]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/kernel/smpboot.c
x86/platform: Move APIC ID validity check into platform APIC code
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
15 * This code is released under the GNU General Public License version 2 or
16 * later.
17 *
18 * Fixes
19 * Felix Koop : NR_CPUS used properly
20 * Jose Renau : Handle single CPU case.
21 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
22 * Greg Wright : Fix for kernel stacks panic.
23 * Erich Boleyn : MP v1.4 and additional changes.
24 * Matthias Sattler : Changes for 2.1 kernel map.
25 * Michel Lespinasse : Changes for 2.1 kernel map.
26 * Michael Chastain : Change trampoline.S to gnu as.
27 * Alan Cox : Dumb bug: 'B' step PPro's are fine
28 * Ingo Molnar : Added APIC timers, based on code
29 * from Jose Renau
30 * Ingo Molnar : various cleanups and rewrites
31 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
32 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
33 * Andi Kleen : Changed for SMP boot into long mode.
34 * Martin J. Bligh : Added support for multi-quad systems
35 * Dave Jones : Report invalid combinations of Athlon CPUs.
36 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
37 * Andi Kleen : Converted to new state machine.
38 * Ashok Raj : CPU hotplug support
39 * Glauber Costa : i386 and x86_64 integration
40 */
41
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/module.h>
45 #include <linux/sched.h>
46 #include <linux/percpu.h>
47 #include <linux/bootmem.h>
48 #include <linux/err.h>
49 #include <linux/nmi.h>
50 #include <linux/tboot.h>
51 #include <linux/stackprotector.h>
52 #include <linux/gfp.h>
53
54 #include <asm/acpi.h>
55 #include <asm/desc.h>
56 #include <asm/nmi.h>
57 #include <asm/irq.h>
58 #include <asm/idle.h>
59 #include <asm/trampoline.h>
60 #include <asm/cpu.h>
61 #include <asm/numa.h>
62 #include <asm/pgtable.h>
63 #include <asm/tlbflush.h>
64 #include <asm/mtrr.h>
65 #include <asm/mwait.h>
66 #include <asm/apic.h>
67 #include <asm/io_apic.h>
68 #include <asm/setup.h>
69 #include <asm/uv/uv.h>
70 #include <linux/mc146818rtc.h>
71
72 #include <asm/smpboot_hooks.h>
73 #include <asm/i8259.h>
74
75 /* State of each CPU */
76 DEFINE_PER_CPU(int, cpu_state) = { 0 };
77
78 /* Store all idle threads, this can be reused instead of creating
79 * a new thread. Also avoids complicated thread destroy functionality
80 * for idle threads.
81 */
82 #ifdef CONFIG_HOTPLUG_CPU
83 /*
84 * Needed only for CONFIG_HOTPLUG_CPU because __cpuinitdata is
85 * removed after init for !CONFIG_HOTPLUG_CPU.
86 */
87 static DEFINE_PER_CPU(struct task_struct *, idle_thread_array);
88 #define get_idle_for_cpu(x) (per_cpu(idle_thread_array, x))
89 #define set_idle_for_cpu(x, p) (per_cpu(idle_thread_array, x) = (p))
90
91 /*
92 * We need this for trampoline_base protection from concurrent accesses when
93 * off- and onlining cores wildly.
94 */
95 static DEFINE_MUTEX(x86_cpu_hotplug_driver_mutex);
96
97 void cpu_hotplug_driver_lock(void)
98 {
99 mutex_lock(&x86_cpu_hotplug_driver_mutex);
100 }
101
102 void cpu_hotplug_driver_unlock(void)
103 {
104 mutex_unlock(&x86_cpu_hotplug_driver_mutex);
105 }
106
107 ssize_t arch_cpu_probe(const char *buf, size_t count) { return -1; }
108 ssize_t arch_cpu_release(const char *buf, size_t count) { return -1; }
109 #else
110 static struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
111 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
112 #define set_idle_for_cpu(x, p) (idle_thread_array[(x)] = (p))
113 #endif
114
115 /* Number of siblings per CPU package */
116 int smp_num_siblings = 1;
117 EXPORT_SYMBOL(smp_num_siblings);
118
119 /* Last level cache ID of each logical CPU */
120 DEFINE_PER_CPU(u16, cpu_llc_id) = BAD_APICID;
121
122 /* representing HT siblings of each logical CPU */
123 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
124 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
125
126 /* representing HT and core siblings of each logical CPU */
127 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
128 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
129
130 DEFINE_PER_CPU(cpumask_var_t, cpu_llc_shared_map);
131
132 /* Per CPU bogomips and other parameters */
133 DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
134 EXPORT_PER_CPU_SYMBOL(cpu_info);
135
136 atomic_t init_deasserted;
137
138 /*
139 * Report back to the Boot Processor.
140 * Running on AP.
141 */
142 static void __cpuinit smp_callin(void)
143 {
144 int cpuid, phys_id;
145 unsigned long timeout;
146
147 /*
148 * If waken up by an INIT in an 82489DX configuration
149 * we may get here before an INIT-deassert IPI reaches
150 * our local APIC. We have to wait for the IPI or we'll
151 * lock up on an APIC access.
152 */
153 if (apic->wait_for_init_deassert)
154 apic->wait_for_init_deassert(&init_deasserted);
155
156 /*
157 * (This works even if the APIC is not enabled.)
158 */
159 phys_id = read_apic_id();
160 cpuid = smp_processor_id();
161 if (cpumask_test_cpu(cpuid, cpu_callin_mask)) {
162 panic("%s: phys CPU#%d, CPU#%d already present??\n", __func__,
163 phys_id, cpuid);
164 }
165 pr_debug("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
166
167 /*
168 * STARTUP IPIs are fragile beasts as they might sometimes
169 * trigger some glue motherboard logic. Complete APIC bus
170 * silence for 1 second, this overestimates the time the
171 * boot CPU is spending to send the up to 2 STARTUP IPIs
172 * by a factor of two. This should be enough.
173 */
174
175 /*
176 * Waiting 2s total for startup (udelay is not yet working)
177 */
178 timeout = jiffies + 2*HZ;
179 while (time_before(jiffies, timeout)) {
180 /*
181 * Has the boot CPU finished it's STARTUP sequence?
182 */
183 if (cpumask_test_cpu(cpuid, cpu_callout_mask))
184 break;
185 cpu_relax();
186 }
187
188 if (!time_before(jiffies, timeout)) {
189 panic("%s: CPU%d started up but did not get a callout!\n",
190 __func__, cpuid);
191 }
192
193 /*
194 * the boot CPU has finished the init stage and is spinning
195 * on callin_map until we finish. We are free to set up this
196 * CPU, first the APIC. (this is probably redundant on most
197 * boards)
198 */
199
200 pr_debug("CALLIN, before setup_local_APIC().\n");
201 if (apic->smp_callin_clear_local_apic)
202 apic->smp_callin_clear_local_apic();
203 setup_local_APIC();
204 end_local_APIC_setup();
205
206 /*
207 * Need to setup vector mappings before we enable interrupts.
208 */
209 setup_vector_irq(smp_processor_id());
210
211 /*
212 * Save our processor parameters. Note: this information
213 * is needed for clock calibration.
214 */
215 smp_store_cpu_info(cpuid);
216
217 /*
218 * Get our bogomips.
219 * Update loops_per_jiffy in cpu_data. Previous call to
220 * smp_store_cpu_info() stored a value that is close but not as
221 * accurate as the value just calculated.
222 *
223 * Need to enable IRQs because it can take longer and then
224 * the NMI watchdog might kill us.
225 */
226 local_irq_enable();
227 calibrate_delay();
228 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
229 local_irq_disable();
230 pr_debug("Stack at about %p\n", &cpuid);
231
232 /*
233 * This must be done before setting cpu_online_mask
234 * or calling notify_cpu_starting.
235 */
236 set_cpu_sibling_map(raw_smp_processor_id());
237 wmb();
238
239 notify_cpu_starting(cpuid);
240
241 /*
242 * Allow the master to continue.
243 */
244 cpumask_set_cpu(cpuid, cpu_callin_mask);
245 }
246
247 /*
248 * Activate a secondary processor.
249 */
250 notrace static void __cpuinit start_secondary(void *unused)
251 {
252 /*
253 * Don't put *anything* before cpu_init(), SMP booting is too
254 * fragile that we want to limit the things done here to the
255 * most necessary things.
256 */
257 cpu_init();
258 preempt_disable();
259 smp_callin();
260
261 #ifdef CONFIG_X86_32
262 /* switch away from the initial page table */
263 load_cr3(swapper_pg_dir);
264 __flush_tlb_all();
265 #endif
266
267 /* otherwise gcc will move up smp_processor_id before the cpu_init */
268 barrier();
269 /*
270 * Check TSC synchronization with the BP:
271 */
272 check_tsc_sync_target();
273
274 /*
275 * We need to hold call_lock, so there is no inconsistency
276 * between the time smp_call_function() determines number of
277 * IPI recipients, and the time when the determination is made
278 * for which cpus receive the IPI. Holding this
279 * lock helps us to not include this cpu in a currently in progress
280 * smp_call_function().
281 *
282 * We need to hold vector_lock so there the set of online cpus
283 * does not change while we are assigning vectors to cpus. Holding
284 * this lock ensures we don't half assign or remove an irq from a cpu.
285 */
286 ipi_call_lock();
287 lock_vector_lock();
288 set_cpu_online(smp_processor_id(), true);
289 unlock_vector_lock();
290 ipi_call_unlock();
291 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
292 x86_platform.nmi_init();
293
294 /*
295 * Wait until the cpu which brought this one up marked it
296 * online before enabling interrupts. If we don't do that then
297 * we can end up waking up the softirq thread before this cpu
298 * reached the active state, which makes the scheduler unhappy
299 * and schedule the softirq thread on the wrong cpu. This is
300 * only observable with forced threaded interrupts, but in
301 * theory it could also happen w/o them. It's just way harder
302 * to achieve.
303 */
304 while (!cpumask_test_cpu(smp_processor_id(), cpu_active_mask))
305 cpu_relax();
306
307 /* enable local interrupts */
308 local_irq_enable();
309
310 /* to prevent fake stack check failure in clock setup */
311 boot_init_stack_canary();
312
313 x86_cpuinit.setup_percpu_clockev();
314
315 wmb();
316 cpu_idle();
317 }
318
319 /*
320 * The bootstrap kernel entry code has set these up. Save them for
321 * a given CPU
322 */
323
324 void __cpuinit smp_store_cpu_info(int id)
325 {
326 struct cpuinfo_x86 *c = &cpu_data(id);
327
328 *c = boot_cpu_data;
329 c->cpu_index = id;
330 if (id != 0)
331 identify_secondary_cpu(c);
332 }
333
334 static void __cpuinit link_thread_siblings(int cpu1, int cpu2)
335 {
336 cpumask_set_cpu(cpu1, cpu_sibling_mask(cpu2));
337 cpumask_set_cpu(cpu2, cpu_sibling_mask(cpu1));
338 cpumask_set_cpu(cpu1, cpu_core_mask(cpu2));
339 cpumask_set_cpu(cpu2, cpu_core_mask(cpu1));
340 cpumask_set_cpu(cpu1, cpu_llc_shared_mask(cpu2));
341 cpumask_set_cpu(cpu2, cpu_llc_shared_mask(cpu1));
342 }
343
344
345 void __cpuinit set_cpu_sibling_map(int cpu)
346 {
347 int i;
348 struct cpuinfo_x86 *c = &cpu_data(cpu);
349
350 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
351
352 if (smp_num_siblings > 1) {
353 for_each_cpu(i, cpu_sibling_setup_mask) {
354 struct cpuinfo_x86 *o = &cpu_data(i);
355
356 if (cpu_has(c, X86_FEATURE_TOPOEXT)) {
357 if (c->phys_proc_id == o->phys_proc_id &&
358 per_cpu(cpu_llc_id, cpu) == per_cpu(cpu_llc_id, i) &&
359 c->compute_unit_id == o->compute_unit_id)
360 link_thread_siblings(cpu, i);
361 } else if (c->phys_proc_id == o->phys_proc_id &&
362 c->cpu_core_id == o->cpu_core_id) {
363 link_thread_siblings(cpu, i);
364 }
365 }
366 } else {
367 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
368 }
369
370 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
371
372 if (__this_cpu_read(cpu_info.x86_max_cores) == 1) {
373 cpumask_copy(cpu_core_mask(cpu), cpu_sibling_mask(cpu));
374 c->booted_cores = 1;
375 return;
376 }
377
378 for_each_cpu(i, cpu_sibling_setup_mask) {
379 if (per_cpu(cpu_llc_id, cpu) != BAD_APICID &&
380 per_cpu(cpu_llc_id, cpu) == per_cpu(cpu_llc_id, i)) {
381 cpumask_set_cpu(i, cpu_llc_shared_mask(cpu));
382 cpumask_set_cpu(cpu, cpu_llc_shared_mask(i));
383 }
384 if (c->phys_proc_id == cpu_data(i).phys_proc_id) {
385 cpumask_set_cpu(i, cpu_core_mask(cpu));
386 cpumask_set_cpu(cpu, cpu_core_mask(i));
387 /*
388 * Does this new cpu bringup a new core?
389 */
390 if (cpumask_weight(cpu_sibling_mask(cpu)) == 1) {
391 /*
392 * for each core in package, increment
393 * the booted_cores for this new cpu
394 */
395 if (cpumask_first(cpu_sibling_mask(i)) == i)
396 c->booted_cores++;
397 /*
398 * increment the core count for all
399 * the other cpus in this package
400 */
401 if (i != cpu)
402 cpu_data(i).booted_cores++;
403 } else if (i != cpu && !c->booted_cores)
404 c->booted_cores = cpu_data(i).booted_cores;
405 }
406 }
407 }
408
409 /* maps the cpu to the sched domain representing multi-core */
410 const struct cpumask *cpu_coregroup_mask(int cpu)
411 {
412 struct cpuinfo_x86 *c = &cpu_data(cpu);
413 /*
414 * For perf, we return last level cache shared map.
415 * And for power savings, we return cpu_core_map
416 */
417 if ((sched_mc_power_savings || sched_smt_power_savings) &&
418 !(cpu_has(c, X86_FEATURE_AMD_DCM)))
419 return cpu_core_mask(cpu);
420 else
421 return cpu_llc_shared_mask(cpu);
422 }
423
424 static void impress_friends(void)
425 {
426 int cpu;
427 unsigned long bogosum = 0;
428 /*
429 * Allow the user to impress friends.
430 */
431 pr_debug("Before bogomips.\n");
432 for_each_possible_cpu(cpu)
433 if (cpumask_test_cpu(cpu, cpu_callout_mask))
434 bogosum += cpu_data(cpu).loops_per_jiffy;
435 printk(KERN_INFO
436 "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
437 num_online_cpus(),
438 bogosum/(500000/HZ),
439 (bogosum/(5000/HZ))%100);
440
441 pr_debug("Before bogocount - setting activated=1.\n");
442 }
443
444 void __inquire_remote_apic(int apicid)
445 {
446 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
447 const char * const names[] = { "ID", "VERSION", "SPIV" };
448 int timeout;
449 u32 status;
450
451 printk(KERN_INFO "Inquiring remote APIC 0x%x...\n", apicid);
452
453 for (i = 0; i < ARRAY_SIZE(regs); i++) {
454 printk(KERN_INFO "... APIC 0x%x %s: ", apicid, names[i]);
455
456 /*
457 * Wait for idle.
458 */
459 status = safe_apic_wait_icr_idle();
460 if (status)
461 printk(KERN_CONT
462 "a previous APIC delivery may have failed\n");
463
464 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
465
466 timeout = 0;
467 do {
468 udelay(100);
469 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
470 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
471
472 switch (status) {
473 case APIC_ICR_RR_VALID:
474 status = apic_read(APIC_RRR);
475 printk(KERN_CONT "%08x\n", status);
476 break;
477 default:
478 printk(KERN_CONT "failed\n");
479 }
480 }
481 }
482
483 /*
484 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
485 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
486 * won't ... remember to clear down the APIC, etc later.
487 */
488 int __cpuinit
489 wakeup_secondary_cpu_via_nmi(int logical_apicid, unsigned long start_eip)
490 {
491 unsigned long send_status, accept_status = 0;
492 int maxlvt;
493
494 /* Target chip */
495 /* Boot on the stack */
496 /* Kick the second */
497 apic_icr_write(APIC_DM_NMI | apic->dest_logical, logical_apicid);
498
499 pr_debug("Waiting for send to finish...\n");
500 send_status = safe_apic_wait_icr_idle();
501
502 /*
503 * Give the other CPU some time to accept the IPI.
504 */
505 udelay(200);
506 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
507 maxlvt = lapic_get_maxlvt();
508 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
509 apic_write(APIC_ESR, 0);
510 accept_status = (apic_read(APIC_ESR) & 0xEF);
511 }
512 pr_debug("NMI sent.\n");
513
514 if (send_status)
515 printk(KERN_ERR "APIC never delivered???\n");
516 if (accept_status)
517 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
518
519 return (send_status | accept_status);
520 }
521
522 static int __cpuinit
523 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
524 {
525 unsigned long send_status, accept_status = 0;
526 int maxlvt, num_starts, j;
527
528 maxlvt = lapic_get_maxlvt();
529
530 /*
531 * Be paranoid about clearing APIC errors.
532 */
533 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
534 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
535 apic_write(APIC_ESR, 0);
536 apic_read(APIC_ESR);
537 }
538
539 pr_debug("Asserting INIT.\n");
540
541 /*
542 * Turn INIT on target chip
543 */
544 /*
545 * Send IPI
546 */
547 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
548 phys_apicid);
549
550 pr_debug("Waiting for send to finish...\n");
551 send_status = safe_apic_wait_icr_idle();
552
553 mdelay(10);
554
555 pr_debug("Deasserting INIT.\n");
556
557 /* Target chip */
558 /* Send IPI */
559 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
560
561 pr_debug("Waiting for send to finish...\n");
562 send_status = safe_apic_wait_icr_idle();
563
564 mb();
565 atomic_set(&init_deasserted, 1);
566
567 /*
568 * Should we send STARTUP IPIs ?
569 *
570 * Determine this based on the APIC version.
571 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
572 */
573 if (APIC_INTEGRATED(apic_version[phys_apicid]))
574 num_starts = 2;
575 else
576 num_starts = 0;
577
578 /*
579 * Paravirt / VMI wants a startup IPI hook here to set up the
580 * target processor state.
581 */
582 startup_ipi_hook(phys_apicid, (unsigned long) start_secondary,
583 stack_start);
584
585 /*
586 * Run STARTUP IPI loop.
587 */
588 pr_debug("#startup loops: %d.\n", num_starts);
589
590 for (j = 1; j <= num_starts; j++) {
591 pr_debug("Sending STARTUP #%d.\n", j);
592 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
593 apic_write(APIC_ESR, 0);
594 apic_read(APIC_ESR);
595 pr_debug("After apic_write.\n");
596
597 /*
598 * STARTUP IPI
599 */
600
601 /* Target chip */
602 /* Boot on the stack */
603 /* Kick the second */
604 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
605 phys_apicid);
606
607 /*
608 * Give the other CPU some time to accept the IPI.
609 */
610 udelay(300);
611
612 pr_debug("Startup point 1.\n");
613
614 pr_debug("Waiting for send to finish...\n");
615 send_status = safe_apic_wait_icr_idle();
616
617 /*
618 * Give the other CPU some time to accept the IPI.
619 */
620 udelay(200);
621 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
622 apic_write(APIC_ESR, 0);
623 accept_status = (apic_read(APIC_ESR) & 0xEF);
624 if (send_status || accept_status)
625 break;
626 }
627 pr_debug("After Startup.\n");
628
629 if (send_status)
630 printk(KERN_ERR "APIC never delivered???\n");
631 if (accept_status)
632 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
633
634 return (send_status | accept_status);
635 }
636
637 struct create_idle {
638 struct work_struct work;
639 struct task_struct *idle;
640 struct completion done;
641 int cpu;
642 };
643
644 static void __cpuinit do_fork_idle(struct work_struct *work)
645 {
646 struct create_idle *c_idle =
647 container_of(work, struct create_idle, work);
648
649 c_idle->idle = fork_idle(c_idle->cpu);
650 complete(&c_idle->done);
651 }
652
653 /* reduce the number of lines printed when booting a large cpu count system */
654 static void __cpuinit announce_cpu(int cpu, int apicid)
655 {
656 static int current_node = -1;
657 int node = early_cpu_to_node(cpu);
658
659 if (system_state == SYSTEM_BOOTING) {
660 if (node != current_node) {
661 if (current_node > (-1))
662 pr_cont(" Ok.\n");
663 current_node = node;
664 pr_info("Booting Node %3d, Processors ", node);
665 }
666 pr_cont(" #%d%s", cpu, cpu == (nr_cpu_ids - 1) ? " Ok.\n" : "");
667 return;
668 } else
669 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
670 node, cpu, apicid);
671 }
672
673 /*
674 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
675 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
676 * Returns zero if CPU booted OK, else error code from
677 * ->wakeup_secondary_cpu.
678 */
679 static int __cpuinit do_boot_cpu(int apicid, int cpu)
680 {
681 unsigned long boot_error = 0;
682 unsigned long start_ip;
683 int timeout;
684 struct create_idle c_idle = {
685 .cpu = cpu,
686 .done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
687 };
688
689 INIT_WORK_ONSTACK(&c_idle.work, do_fork_idle);
690
691 alternatives_smp_switch(1);
692
693 c_idle.idle = get_idle_for_cpu(cpu);
694
695 /*
696 * We can't use kernel_thread since we must avoid to
697 * reschedule the child.
698 */
699 if (c_idle.idle) {
700 c_idle.idle->thread.sp = (unsigned long) (((struct pt_regs *)
701 (THREAD_SIZE + task_stack_page(c_idle.idle))) - 1);
702 init_idle(c_idle.idle, cpu);
703 goto do_rest;
704 }
705
706 schedule_work(&c_idle.work);
707 wait_for_completion(&c_idle.done);
708
709 if (IS_ERR(c_idle.idle)) {
710 printk("failed fork for CPU %d\n", cpu);
711 destroy_work_on_stack(&c_idle.work);
712 return PTR_ERR(c_idle.idle);
713 }
714
715 set_idle_for_cpu(cpu, c_idle.idle);
716 do_rest:
717 per_cpu(current_task, cpu) = c_idle.idle;
718 #ifdef CONFIG_X86_32
719 /* Stack for startup_32 can be just as for start_secondary onwards */
720 irq_ctx_init(cpu);
721 #else
722 clear_tsk_thread_flag(c_idle.idle, TIF_FORK);
723 initial_gs = per_cpu_offset(cpu);
724 per_cpu(kernel_stack, cpu) =
725 (unsigned long)task_stack_page(c_idle.idle) -
726 KERNEL_STACK_OFFSET + THREAD_SIZE;
727 #endif
728 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
729 initial_code = (unsigned long)start_secondary;
730 stack_start = c_idle.idle->thread.sp;
731
732 /* start_ip had better be page-aligned! */
733 start_ip = trampoline_address();
734
735 /* So we see what's up */
736 announce_cpu(cpu, apicid);
737
738 /*
739 * This grunge runs the startup process for
740 * the targeted processor.
741 */
742
743 printk(KERN_DEBUG "smpboot cpu %d: start_ip = %lx\n", cpu, start_ip);
744
745 atomic_set(&init_deasserted, 0);
746
747 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
748
749 pr_debug("Setting warm reset code and vector.\n");
750
751 smpboot_setup_warm_reset_vector(start_ip);
752 /*
753 * Be paranoid about clearing APIC errors.
754 */
755 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
756 apic_write(APIC_ESR, 0);
757 apic_read(APIC_ESR);
758 }
759 }
760
761 /*
762 * Kick the secondary CPU. Use the method in the APIC driver
763 * if it's defined - or use an INIT boot APIC message otherwise:
764 */
765 if (apic->wakeup_secondary_cpu)
766 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
767 else
768 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
769
770 if (!boot_error) {
771 /*
772 * allow APs to start initializing.
773 */
774 pr_debug("Before Callout %d.\n", cpu);
775 cpumask_set_cpu(cpu, cpu_callout_mask);
776 pr_debug("After Callout %d.\n", cpu);
777
778 /*
779 * Wait 5s total for a response
780 */
781 for (timeout = 0; timeout < 50000; timeout++) {
782 if (cpumask_test_cpu(cpu, cpu_callin_mask))
783 break; /* It has booted */
784 udelay(100);
785 /*
786 * Allow other tasks to run while we wait for the
787 * AP to come online. This also gives a chance
788 * for the MTRR work(triggered by the AP coming online)
789 * to be completed in the stop machine context.
790 */
791 schedule();
792 }
793
794 if (cpumask_test_cpu(cpu, cpu_callin_mask))
795 pr_debug("CPU%d: has booted.\n", cpu);
796 else {
797 boot_error = 1;
798 if (*(volatile u32 *)TRAMPOLINE_SYM(trampoline_status)
799 == 0xA5A5A5A5)
800 /* trampoline started but...? */
801 pr_err("CPU%d: Stuck ??\n", cpu);
802 else
803 /* trampoline code not run */
804 pr_err("CPU%d: Not responding.\n", cpu);
805 if (apic->inquire_remote_apic)
806 apic->inquire_remote_apic(apicid);
807 }
808 }
809
810 if (boot_error) {
811 /* Try to put things back the way they were before ... */
812 numa_remove_cpu(cpu); /* was set by numa_add_cpu */
813
814 /* was set by do_boot_cpu() */
815 cpumask_clear_cpu(cpu, cpu_callout_mask);
816
817 /* was set by cpu_init() */
818 cpumask_clear_cpu(cpu, cpu_initialized_mask);
819
820 set_cpu_present(cpu, false);
821 per_cpu(x86_cpu_to_apicid, cpu) = BAD_APICID;
822 }
823
824 /* mark "stuck" area as not stuck */
825 *(volatile u32 *)TRAMPOLINE_SYM(trampoline_status) = 0;
826
827 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
828 /*
829 * Cleanup possible dangling ends...
830 */
831 smpboot_restore_warm_reset_vector();
832 }
833
834 destroy_work_on_stack(&c_idle.work);
835 return boot_error;
836 }
837
838 int __cpuinit native_cpu_up(unsigned int cpu)
839 {
840 int apicid = apic->cpu_present_to_apicid(cpu);
841 unsigned long flags;
842 int err;
843
844 WARN_ON(irqs_disabled());
845
846 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
847
848 if (apicid == BAD_APICID || apicid == boot_cpu_physical_apicid ||
849 !physid_isset(apicid, phys_cpu_present_map) ||
850 !apic->apic_id_valid(apicid)) {
851 printk(KERN_ERR "%s: bad cpu %d\n", __func__, cpu);
852 return -EINVAL;
853 }
854
855 /*
856 * Already booted CPU?
857 */
858 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
859 pr_debug("do_boot_cpu %d Already started\n", cpu);
860 return -ENOSYS;
861 }
862
863 /*
864 * Save current MTRR state in case it was changed since early boot
865 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
866 */
867 mtrr_save_state();
868
869 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
870
871 err = do_boot_cpu(apicid, cpu);
872 if (err) {
873 pr_debug("do_boot_cpu failed %d\n", err);
874 return -EIO;
875 }
876
877 /*
878 * Check TSC synchronization with the AP (keep irqs disabled
879 * while doing so):
880 */
881 local_irq_save(flags);
882 check_tsc_sync_source(cpu);
883 local_irq_restore(flags);
884
885 while (!cpu_online(cpu)) {
886 cpu_relax();
887 touch_nmi_watchdog();
888 }
889
890 return 0;
891 }
892
893 /**
894 * arch_disable_smp_support() - disables SMP support for x86 at runtime
895 */
896 void arch_disable_smp_support(void)
897 {
898 disable_ioapic_support();
899 }
900
901 /*
902 * Fall back to non SMP mode after errors.
903 *
904 * RED-PEN audit/test this more. I bet there is more state messed up here.
905 */
906 static __init void disable_smp(void)
907 {
908 init_cpu_present(cpumask_of(0));
909 init_cpu_possible(cpumask_of(0));
910 smpboot_clear_io_apic_irqs();
911
912 if (smp_found_config)
913 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
914 else
915 physid_set_mask_of_physid(0, &phys_cpu_present_map);
916 cpumask_set_cpu(0, cpu_sibling_mask(0));
917 cpumask_set_cpu(0, cpu_core_mask(0));
918 }
919
920 /*
921 * Various sanity checks.
922 */
923 static int __init smp_sanity_check(unsigned max_cpus)
924 {
925 preempt_disable();
926
927 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
928 if (def_to_bigsmp && nr_cpu_ids > 8) {
929 unsigned int cpu;
930 unsigned nr;
931
932 printk(KERN_WARNING
933 "More than 8 CPUs detected - skipping them.\n"
934 "Use CONFIG_X86_BIGSMP.\n");
935
936 nr = 0;
937 for_each_present_cpu(cpu) {
938 if (nr >= 8)
939 set_cpu_present(cpu, false);
940 nr++;
941 }
942
943 nr = 0;
944 for_each_possible_cpu(cpu) {
945 if (nr >= 8)
946 set_cpu_possible(cpu, false);
947 nr++;
948 }
949
950 nr_cpu_ids = 8;
951 }
952 #endif
953
954 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
955 printk(KERN_WARNING
956 "weird, boot CPU (#%d) not listed by the BIOS.\n",
957 hard_smp_processor_id());
958
959 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
960 }
961
962 /*
963 * If we couldn't find an SMP configuration at boot time,
964 * get out of here now!
965 */
966 if (!smp_found_config && !acpi_lapic) {
967 preempt_enable();
968 printk(KERN_NOTICE "SMP motherboard not detected.\n");
969 disable_smp();
970 if (APIC_init_uniprocessor())
971 printk(KERN_NOTICE "Local APIC not detected."
972 " Using dummy APIC emulation.\n");
973 return -1;
974 }
975
976 /*
977 * Should not be necessary because the MP table should list the boot
978 * CPU too, but we do it for the sake of robustness anyway.
979 */
980 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
981 printk(KERN_NOTICE
982 "weird, boot CPU (#%d) not listed by the BIOS.\n",
983 boot_cpu_physical_apicid);
984 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
985 }
986 preempt_enable();
987
988 /*
989 * If we couldn't find a local APIC, then get out of here now!
990 */
991 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
992 !cpu_has_apic) {
993 if (!disable_apic) {
994 pr_err("BIOS bug, local APIC #%d not detected!...\n",
995 boot_cpu_physical_apicid);
996 pr_err("... forcing use of dummy APIC emulation."
997 "(tell your hw vendor)\n");
998 }
999 smpboot_clear_io_apic();
1000 disable_ioapic_support();
1001 return -1;
1002 }
1003
1004 verify_local_APIC();
1005
1006 /*
1007 * If SMP should be disabled, then really disable it!
1008 */
1009 if (!max_cpus) {
1010 printk(KERN_INFO "SMP mode deactivated.\n");
1011 smpboot_clear_io_apic();
1012
1013 connect_bsp_APIC();
1014 setup_local_APIC();
1015 bsp_end_local_APIC_setup();
1016 return -1;
1017 }
1018
1019 return 0;
1020 }
1021
1022 static void __init smp_cpu_index_default(void)
1023 {
1024 int i;
1025 struct cpuinfo_x86 *c;
1026
1027 for_each_possible_cpu(i) {
1028 c = &cpu_data(i);
1029 /* mark all to hotplug */
1030 c->cpu_index = nr_cpu_ids;
1031 }
1032 }
1033
1034 /*
1035 * Prepare for SMP bootup. The MP table or ACPI has been read
1036 * earlier. Just do some sanity checking here and enable APIC mode.
1037 */
1038 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1039 {
1040 unsigned int i;
1041
1042 preempt_disable();
1043 smp_cpu_index_default();
1044
1045 /*
1046 * Setup boot CPU information
1047 */
1048 smp_store_cpu_info(0); /* Final full version of the data */
1049 cpumask_copy(cpu_callin_mask, cpumask_of(0));
1050 mb();
1051
1052 current_thread_info()->cpu = 0; /* needed? */
1053 for_each_possible_cpu(i) {
1054 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1055 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1056 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1057 }
1058 set_cpu_sibling_map(0);
1059
1060
1061 if (smp_sanity_check(max_cpus) < 0) {
1062 printk(KERN_INFO "SMP disabled\n");
1063 disable_smp();
1064 goto out;
1065 }
1066
1067 default_setup_apic_routing();
1068
1069 preempt_disable();
1070 if (read_apic_id() != boot_cpu_physical_apicid) {
1071 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1072 read_apic_id(), boot_cpu_physical_apicid);
1073 /* Or can we switch back to PIC here? */
1074 }
1075 preempt_enable();
1076
1077 connect_bsp_APIC();
1078
1079 /*
1080 * Switch from PIC to APIC mode.
1081 */
1082 setup_local_APIC();
1083
1084 /*
1085 * Enable IO APIC before setting up error vector
1086 */
1087 if (!skip_ioapic_setup && nr_ioapics)
1088 enable_IO_APIC();
1089
1090 bsp_end_local_APIC_setup();
1091
1092 if (apic->setup_portio_remap)
1093 apic->setup_portio_remap();
1094
1095 smpboot_setup_io_apic();
1096 /*
1097 * Set up local APIC timer on boot CPU.
1098 */
1099
1100 printk(KERN_INFO "CPU%d: ", 0);
1101 print_cpu_info(&cpu_data(0));
1102 x86_init.timers.setup_percpu_clockev();
1103
1104 if (is_uv_system())
1105 uv_system_init();
1106
1107 set_mtrr_aps_delayed_init();
1108 out:
1109 preempt_enable();
1110 }
1111
1112 void arch_disable_nonboot_cpus_begin(void)
1113 {
1114 /*
1115 * Avoid the smp alternatives switch during the disable_nonboot_cpus().
1116 * In the suspend path, we will be back in the SMP mode shortly anyways.
1117 */
1118 skip_smp_alternatives = true;
1119 }
1120
1121 void arch_disable_nonboot_cpus_end(void)
1122 {
1123 skip_smp_alternatives = false;
1124 }
1125
1126 void arch_enable_nonboot_cpus_begin(void)
1127 {
1128 set_mtrr_aps_delayed_init();
1129 }
1130
1131 void arch_enable_nonboot_cpus_end(void)
1132 {
1133 mtrr_aps_init();
1134 }
1135
1136 /*
1137 * Early setup to make printk work.
1138 */
1139 void __init native_smp_prepare_boot_cpu(void)
1140 {
1141 int me = smp_processor_id();
1142 switch_to_new_gdt(me);
1143 /* already set me in cpu_online_mask in boot_cpu_init() */
1144 cpumask_set_cpu(me, cpu_callout_mask);
1145 per_cpu(cpu_state, me) = CPU_ONLINE;
1146 }
1147
1148 void __init native_smp_cpus_done(unsigned int max_cpus)
1149 {
1150 pr_debug("Boot done.\n");
1151
1152 nmi_selftest();
1153 impress_friends();
1154 #ifdef CONFIG_X86_IO_APIC
1155 setup_ioapic_dest();
1156 #endif
1157 mtrr_aps_init();
1158 }
1159
1160 static int __initdata setup_possible_cpus = -1;
1161 static int __init _setup_possible_cpus(char *str)
1162 {
1163 get_option(&str, &setup_possible_cpus);
1164 return 0;
1165 }
1166 early_param("possible_cpus", _setup_possible_cpus);
1167
1168
1169 /*
1170 * cpu_possible_mask should be static, it cannot change as cpu's
1171 * are onlined, or offlined. The reason is per-cpu data-structures
1172 * are allocated by some modules at init time, and dont expect to
1173 * do this dynamically on cpu arrival/departure.
1174 * cpu_present_mask on the other hand can change dynamically.
1175 * In case when cpu_hotplug is not compiled, then we resort to current
1176 * behaviour, which is cpu_possible == cpu_present.
1177 * - Ashok Raj
1178 *
1179 * Three ways to find out the number of additional hotplug CPUs:
1180 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1181 * - The user can overwrite it with possible_cpus=NUM
1182 * - Otherwise don't reserve additional CPUs.
1183 * We do this because additional CPUs waste a lot of memory.
1184 * -AK
1185 */
1186 __init void prefill_possible_map(void)
1187 {
1188 int i, possible;
1189
1190 /* no processor from mptable or madt */
1191 if (!num_processors)
1192 num_processors = 1;
1193
1194 i = setup_max_cpus ?: 1;
1195 if (setup_possible_cpus == -1) {
1196 possible = num_processors;
1197 #ifdef CONFIG_HOTPLUG_CPU
1198 if (setup_max_cpus)
1199 possible += disabled_cpus;
1200 #else
1201 if (possible > i)
1202 possible = i;
1203 #endif
1204 } else
1205 possible = setup_possible_cpus;
1206
1207 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1208
1209 /* nr_cpu_ids could be reduced via nr_cpus= */
1210 if (possible > nr_cpu_ids) {
1211 printk(KERN_WARNING
1212 "%d Processors exceeds NR_CPUS limit of %d\n",
1213 possible, nr_cpu_ids);
1214 possible = nr_cpu_ids;
1215 }
1216
1217 #ifdef CONFIG_HOTPLUG_CPU
1218 if (!setup_max_cpus)
1219 #endif
1220 if (possible > i) {
1221 printk(KERN_WARNING
1222 "%d Processors exceeds max_cpus limit of %u\n",
1223 possible, setup_max_cpus);
1224 possible = i;
1225 }
1226
1227 printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
1228 possible, max_t(int, possible - num_processors, 0));
1229
1230 for (i = 0; i < possible; i++)
1231 set_cpu_possible(i, true);
1232 for (; i < NR_CPUS; i++)
1233 set_cpu_possible(i, false);
1234
1235 nr_cpu_ids = possible;
1236 }
1237
1238 #ifdef CONFIG_HOTPLUG_CPU
1239
1240 static void remove_siblinginfo(int cpu)
1241 {
1242 int sibling;
1243 struct cpuinfo_x86 *c = &cpu_data(cpu);
1244
1245 for_each_cpu(sibling, cpu_core_mask(cpu)) {
1246 cpumask_clear_cpu(cpu, cpu_core_mask(sibling));
1247 /*/
1248 * last thread sibling in this cpu core going down
1249 */
1250 if (cpumask_weight(cpu_sibling_mask(cpu)) == 1)
1251 cpu_data(sibling).booted_cores--;
1252 }
1253
1254 for_each_cpu(sibling, cpu_sibling_mask(cpu))
1255 cpumask_clear_cpu(cpu, cpu_sibling_mask(sibling));
1256 cpumask_clear(cpu_sibling_mask(cpu));
1257 cpumask_clear(cpu_core_mask(cpu));
1258 c->phys_proc_id = 0;
1259 c->cpu_core_id = 0;
1260 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1261 }
1262
1263 static void __ref remove_cpu_from_maps(int cpu)
1264 {
1265 set_cpu_online(cpu, false);
1266 cpumask_clear_cpu(cpu, cpu_callout_mask);
1267 cpumask_clear_cpu(cpu, cpu_callin_mask);
1268 /* was set by cpu_init() */
1269 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1270 numa_remove_cpu(cpu);
1271 }
1272
1273 void cpu_disable_common(void)
1274 {
1275 int cpu = smp_processor_id();
1276
1277 remove_siblinginfo(cpu);
1278
1279 /* It's now safe to remove this processor from the online map */
1280 lock_vector_lock();
1281 remove_cpu_from_maps(cpu);
1282 unlock_vector_lock();
1283 fixup_irqs();
1284 }
1285
1286 int native_cpu_disable(void)
1287 {
1288 int cpu = smp_processor_id();
1289
1290 /*
1291 * Perhaps use cpufreq to drop frequency, but that could go
1292 * into generic code.
1293 *
1294 * We won't take down the boot processor on i386 due to some
1295 * interrupts only being able to be serviced by the BSP.
1296 * Especially so if we're not using an IOAPIC -zwane
1297 */
1298 if (cpu == 0)
1299 return -EBUSY;
1300
1301 clear_local_APIC();
1302
1303 cpu_disable_common();
1304 return 0;
1305 }
1306
1307 void native_cpu_die(unsigned int cpu)
1308 {
1309 /* We don't do anything here: idle task is faking death itself. */
1310 unsigned int i;
1311
1312 for (i = 0; i < 10; i++) {
1313 /* They ack this in play_dead by setting CPU_DEAD */
1314 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1315 if (system_state == SYSTEM_RUNNING)
1316 pr_info("CPU %u is now offline\n", cpu);
1317
1318 if (1 == num_online_cpus())
1319 alternatives_smp_switch(0);
1320 return;
1321 }
1322 msleep(100);
1323 }
1324 pr_err("CPU %u didn't die...\n", cpu);
1325 }
1326
1327 void play_dead_common(void)
1328 {
1329 idle_task_exit();
1330 reset_lazy_tlbstate();
1331 amd_e400_remove_cpu(raw_smp_processor_id());
1332
1333 mb();
1334 /* Ack it */
1335 __this_cpu_write(cpu_state, CPU_DEAD);
1336
1337 /*
1338 * With physical CPU hotplug, we should halt the cpu
1339 */
1340 local_irq_disable();
1341 }
1342
1343 /*
1344 * We need to flush the caches before going to sleep, lest we have
1345 * dirty data in our caches when we come back up.
1346 */
1347 static inline void mwait_play_dead(void)
1348 {
1349 unsigned int eax, ebx, ecx, edx;
1350 unsigned int highest_cstate = 0;
1351 unsigned int highest_subcstate = 0;
1352 int i;
1353 void *mwait_ptr;
1354 struct cpuinfo_x86 *c = __this_cpu_ptr(&cpu_info);
1355
1356 if (!(this_cpu_has(X86_FEATURE_MWAIT) && mwait_usable(c)))
1357 return;
1358 if (!this_cpu_has(X86_FEATURE_CLFLSH))
1359 return;
1360 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1361 return;
1362
1363 eax = CPUID_MWAIT_LEAF;
1364 ecx = 0;
1365 native_cpuid(&eax, &ebx, &ecx, &edx);
1366
1367 /*
1368 * eax will be 0 if EDX enumeration is not valid.
1369 * Initialized below to cstate, sub_cstate value when EDX is valid.
1370 */
1371 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1372 eax = 0;
1373 } else {
1374 edx >>= MWAIT_SUBSTATE_SIZE;
1375 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1376 if (edx & MWAIT_SUBSTATE_MASK) {
1377 highest_cstate = i;
1378 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1379 }
1380 }
1381 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1382 (highest_subcstate - 1);
1383 }
1384
1385 /*
1386 * This should be a memory location in a cache line which is
1387 * unlikely to be touched by other processors. The actual
1388 * content is immaterial as it is not actually modified in any way.
1389 */
1390 mwait_ptr = &current_thread_info()->flags;
1391
1392 wbinvd();
1393
1394 while (1) {
1395 /*
1396 * The CLFLUSH is a workaround for erratum AAI65 for
1397 * the Xeon 7400 series. It's not clear it is actually
1398 * needed, but it should be harmless in either case.
1399 * The WBINVD is insufficient due to the spurious-wakeup
1400 * case where we return around the loop.
1401 */
1402 clflush(mwait_ptr);
1403 __monitor(mwait_ptr, 0, 0);
1404 mb();
1405 __mwait(eax, 0);
1406 }
1407 }
1408
1409 static inline void hlt_play_dead(void)
1410 {
1411 if (__this_cpu_read(cpu_info.x86) >= 4)
1412 wbinvd();
1413
1414 while (1) {
1415 native_halt();
1416 }
1417 }
1418
1419 void native_play_dead(void)
1420 {
1421 play_dead_common();
1422 tboot_shutdown(TB_SHUTDOWN_WFS);
1423
1424 mwait_play_dead(); /* Only returns on failure */
1425 hlt_play_dead();
1426 }
1427
1428 #else /* ... !CONFIG_HOTPLUG_CPU */
1429 int native_cpu_disable(void)
1430 {
1431 return -ENOSYS;
1432 }
1433
1434 void native_cpu_die(unsigned int cpu)
1435 {
1436 /* We said "no" in __cpu_disable */
1437 BUG();
1438 }
1439
1440 void native_play_dead(void)
1441 {
1442 BUG();
1443 }
1444
1445 #endif