]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/smpboot.c
Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
15 * This code is released under the GNU General Public License version 2 or
16 * later.
17 *
18 * Fixes
19 * Felix Koop : NR_CPUS used properly
20 * Jose Renau : Handle single CPU case.
21 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
22 * Greg Wright : Fix for kernel stacks panic.
23 * Erich Boleyn : MP v1.4 and additional changes.
24 * Matthias Sattler : Changes for 2.1 kernel map.
25 * Michel Lespinasse : Changes for 2.1 kernel map.
26 * Michael Chastain : Change trampoline.S to gnu as.
27 * Alan Cox : Dumb bug: 'B' step PPro's are fine
28 * Ingo Molnar : Added APIC timers, based on code
29 * from Jose Renau
30 * Ingo Molnar : various cleanups and rewrites
31 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
32 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
33 * Andi Kleen : Changed for SMP boot into long mode.
34 * Martin J. Bligh : Added support for multi-quad systems
35 * Dave Jones : Report invalid combinations of Athlon CPUs.
36 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
37 * Andi Kleen : Converted to new state machine.
38 * Ashok Raj : CPU hotplug support
39 * Glauber Costa : i386 and x86_64 integration
40 */
41
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43
44 #include <linux/init.h>
45 #include <linux/smp.h>
46 #include <linux/export.h>
47 #include <linux/sched.h>
48 #include <linux/sched/topology.h>
49 #include <linux/sched/hotplug.h>
50 #include <linux/sched/task_stack.h>
51 #include <linux/percpu.h>
52 #include <linux/bootmem.h>
53 #include <linux/err.h>
54 #include <linux/nmi.h>
55 #include <linux/tboot.h>
56 #include <linux/stackprotector.h>
57 #include <linux/gfp.h>
58 #include <linux/cpuidle.h>
59
60 #include <asm/acpi.h>
61 #include <asm/desc.h>
62 #include <asm/nmi.h>
63 #include <asm/irq.h>
64 #include <asm/realmode.h>
65 #include <asm/cpu.h>
66 #include <asm/numa.h>
67 #include <asm/pgtable.h>
68 #include <asm/tlbflush.h>
69 #include <asm/mtrr.h>
70 #include <asm/mwait.h>
71 #include <asm/apic.h>
72 #include <asm/io_apic.h>
73 #include <asm/fpu/internal.h>
74 #include <asm/setup.h>
75 #include <asm/uv/uv.h>
76 #include <linux/mc146818rtc.h>
77 #include <asm/i8259.h>
78 #include <asm/misc.h>
79 #include <asm/qspinlock.h>
80
81 /* Number of siblings per CPU package */
82 int smp_num_siblings = 1;
83 EXPORT_SYMBOL(smp_num_siblings);
84
85 /* Last level cache ID of each logical CPU */
86 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
87
88 /* representing HT siblings of each logical CPU */
89 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
90 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
91
92 /* representing HT and core siblings of each logical CPU */
93 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
94 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
95
96 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
97
98 /* Per CPU bogomips and other parameters */
99 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
100 EXPORT_PER_CPU_SYMBOL(cpu_info);
101
102 /* Logical package management. We might want to allocate that dynamically */
103 unsigned int __max_logical_packages __read_mostly;
104 EXPORT_SYMBOL(__max_logical_packages);
105 static unsigned int logical_packages __read_mostly;
106
107 /* Maximum number of SMT threads on any online core */
108 int __read_mostly __max_smt_threads = 1;
109
110 /* Flag to indicate if a complete sched domain rebuild is required */
111 bool x86_topology_update;
112
113 int arch_update_cpu_topology(void)
114 {
115 int retval = x86_topology_update;
116
117 x86_topology_update = false;
118 return retval;
119 }
120
121 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
122 {
123 unsigned long flags;
124
125 spin_lock_irqsave(&rtc_lock, flags);
126 CMOS_WRITE(0xa, 0xf);
127 spin_unlock_irqrestore(&rtc_lock, flags);
128 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
129 start_eip >> 4;
130 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
131 start_eip & 0xf;
132 }
133
134 static inline void smpboot_restore_warm_reset_vector(void)
135 {
136 unsigned long flags;
137
138 /*
139 * Paranoid: Set warm reset code and vector here back
140 * to default values.
141 */
142 spin_lock_irqsave(&rtc_lock, flags);
143 CMOS_WRITE(0, 0xf);
144 spin_unlock_irqrestore(&rtc_lock, flags);
145
146 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
147 }
148
149 /*
150 * Report back to the Boot Processor during boot time or to the caller processor
151 * during CPU online.
152 */
153 static void smp_callin(void)
154 {
155 int cpuid, phys_id;
156
157 /*
158 * If waken up by an INIT in an 82489DX configuration
159 * cpu_callout_mask guarantees we don't get here before
160 * an INIT_deassert IPI reaches our local APIC, so it is
161 * now safe to touch our local APIC.
162 */
163 cpuid = smp_processor_id();
164
165 /*
166 * (This works even if the APIC is not enabled.)
167 */
168 phys_id = read_apic_id();
169
170 /*
171 * the boot CPU has finished the init stage and is spinning
172 * on callin_map until we finish. We are free to set up this
173 * CPU, first the APIC. (this is probably redundant on most
174 * boards)
175 */
176 apic_ap_setup();
177
178 /*
179 * Save our processor parameters. Note: this information
180 * is needed for clock calibration.
181 */
182 smp_store_cpu_info(cpuid);
183
184 /*
185 * The topology information must be up to date before
186 * calibrate_delay() and notify_cpu_starting().
187 */
188 set_cpu_sibling_map(raw_smp_processor_id());
189
190 /*
191 * Get our bogomips.
192 * Update loops_per_jiffy in cpu_data. Previous call to
193 * smp_store_cpu_info() stored a value that is close but not as
194 * accurate as the value just calculated.
195 */
196 calibrate_delay();
197 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
198 pr_debug("Stack at about %p\n", &cpuid);
199
200 wmb();
201
202 notify_cpu_starting(cpuid);
203
204 /*
205 * Allow the master to continue.
206 */
207 cpumask_set_cpu(cpuid, cpu_callin_mask);
208 }
209
210 static int cpu0_logical_apicid;
211 static int enable_start_cpu0;
212 /*
213 * Activate a secondary processor.
214 */
215 static void notrace start_secondary(void *unused)
216 {
217 /*
218 * Don't put *anything* except direct CPU state initialization
219 * before cpu_init(), SMP booting is too fragile that we want to
220 * limit the things done here to the most necessary things.
221 */
222 if (boot_cpu_has(X86_FEATURE_PCID))
223 __write_cr4(__read_cr4() | X86_CR4_PCIDE);
224
225 #ifdef CONFIG_X86_32
226 /* switch away from the initial page table */
227 load_cr3(swapper_pg_dir);
228 __flush_tlb_all();
229 #endif
230 load_current_idt();
231 cpu_init();
232 x86_cpuinit.early_percpu_clock_init();
233 preempt_disable();
234 smp_callin();
235
236 enable_start_cpu0 = 0;
237
238 /* otherwise gcc will move up smp_processor_id before the cpu_init */
239 barrier();
240 /*
241 * Check TSC synchronization with the boot CPU:
242 */
243 check_tsc_sync_target();
244
245 /*
246 * Lock vector_lock, set CPU online and bring the vector
247 * allocator online. Online must be set with vector_lock held
248 * to prevent a concurrent irq setup/teardown from seeing a
249 * half valid vector space.
250 */
251 lock_vector_lock();
252 set_cpu_online(smp_processor_id(), true);
253 lapic_online();
254 unlock_vector_lock();
255 cpu_set_state_online(smp_processor_id());
256 x86_platform.nmi_init();
257
258 /* enable local interrupts */
259 local_irq_enable();
260
261 /* to prevent fake stack check failure in clock setup */
262 boot_init_stack_canary();
263
264 x86_cpuinit.setup_percpu_clockev();
265
266 wmb();
267 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
268 }
269
270 /**
271 * topology_phys_to_logical_pkg - Map a physical package id to a logical
272 *
273 * Returns logical package id or -1 if not found
274 */
275 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
276 {
277 int cpu;
278
279 for_each_possible_cpu(cpu) {
280 struct cpuinfo_x86 *c = &cpu_data(cpu);
281
282 if (c->initialized && c->phys_proc_id == phys_pkg)
283 return c->logical_proc_id;
284 }
285 return -1;
286 }
287 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
288
289 /**
290 * topology_update_package_map - Update the physical to logical package map
291 * @pkg: The physical package id as retrieved via CPUID
292 * @cpu: The cpu for which this is updated
293 */
294 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
295 {
296 int new;
297
298 /* Already available somewhere? */
299 new = topology_phys_to_logical_pkg(pkg);
300 if (new >= 0)
301 goto found;
302
303 new = logical_packages++;
304 if (new != pkg) {
305 pr_info("CPU %u Converting physical %u to logical package %u\n",
306 cpu, pkg, new);
307 }
308 found:
309 cpu_data(cpu).logical_proc_id = new;
310 return 0;
311 }
312
313 void __init smp_store_boot_cpu_info(void)
314 {
315 int id = 0; /* CPU 0 */
316 struct cpuinfo_x86 *c = &cpu_data(id);
317
318 *c = boot_cpu_data;
319 c->cpu_index = id;
320 topology_update_package_map(c->phys_proc_id, id);
321 c->initialized = true;
322 }
323
324 /*
325 * The bootstrap kernel entry code has set these up. Save them for
326 * a given CPU
327 */
328 void smp_store_cpu_info(int id)
329 {
330 struct cpuinfo_x86 *c = &cpu_data(id);
331
332 /* Copy boot_cpu_data only on the first bringup */
333 if (!c->initialized)
334 *c = boot_cpu_data;
335 c->cpu_index = id;
336 /*
337 * During boot time, CPU0 has this setup already. Save the info when
338 * bringing up AP or offlined CPU0.
339 */
340 identify_secondary_cpu(c);
341 c->initialized = true;
342 }
343
344 static bool
345 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
346 {
347 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
348
349 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
350 }
351
352 static bool
353 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
354 {
355 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
356
357 return !WARN_ONCE(!topology_same_node(c, o),
358 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
359 "[node: %d != %d]. Ignoring dependency.\n",
360 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
361 }
362
363 #define link_mask(mfunc, c1, c2) \
364 do { \
365 cpumask_set_cpu((c1), mfunc(c2)); \
366 cpumask_set_cpu((c2), mfunc(c1)); \
367 } while (0)
368
369 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
370 {
371 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
372 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
373
374 if (c->phys_proc_id == o->phys_proc_id &&
375 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
376 if (c->cpu_core_id == o->cpu_core_id)
377 return topology_sane(c, o, "smt");
378
379 if ((c->cu_id != 0xff) &&
380 (o->cu_id != 0xff) &&
381 (c->cu_id == o->cu_id))
382 return topology_sane(c, o, "smt");
383 }
384
385 } else if (c->phys_proc_id == o->phys_proc_id &&
386 c->cpu_core_id == o->cpu_core_id) {
387 return topology_sane(c, o, "smt");
388 }
389
390 return false;
391 }
392
393 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
394 {
395 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
396
397 if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID &&
398 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2))
399 return topology_sane(c, o, "llc");
400
401 return false;
402 }
403
404 /*
405 * Unlike the other levels, we do not enforce keeping a
406 * multicore group inside a NUMA node. If this happens, we will
407 * discard the MC level of the topology later.
408 */
409 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
410 {
411 if (c->phys_proc_id == o->phys_proc_id)
412 return true;
413 return false;
414 }
415
416 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
417 static inline int x86_sched_itmt_flags(void)
418 {
419 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
420 }
421
422 #ifdef CONFIG_SCHED_MC
423 static int x86_core_flags(void)
424 {
425 return cpu_core_flags() | x86_sched_itmt_flags();
426 }
427 #endif
428 #ifdef CONFIG_SCHED_SMT
429 static int x86_smt_flags(void)
430 {
431 return cpu_smt_flags() | x86_sched_itmt_flags();
432 }
433 #endif
434 #endif
435
436 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
437 #ifdef CONFIG_SCHED_SMT
438 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
439 #endif
440 #ifdef CONFIG_SCHED_MC
441 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
442 #endif
443 { NULL, },
444 };
445
446 static struct sched_domain_topology_level x86_topology[] = {
447 #ifdef CONFIG_SCHED_SMT
448 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
449 #endif
450 #ifdef CONFIG_SCHED_MC
451 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
452 #endif
453 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
454 { NULL, },
455 };
456
457 /*
458 * Set if a package/die has multiple NUMA nodes inside.
459 * AMD Magny-Cours and Intel Cluster-on-Die have this.
460 */
461 static bool x86_has_numa_in_package;
462
463 void set_cpu_sibling_map(int cpu)
464 {
465 bool has_smt = smp_num_siblings > 1;
466 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
467 struct cpuinfo_x86 *c = &cpu_data(cpu);
468 struct cpuinfo_x86 *o;
469 int i, threads;
470
471 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
472
473 if (!has_mp) {
474 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
475 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
476 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
477 c->booted_cores = 1;
478 return;
479 }
480
481 for_each_cpu(i, cpu_sibling_setup_mask) {
482 o = &cpu_data(i);
483
484 if ((i == cpu) || (has_smt && match_smt(c, o)))
485 link_mask(topology_sibling_cpumask, cpu, i);
486
487 if ((i == cpu) || (has_mp && match_llc(c, o)))
488 link_mask(cpu_llc_shared_mask, cpu, i);
489
490 }
491
492 /*
493 * This needs a separate iteration over the cpus because we rely on all
494 * topology_sibling_cpumask links to be set-up.
495 */
496 for_each_cpu(i, cpu_sibling_setup_mask) {
497 o = &cpu_data(i);
498
499 if ((i == cpu) || (has_mp && match_die(c, o))) {
500 link_mask(topology_core_cpumask, cpu, i);
501
502 /*
503 * Does this new cpu bringup a new core?
504 */
505 if (cpumask_weight(
506 topology_sibling_cpumask(cpu)) == 1) {
507 /*
508 * for each core in package, increment
509 * the booted_cores for this new cpu
510 */
511 if (cpumask_first(
512 topology_sibling_cpumask(i)) == i)
513 c->booted_cores++;
514 /*
515 * increment the core count for all
516 * the other cpus in this package
517 */
518 if (i != cpu)
519 cpu_data(i).booted_cores++;
520 } else if (i != cpu && !c->booted_cores)
521 c->booted_cores = cpu_data(i).booted_cores;
522 }
523 if (match_die(c, o) && !topology_same_node(c, o))
524 x86_has_numa_in_package = true;
525 }
526
527 threads = cpumask_weight(topology_sibling_cpumask(cpu));
528 if (threads > __max_smt_threads)
529 __max_smt_threads = threads;
530 }
531
532 /* maps the cpu to the sched domain representing multi-core */
533 const struct cpumask *cpu_coregroup_mask(int cpu)
534 {
535 return cpu_llc_shared_mask(cpu);
536 }
537
538 static void impress_friends(void)
539 {
540 int cpu;
541 unsigned long bogosum = 0;
542 /*
543 * Allow the user to impress friends.
544 */
545 pr_debug("Before bogomips\n");
546 for_each_possible_cpu(cpu)
547 if (cpumask_test_cpu(cpu, cpu_callout_mask))
548 bogosum += cpu_data(cpu).loops_per_jiffy;
549 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
550 num_online_cpus(),
551 bogosum/(500000/HZ),
552 (bogosum/(5000/HZ))%100);
553
554 pr_debug("Before bogocount - setting activated=1\n");
555 }
556
557 void __inquire_remote_apic(int apicid)
558 {
559 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
560 const char * const names[] = { "ID", "VERSION", "SPIV" };
561 int timeout;
562 u32 status;
563
564 pr_info("Inquiring remote APIC 0x%x...\n", apicid);
565
566 for (i = 0; i < ARRAY_SIZE(regs); i++) {
567 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
568
569 /*
570 * Wait for idle.
571 */
572 status = safe_apic_wait_icr_idle();
573 if (status)
574 pr_cont("a previous APIC delivery may have failed\n");
575
576 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
577
578 timeout = 0;
579 do {
580 udelay(100);
581 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
582 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
583
584 switch (status) {
585 case APIC_ICR_RR_VALID:
586 status = apic_read(APIC_RRR);
587 pr_cont("%08x\n", status);
588 break;
589 default:
590 pr_cont("failed\n");
591 }
592 }
593 }
594
595 /*
596 * The Multiprocessor Specification 1.4 (1997) example code suggests
597 * that there should be a 10ms delay between the BSP asserting INIT
598 * and de-asserting INIT, when starting a remote processor.
599 * But that slows boot and resume on modern processors, which include
600 * many cores and don't require that delay.
601 *
602 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
603 * Modern processor families are quirked to remove the delay entirely.
604 */
605 #define UDELAY_10MS_DEFAULT 10000
606
607 static unsigned int init_udelay = UINT_MAX;
608
609 static int __init cpu_init_udelay(char *str)
610 {
611 get_option(&str, &init_udelay);
612
613 return 0;
614 }
615 early_param("cpu_init_udelay", cpu_init_udelay);
616
617 static void __init smp_quirk_init_udelay(void)
618 {
619 /* if cmdline changed it from default, leave it alone */
620 if (init_udelay != UINT_MAX)
621 return;
622
623 /* if modern processor, use no delay */
624 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
625 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
626 init_udelay = 0;
627 return;
628 }
629 /* else, use legacy delay */
630 init_udelay = UDELAY_10MS_DEFAULT;
631 }
632
633 /*
634 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
635 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
636 * won't ... remember to clear down the APIC, etc later.
637 */
638 int
639 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
640 {
641 unsigned long send_status, accept_status = 0;
642 int maxlvt;
643
644 /* Target chip */
645 /* Boot on the stack */
646 /* Kick the second */
647 apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
648
649 pr_debug("Waiting for send to finish...\n");
650 send_status = safe_apic_wait_icr_idle();
651
652 /*
653 * Give the other CPU some time to accept the IPI.
654 */
655 udelay(200);
656 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
657 maxlvt = lapic_get_maxlvt();
658 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
659 apic_write(APIC_ESR, 0);
660 accept_status = (apic_read(APIC_ESR) & 0xEF);
661 }
662 pr_debug("NMI sent\n");
663
664 if (send_status)
665 pr_err("APIC never delivered???\n");
666 if (accept_status)
667 pr_err("APIC delivery error (%lx)\n", accept_status);
668
669 return (send_status | accept_status);
670 }
671
672 static int
673 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
674 {
675 unsigned long send_status = 0, accept_status = 0;
676 int maxlvt, num_starts, j;
677
678 maxlvt = lapic_get_maxlvt();
679
680 /*
681 * Be paranoid about clearing APIC errors.
682 */
683 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
684 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
685 apic_write(APIC_ESR, 0);
686 apic_read(APIC_ESR);
687 }
688
689 pr_debug("Asserting INIT\n");
690
691 /*
692 * Turn INIT on target chip
693 */
694 /*
695 * Send IPI
696 */
697 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
698 phys_apicid);
699
700 pr_debug("Waiting for send to finish...\n");
701 send_status = safe_apic_wait_icr_idle();
702
703 udelay(init_udelay);
704
705 pr_debug("Deasserting INIT\n");
706
707 /* Target chip */
708 /* Send IPI */
709 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
710
711 pr_debug("Waiting for send to finish...\n");
712 send_status = safe_apic_wait_icr_idle();
713
714 mb();
715
716 /*
717 * Should we send STARTUP IPIs ?
718 *
719 * Determine this based on the APIC version.
720 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
721 */
722 if (APIC_INTEGRATED(boot_cpu_apic_version))
723 num_starts = 2;
724 else
725 num_starts = 0;
726
727 /*
728 * Run STARTUP IPI loop.
729 */
730 pr_debug("#startup loops: %d\n", num_starts);
731
732 for (j = 1; j <= num_starts; j++) {
733 pr_debug("Sending STARTUP #%d\n", j);
734 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
735 apic_write(APIC_ESR, 0);
736 apic_read(APIC_ESR);
737 pr_debug("After apic_write\n");
738
739 /*
740 * STARTUP IPI
741 */
742
743 /* Target chip */
744 /* Boot on the stack */
745 /* Kick the second */
746 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
747 phys_apicid);
748
749 /*
750 * Give the other CPU some time to accept the IPI.
751 */
752 if (init_udelay == 0)
753 udelay(10);
754 else
755 udelay(300);
756
757 pr_debug("Startup point 1\n");
758
759 pr_debug("Waiting for send to finish...\n");
760 send_status = safe_apic_wait_icr_idle();
761
762 /*
763 * Give the other CPU some time to accept the IPI.
764 */
765 if (init_udelay == 0)
766 udelay(10);
767 else
768 udelay(200);
769
770 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
771 apic_write(APIC_ESR, 0);
772 accept_status = (apic_read(APIC_ESR) & 0xEF);
773 if (send_status || accept_status)
774 break;
775 }
776 pr_debug("After Startup\n");
777
778 if (send_status)
779 pr_err("APIC never delivered???\n");
780 if (accept_status)
781 pr_err("APIC delivery error (%lx)\n", accept_status);
782
783 return (send_status | accept_status);
784 }
785
786 /* reduce the number of lines printed when booting a large cpu count system */
787 static void announce_cpu(int cpu, int apicid)
788 {
789 static int current_node = -1;
790 int node = early_cpu_to_node(cpu);
791 static int width, node_width;
792
793 if (!width)
794 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
795
796 if (!node_width)
797 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
798
799 if (cpu == 1)
800 printk(KERN_INFO "x86: Booting SMP configuration:\n");
801
802 if (system_state < SYSTEM_RUNNING) {
803 if (node != current_node) {
804 if (current_node > (-1))
805 pr_cont("\n");
806 current_node = node;
807
808 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
809 node_width - num_digits(node), " ", node);
810 }
811
812 /* Add padding for the BSP */
813 if (cpu == 1)
814 pr_cont("%*s", width + 1, " ");
815
816 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
817
818 } else
819 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
820 node, cpu, apicid);
821 }
822
823 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
824 {
825 int cpu;
826
827 cpu = smp_processor_id();
828 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
829 return NMI_HANDLED;
830
831 return NMI_DONE;
832 }
833
834 /*
835 * Wake up AP by INIT, INIT, STARTUP sequence.
836 *
837 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
838 * boot-strap code which is not a desired behavior for waking up BSP. To
839 * void the boot-strap code, wake up CPU0 by NMI instead.
840 *
841 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
842 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
843 * We'll change this code in the future to wake up hard offlined CPU0 if
844 * real platform and request are available.
845 */
846 static int
847 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
848 int *cpu0_nmi_registered)
849 {
850 int id;
851 int boot_error;
852
853 preempt_disable();
854
855 /*
856 * Wake up AP by INIT, INIT, STARTUP sequence.
857 */
858 if (cpu) {
859 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
860 goto out;
861 }
862
863 /*
864 * Wake up BSP by nmi.
865 *
866 * Register a NMI handler to help wake up CPU0.
867 */
868 boot_error = register_nmi_handler(NMI_LOCAL,
869 wakeup_cpu0_nmi, 0, "wake_cpu0");
870
871 if (!boot_error) {
872 enable_start_cpu0 = 1;
873 *cpu0_nmi_registered = 1;
874 if (apic->dest_logical == APIC_DEST_LOGICAL)
875 id = cpu0_logical_apicid;
876 else
877 id = apicid;
878 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
879 }
880
881 out:
882 preempt_enable();
883
884 return boot_error;
885 }
886
887 void common_cpu_up(unsigned int cpu, struct task_struct *idle)
888 {
889 /* Just in case we booted with a single CPU. */
890 alternatives_enable_smp();
891
892 per_cpu(current_task, cpu) = idle;
893
894 #ifdef CONFIG_X86_32
895 /* Stack for startup_32 can be just as for start_secondary onwards */
896 irq_ctx_init(cpu);
897 per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
898 #else
899 initial_gs = per_cpu_offset(cpu);
900 #endif
901 }
902
903 /*
904 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
905 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
906 * Returns zero if CPU booted OK, else error code from
907 * ->wakeup_secondary_cpu.
908 */
909 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
910 int *cpu0_nmi_registered)
911 {
912 volatile u32 *trampoline_status =
913 (volatile u32 *) __va(real_mode_header->trampoline_status);
914 /* start_ip had better be page-aligned! */
915 unsigned long start_ip = real_mode_header->trampoline_start;
916
917 unsigned long boot_error = 0;
918 unsigned long timeout;
919
920 idle->thread.sp = (unsigned long)task_pt_regs(idle);
921 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
922 initial_code = (unsigned long)start_secondary;
923 initial_stack = idle->thread.sp;
924
925 /* Enable the espfix hack for this CPU */
926 init_espfix_ap(cpu);
927
928 /* So we see what's up */
929 announce_cpu(cpu, apicid);
930
931 /*
932 * This grunge runs the startup process for
933 * the targeted processor.
934 */
935
936 if (x86_platform.legacy.warm_reset) {
937
938 pr_debug("Setting warm reset code and vector.\n");
939
940 smpboot_setup_warm_reset_vector(start_ip);
941 /*
942 * Be paranoid about clearing APIC errors.
943 */
944 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
945 apic_write(APIC_ESR, 0);
946 apic_read(APIC_ESR);
947 }
948 }
949
950 /*
951 * AP might wait on cpu_callout_mask in cpu_init() with
952 * cpu_initialized_mask set if previous attempt to online
953 * it timed-out. Clear cpu_initialized_mask so that after
954 * INIT/SIPI it could start with a clean state.
955 */
956 cpumask_clear_cpu(cpu, cpu_initialized_mask);
957 smp_mb();
958
959 /*
960 * Wake up a CPU in difference cases:
961 * - Use the method in the APIC driver if it's defined
962 * Otherwise,
963 * - Use an INIT boot APIC message for APs or NMI for BSP.
964 */
965 if (apic->wakeup_secondary_cpu)
966 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
967 else
968 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
969 cpu0_nmi_registered);
970
971 if (!boot_error) {
972 /*
973 * Wait 10s total for first sign of life from AP
974 */
975 boot_error = -1;
976 timeout = jiffies + 10*HZ;
977 while (time_before(jiffies, timeout)) {
978 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
979 /*
980 * Tell AP to proceed with initialization
981 */
982 cpumask_set_cpu(cpu, cpu_callout_mask);
983 boot_error = 0;
984 break;
985 }
986 schedule();
987 }
988 }
989
990 if (!boot_error) {
991 /*
992 * Wait till AP completes initial initialization
993 */
994 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
995 /*
996 * Allow other tasks to run while we wait for the
997 * AP to come online. This also gives a chance
998 * for the MTRR work(triggered by the AP coming online)
999 * to be completed in the stop machine context.
1000 */
1001 schedule();
1002 }
1003 }
1004
1005 /* mark "stuck" area as not stuck */
1006 *trampoline_status = 0;
1007
1008 if (x86_platform.legacy.warm_reset) {
1009 /*
1010 * Cleanup possible dangling ends...
1011 */
1012 smpboot_restore_warm_reset_vector();
1013 }
1014
1015 return boot_error;
1016 }
1017
1018 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1019 {
1020 int apicid = apic->cpu_present_to_apicid(cpu);
1021 int cpu0_nmi_registered = 0;
1022 unsigned long flags;
1023 int err, ret = 0;
1024
1025 lockdep_assert_irqs_enabled();
1026
1027 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1028
1029 if (apicid == BAD_APICID ||
1030 !physid_isset(apicid, phys_cpu_present_map) ||
1031 !apic->apic_id_valid(apicid)) {
1032 pr_err("%s: bad cpu %d\n", __func__, cpu);
1033 return -EINVAL;
1034 }
1035
1036 /*
1037 * Already booted CPU?
1038 */
1039 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1040 pr_debug("do_boot_cpu %d Already started\n", cpu);
1041 return -ENOSYS;
1042 }
1043
1044 /*
1045 * Save current MTRR state in case it was changed since early boot
1046 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1047 */
1048 mtrr_save_state();
1049
1050 /* x86 CPUs take themselves offline, so delayed offline is OK. */
1051 err = cpu_check_up_prepare(cpu);
1052 if (err && err != -EBUSY)
1053 return err;
1054
1055 /* the FPU context is blank, nobody can own it */
1056 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1057
1058 common_cpu_up(cpu, tidle);
1059
1060 err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1061 if (err) {
1062 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1063 ret = -EIO;
1064 goto unreg_nmi;
1065 }
1066
1067 /*
1068 * Check TSC synchronization with the AP (keep irqs disabled
1069 * while doing so):
1070 */
1071 local_irq_save(flags);
1072 check_tsc_sync_source(cpu);
1073 local_irq_restore(flags);
1074
1075 while (!cpu_online(cpu)) {
1076 cpu_relax();
1077 touch_nmi_watchdog();
1078 }
1079
1080 unreg_nmi:
1081 /*
1082 * Clean up the nmi handler. Do this after the callin and callout sync
1083 * to avoid impact of possible long unregister time.
1084 */
1085 if (cpu0_nmi_registered)
1086 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1087
1088 return ret;
1089 }
1090
1091 /**
1092 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1093 */
1094 void arch_disable_smp_support(void)
1095 {
1096 disable_ioapic_support();
1097 }
1098
1099 /*
1100 * Fall back to non SMP mode after errors.
1101 *
1102 * RED-PEN audit/test this more. I bet there is more state messed up here.
1103 */
1104 static __init void disable_smp(void)
1105 {
1106 pr_info("SMP disabled\n");
1107
1108 disable_ioapic_support();
1109
1110 init_cpu_present(cpumask_of(0));
1111 init_cpu_possible(cpumask_of(0));
1112
1113 if (smp_found_config)
1114 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1115 else
1116 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1117 cpumask_set_cpu(0, topology_sibling_cpumask(0));
1118 cpumask_set_cpu(0, topology_core_cpumask(0));
1119 }
1120
1121 /*
1122 * Various sanity checks.
1123 */
1124 static void __init smp_sanity_check(void)
1125 {
1126 preempt_disable();
1127
1128 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1129 if (def_to_bigsmp && nr_cpu_ids > 8) {
1130 unsigned int cpu;
1131 unsigned nr;
1132
1133 pr_warn("More than 8 CPUs detected - skipping them\n"
1134 "Use CONFIG_X86_BIGSMP\n");
1135
1136 nr = 0;
1137 for_each_present_cpu(cpu) {
1138 if (nr >= 8)
1139 set_cpu_present(cpu, false);
1140 nr++;
1141 }
1142
1143 nr = 0;
1144 for_each_possible_cpu(cpu) {
1145 if (nr >= 8)
1146 set_cpu_possible(cpu, false);
1147 nr++;
1148 }
1149
1150 nr_cpu_ids = 8;
1151 }
1152 #endif
1153
1154 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1155 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1156 hard_smp_processor_id());
1157
1158 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1159 }
1160
1161 /*
1162 * Should not be necessary because the MP table should list the boot
1163 * CPU too, but we do it for the sake of robustness anyway.
1164 */
1165 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1166 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1167 boot_cpu_physical_apicid);
1168 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1169 }
1170 preempt_enable();
1171 }
1172
1173 static void __init smp_cpu_index_default(void)
1174 {
1175 int i;
1176 struct cpuinfo_x86 *c;
1177
1178 for_each_possible_cpu(i) {
1179 c = &cpu_data(i);
1180 /* mark all to hotplug */
1181 c->cpu_index = nr_cpu_ids;
1182 }
1183 }
1184
1185 static void __init smp_get_logical_apicid(void)
1186 {
1187 if (x2apic_mode)
1188 cpu0_logical_apicid = apic_read(APIC_LDR);
1189 else
1190 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1191 }
1192
1193 /*
1194 * Prepare for SMP bootup.
1195 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1196 * for common interface support.
1197 */
1198 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1199 {
1200 unsigned int i;
1201
1202 smp_cpu_index_default();
1203
1204 /*
1205 * Setup boot CPU information
1206 */
1207 smp_store_boot_cpu_info(); /* Final full version of the data */
1208 cpumask_copy(cpu_callin_mask, cpumask_of(0));
1209 mb();
1210
1211 for_each_possible_cpu(i) {
1212 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1213 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1214 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1215 }
1216
1217 /*
1218 * Set 'default' x86 topology, this matches default_topology() in that
1219 * it has NUMA nodes as a topology level. See also
1220 * native_smp_cpus_done().
1221 *
1222 * Must be done before set_cpus_sibling_map() is ran.
1223 */
1224 set_sched_topology(x86_topology);
1225
1226 set_cpu_sibling_map(0);
1227
1228 smp_sanity_check();
1229
1230 switch (apic_intr_mode) {
1231 case APIC_PIC:
1232 case APIC_VIRTUAL_WIRE_NO_CONFIG:
1233 disable_smp();
1234 return;
1235 case APIC_SYMMETRIC_IO_NO_ROUTING:
1236 disable_smp();
1237 /* Setup local timer */
1238 x86_init.timers.setup_percpu_clockev();
1239 return;
1240 case APIC_VIRTUAL_WIRE:
1241 case APIC_SYMMETRIC_IO:
1242 break;
1243 }
1244
1245 /* Setup local timer */
1246 x86_init.timers.setup_percpu_clockev();
1247
1248 smp_get_logical_apicid();
1249
1250 pr_info("CPU0: ");
1251 print_cpu_info(&cpu_data(0));
1252
1253 native_pv_lock_init();
1254
1255 uv_system_init();
1256
1257 set_mtrr_aps_delayed_init();
1258
1259 smp_quirk_init_udelay();
1260 }
1261
1262 void arch_enable_nonboot_cpus_begin(void)
1263 {
1264 set_mtrr_aps_delayed_init();
1265 }
1266
1267 void arch_enable_nonboot_cpus_end(void)
1268 {
1269 mtrr_aps_init();
1270 }
1271
1272 /*
1273 * Early setup to make printk work.
1274 */
1275 void __init native_smp_prepare_boot_cpu(void)
1276 {
1277 int me = smp_processor_id();
1278 switch_to_new_gdt(me);
1279 /* already set me in cpu_online_mask in boot_cpu_init() */
1280 cpumask_set_cpu(me, cpu_callout_mask);
1281 cpu_set_state_online(me);
1282 }
1283
1284 void __init native_smp_cpus_done(unsigned int max_cpus)
1285 {
1286 int ncpus;
1287
1288 pr_debug("Boot done\n");
1289 /*
1290 * Today neither Intel nor AMD support heterogenous systems so
1291 * extrapolate the boot cpu's data to all packages.
1292 */
1293 ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1294 __max_logical_packages = DIV_ROUND_UP(nr_cpu_ids, ncpus);
1295 pr_info("Max logical packages: %u\n", __max_logical_packages);
1296
1297 if (x86_has_numa_in_package)
1298 set_sched_topology(x86_numa_in_package_topology);
1299
1300 nmi_selftest();
1301 impress_friends();
1302 mtrr_aps_init();
1303 }
1304
1305 static int __initdata setup_possible_cpus = -1;
1306 static int __init _setup_possible_cpus(char *str)
1307 {
1308 get_option(&str, &setup_possible_cpus);
1309 return 0;
1310 }
1311 early_param("possible_cpus", _setup_possible_cpus);
1312
1313
1314 /*
1315 * cpu_possible_mask should be static, it cannot change as cpu's
1316 * are onlined, or offlined. The reason is per-cpu data-structures
1317 * are allocated by some modules at init time, and dont expect to
1318 * do this dynamically on cpu arrival/departure.
1319 * cpu_present_mask on the other hand can change dynamically.
1320 * In case when cpu_hotplug is not compiled, then we resort to current
1321 * behaviour, which is cpu_possible == cpu_present.
1322 * - Ashok Raj
1323 *
1324 * Three ways to find out the number of additional hotplug CPUs:
1325 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1326 * - The user can overwrite it with possible_cpus=NUM
1327 * - Otherwise don't reserve additional CPUs.
1328 * We do this because additional CPUs waste a lot of memory.
1329 * -AK
1330 */
1331 __init void prefill_possible_map(void)
1332 {
1333 int i, possible;
1334
1335 /* No boot processor was found in mptable or ACPI MADT */
1336 if (!num_processors) {
1337 if (boot_cpu_has(X86_FEATURE_APIC)) {
1338 int apicid = boot_cpu_physical_apicid;
1339 int cpu = hard_smp_processor_id();
1340
1341 pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1342
1343 /* Make sure boot cpu is enumerated */
1344 if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1345 apic->apic_id_valid(apicid))
1346 generic_processor_info(apicid, boot_cpu_apic_version);
1347 }
1348
1349 if (!num_processors)
1350 num_processors = 1;
1351 }
1352
1353 i = setup_max_cpus ?: 1;
1354 if (setup_possible_cpus == -1) {
1355 possible = num_processors;
1356 #ifdef CONFIG_HOTPLUG_CPU
1357 if (setup_max_cpus)
1358 possible += disabled_cpus;
1359 #else
1360 if (possible > i)
1361 possible = i;
1362 #endif
1363 } else
1364 possible = setup_possible_cpus;
1365
1366 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1367
1368 /* nr_cpu_ids could be reduced via nr_cpus= */
1369 if (possible > nr_cpu_ids) {
1370 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1371 possible, nr_cpu_ids);
1372 possible = nr_cpu_ids;
1373 }
1374
1375 #ifdef CONFIG_HOTPLUG_CPU
1376 if (!setup_max_cpus)
1377 #endif
1378 if (possible > i) {
1379 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1380 possible, setup_max_cpus);
1381 possible = i;
1382 }
1383
1384 nr_cpu_ids = possible;
1385
1386 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1387 possible, max_t(int, possible - num_processors, 0));
1388
1389 reset_cpu_possible_mask();
1390
1391 for (i = 0; i < possible; i++)
1392 set_cpu_possible(i, true);
1393 }
1394
1395 #ifdef CONFIG_HOTPLUG_CPU
1396
1397 /* Recompute SMT state for all CPUs on offline */
1398 static void recompute_smt_state(void)
1399 {
1400 int max_threads, cpu;
1401
1402 max_threads = 0;
1403 for_each_online_cpu (cpu) {
1404 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1405
1406 if (threads > max_threads)
1407 max_threads = threads;
1408 }
1409 __max_smt_threads = max_threads;
1410 }
1411
1412 static void remove_siblinginfo(int cpu)
1413 {
1414 int sibling;
1415 struct cpuinfo_x86 *c = &cpu_data(cpu);
1416
1417 for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1418 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1419 /*/
1420 * last thread sibling in this cpu core going down
1421 */
1422 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1423 cpu_data(sibling).booted_cores--;
1424 }
1425
1426 for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1427 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1428 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1429 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1430 cpumask_clear(cpu_llc_shared_mask(cpu));
1431 cpumask_clear(topology_sibling_cpumask(cpu));
1432 cpumask_clear(topology_core_cpumask(cpu));
1433 c->phys_proc_id = 0;
1434 c->cpu_core_id = 0;
1435 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1436 recompute_smt_state();
1437 }
1438
1439 static void remove_cpu_from_maps(int cpu)
1440 {
1441 set_cpu_online(cpu, false);
1442 cpumask_clear_cpu(cpu, cpu_callout_mask);
1443 cpumask_clear_cpu(cpu, cpu_callin_mask);
1444 /* was set by cpu_init() */
1445 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1446 numa_remove_cpu(cpu);
1447 }
1448
1449 void cpu_disable_common(void)
1450 {
1451 int cpu = smp_processor_id();
1452
1453 remove_siblinginfo(cpu);
1454
1455 /* It's now safe to remove this processor from the online map */
1456 lock_vector_lock();
1457 remove_cpu_from_maps(cpu);
1458 unlock_vector_lock();
1459 fixup_irqs();
1460 lapic_offline();
1461 }
1462
1463 int native_cpu_disable(void)
1464 {
1465 int ret;
1466
1467 ret = lapic_can_unplug_cpu();
1468 if (ret)
1469 return ret;
1470
1471 clear_local_APIC();
1472 cpu_disable_common();
1473
1474 return 0;
1475 }
1476
1477 int common_cpu_die(unsigned int cpu)
1478 {
1479 int ret = 0;
1480
1481 /* We don't do anything here: idle task is faking death itself. */
1482
1483 /* They ack this in play_dead() by setting CPU_DEAD */
1484 if (cpu_wait_death(cpu, 5)) {
1485 if (system_state == SYSTEM_RUNNING)
1486 pr_info("CPU %u is now offline\n", cpu);
1487 } else {
1488 pr_err("CPU %u didn't die...\n", cpu);
1489 ret = -1;
1490 }
1491
1492 return ret;
1493 }
1494
1495 void native_cpu_die(unsigned int cpu)
1496 {
1497 common_cpu_die(cpu);
1498 }
1499
1500 void play_dead_common(void)
1501 {
1502 idle_task_exit();
1503
1504 /* Ack it */
1505 (void)cpu_report_death();
1506
1507 /*
1508 * With physical CPU hotplug, we should halt the cpu
1509 */
1510 local_irq_disable();
1511 }
1512
1513 static bool wakeup_cpu0(void)
1514 {
1515 if (smp_processor_id() == 0 && enable_start_cpu0)
1516 return true;
1517
1518 return false;
1519 }
1520
1521 /*
1522 * We need to flush the caches before going to sleep, lest we have
1523 * dirty data in our caches when we come back up.
1524 */
1525 static inline void mwait_play_dead(void)
1526 {
1527 unsigned int eax, ebx, ecx, edx;
1528 unsigned int highest_cstate = 0;
1529 unsigned int highest_subcstate = 0;
1530 void *mwait_ptr;
1531 int i;
1532
1533 if (!this_cpu_has(X86_FEATURE_MWAIT))
1534 return;
1535 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1536 return;
1537 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1538 return;
1539
1540 eax = CPUID_MWAIT_LEAF;
1541 ecx = 0;
1542 native_cpuid(&eax, &ebx, &ecx, &edx);
1543
1544 /*
1545 * eax will be 0 if EDX enumeration is not valid.
1546 * Initialized below to cstate, sub_cstate value when EDX is valid.
1547 */
1548 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1549 eax = 0;
1550 } else {
1551 edx >>= MWAIT_SUBSTATE_SIZE;
1552 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1553 if (edx & MWAIT_SUBSTATE_MASK) {
1554 highest_cstate = i;
1555 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1556 }
1557 }
1558 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1559 (highest_subcstate - 1);
1560 }
1561
1562 /*
1563 * This should be a memory location in a cache line which is
1564 * unlikely to be touched by other processors. The actual
1565 * content is immaterial as it is not actually modified in any way.
1566 */
1567 mwait_ptr = &current_thread_info()->flags;
1568
1569 wbinvd();
1570
1571 while (1) {
1572 /*
1573 * The CLFLUSH is a workaround for erratum AAI65 for
1574 * the Xeon 7400 series. It's not clear it is actually
1575 * needed, but it should be harmless in either case.
1576 * The WBINVD is insufficient due to the spurious-wakeup
1577 * case where we return around the loop.
1578 */
1579 mb();
1580 clflush(mwait_ptr);
1581 mb();
1582 __monitor(mwait_ptr, 0, 0);
1583 mb();
1584 __mwait(eax, 0);
1585 /*
1586 * If NMI wants to wake up CPU0, start CPU0.
1587 */
1588 if (wakeup_cpu0())
1589 start_cpu0();
1590 }
1591 }
1592
1593 void hlt_play_dead(void)
1594 {
1595 if (__this_cpu_read(cpu_info.x86) >= 4)
1596 wbinvd();
1597
1598 while (1) {
1599 native_halt();
1600 /*
1601 * If NMI wants to wake up CPU0, start CPU0.
1602 */
1603 if (wakeup_cpu0())
1604 start_cpu0();
1605 }
1606 }
1607
1608 void native_play_dead(void)
1609 {
1610 play_dead_common();
1611 tboot_shutdown(TB_SHUTDOWN_WFS);
1612
1613 mwait_play_dead(); /* Only returns on failure */
1614 if (cpuidle_play_dead())
1615 hlt_play_dead();
1616 }
1617
1618 #else /* ... !CONFIG_HOTPLUG_CPU */
1619 int native_cpu_disable(void)
1620 {
1621 return -ENOSYS;
1622 }
1623
1624 void native_cpu_die(unsigned int cpu)
1625 {
1626 /* We said "no" in __cpu_disable */
1627 BUG();
1628 }
1629
1630 void native_play_dead(void)
1631 {
1632 BUG();
1633 }
1634
1635 #endif