1632 * This should be a memory location in a cache line which is
1633 * unlikely to be touched by other processors. The actual
1634 * content is immaterial as it is not actually modified in any way.
1635 */
1636 mwait_ptr = &current_thread_info()->flags;
1637
1638 wbinvd();
1639
1640 while (1) {
1641 /*
1642 * The CLFLUSH is a workaround for erratum AAI65 for
1643 * the Xeon 7400 series. It's not clear it is actually
1644 * needed, but it should be harmless in either case.
1645 * The WBINVD is insufficient due to the spurious-wakeup
1646 * case where we return around the loop.
1647 */
1648 mb();
1649 clflush(mwait_ptr);
1650 mb();
1651 __monitor(mwait_ptr, 0, 0);
1652 mb();
1653 __mwait(eax, 0);
1654 /*
1655 * If NMI wants to wake up CPU0, start CPU0.
1656 */
1657 if (wakeup_cpu0())
1658 start_cpu0();
1659 }
1660 }
1661
1662 void hlt_play_dead(void)
1663 {
1664 if (__this_cpu_read(cpu_info.x86) >= 4)
1665 wbinvd();
1666
1667 while (1) {
1668 native_halt();
1669 /*
1670 * If NMI wants to wake up CPU0, start CPU0.
1671 */
1672 if (wakeup_cpu0())
1673 start_cpu0();
1674 }
1675 }
1676
1677 void native_play_dead(void)
1678 {
1679 play_dead_common();
1680 tboot_shutdown(TB_SHUTDOWN_WFS);
1681
1682 mwait_play_dead(); /* Only returns on failure */
1683 if (cpuidle_play_dead())
1684 hlt_play_dead();
1685 }
1686
1687 #else /* ... !CONFIG_HOTPLUG_CPU */
1688 int native_cpu_disable(void)
1689 {
1690 return -ENOSYS;
1691 }
1692
1693 void native_cpu_die(unsigned int cpu)
1694 {
1695 /* We said "no" in __cpu_disable */
1696 BUG();
1697 }
1698
1699 void native_play_dead(void)
1700 {
1701 BUG();
1702 }
1703
1704 #endif