]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/smpboot.c
Merge tag 'qcom-dt-for-3.18-3' of git://git.kernel.org/pub/scm/linux/kernel/git/galak...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
15 * This code is released under the GNU General Public License version 2 or
16 * later.
17 *
18 * Fixes
19 * Felix Koop : NR_CPUS used properly
20 * Jose Renau : Handle single CPU case.
21 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
22 * Greg Wright : Fix for kernel stacks panic.
23 * Erich Boleyn : MP v1.4 and additional changes.
24 * Matthias Sattler : Changes for 2.1 kernel map.
25 * Michel Lespinasse : Changes for 2.1 kernel map.
26 * Michael Chastain : Change trampoline.S to gnu as.
27 * Alan Cox : Dumb bug: 'B' step PPro's are fine
28 * Ingo Molnar : Added APIC timers, based on code
29 * from Jose Renau
30 * Ingo Molnar : various cleanups and rewrites
31 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
32 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
33 * Andi Kleen : Changed for SMP boot into long mode.
34 * Martin J. Bligh : Added support for multi-quad systems
35 * Dave Jones : Report invalid combinations of Athlon CPUs.
36 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
37 * Andi Kleen : Converted to new state machine.
38 * Ashok Raj : CPU hotplug support
39 * Glauber Costa : i386 and x86_64 integration
40 */
41
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43
44 #include <linux/init.h>
45 #include <linux/smp.h>
46 #include <linux/module.h>
47 #include <linux/sched.h>
48 #include <linux/percpu.h>
49 #include <linux/bootmem.h>
50 #include <linux/err.h>
51 #include <linux/nmi.h>
52 #include <linux/tboot.h>
53 #include <linux/stackprotector.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56
57 #include <asm/acpi.h>
58 #include <asm/desc.h>
59 #include <asm/nmi.h>
60 #include <asm/irq.h>
61 #include <asm/idle.h>
62 #include <asm/realmode.h>
63 #include <asm/cpu.h>
64 #include <asm/numa.h>
65 #include <asm/pgtable.h>
66 #include <asm/tlbflush.h>
67 #include <asm/mtrr.h>
68 #include <asm/mwait.h>
69 #include <asm/apic.h>
70 #include <asm/io_apic.h>
71 #include <asm/i387.h>
72 #include <asm/fpu-internal.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 #include <asm/smpboot_hooks.h>
77 #include <asm/i8259.h>
78 #include <asm/realmode.h>
79 #include <asm/misc.h>
80
81 /* State of each CPU */
82 DEFINE_PER_CPU(int, cpu_state) = { 0 };
83
84 /* Number of siblings per CPU package */
85 int smp_num_siblings = 1;
86 EXPORT_SYMBOL(smp_num_siblings);
87
88 /* Last level cache ID of each logical CPU */
89 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
90
91 /* representing HT siblings of each logical CPU */
92 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
93 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
94
95 /* representing HT and core siblings of each logical CPU */
96 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
97 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
98
99 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
100
101 /* Per CPU bogomips and other parameters */
102 DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
103 EXPORT_PER_CPU_SYMBOL(cpu_info);
104
105 static DEFINE_PER_CPU(struct completion, die_complete);
106
107 atomic_t init_deasserted;
108
109 /*
110 * Report back to the Boot Processor during boot time or to the caller processor
111 * during CPU online.
112 */
113 static void smp_callin(void)
114 {
115 int cpuid, phys_id;
116
117 /*
118 * If waken up by an INIT in an 82489DX configuration
119 * we may get here before an INIT-deassert IPI reaches
120 * our local APIC. We have to wait for the IPI or we'll
121 * lock up on an APIC access.
122 *
123 * Since CPU0 is not wakened up by INIT, it doesn't wait for the IPI.
124 */
125 cpuid = smp_processor_id();
126 if (apic->wait_for_init_deassert && cpuid)
127 while (!atomic_read(&init_deasserted))
128 cpu_relax();
129
130 /*
131 * (This works even if the APIC is not enabled.)
132 */
133 phys_id = read_apic_id();
134
135 /*
136 * the boot CPU has finished the init stage and is spinning
137 * on callin_map until we finish. We are free to set up this
138 * CPU, first the APIC. (this is probably redundant on most
139 * boards)
140 */
141 setup_local_APIC();
142 end_local_APIC_setup();
143
144 /*
145 * Need to setup vector mappings before we enable interrupts.
146 */
147 setup_vector_irq(smp_processor_id());
148
149 /*
150 * Save our processor parameters. Note: this information
151 * is needed for clock calibration.
152 */
153 smp_store_cpu_info(cpuid);
154
155 /*
156 * Get our bogomips.
157 * Update loops_per_jiffy in cpu_data. Previous call to
158 * smp_store_cpu_info() stored a value that is close but not as
159 * accurate as the value just calculated.
160 */
161 calibrate_delay();
162 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
163 pr_debug("Stack at about %p\n", &cpuid);
164
165 /*
166 * This must be done before setting cpu_online_mask
167 * or calling notify_cpu_starting.
168 */
169 set_cpu_sibling_map(raw_smp_processor_id());
170 wmb();
171
172 notify_cpu_starting(cpuid);
173
174 /*
175 * Allow the master to continue.
176 */
177 cpumask_set_cpu(cpuid, cpu_callin_mask);
178 }
179
180 static int cpu0_logical_apicid;
181 static int enable_start_cpu0;
182 /*
183 * Activate a secondary processor.
184 */
185 static void notrace start_secondary(void *unused)
186 {
187 /*
188 * Don't put *anything* before cpu_init(), SMP booting is too
189 * fragile that we want to limit the things done here to the
190 * most necessary things.
191 */
192 cpu_init();
193 x86_cpuinit.early_percpu_clock_init();
194 preempt_disable();
195 smp_callin();
196
197 enable_start_cpu0 = 0;
198
199 #ifdef CONFIG_X86_32
200 /* switch away from the initial page table */
201 load_cr3(swapper_pg_dir);
202 __flush_tlb_all();
203 #endif
204
205 /* otherwise gcc will move up smp_processor_id before the cpu_init */
206 barrier();
207 /*
208 * Check TSC synchronization with the BP:
209 */
210 check_tsc_sync_target();
211
212 /*
213 * Enable the espfix hack for this CPU
214 */
215 #ifdef CONFIG_X86_ESPFIX64
216 init_espfix_ap();
217 #endif
218
219 /*
220 * We need to hold vector_lock so there the set of online cpus
221 * does not change while we are assigning vectors to cpus. Holding
222 * this lock ensures we don't half assign or remove an irq from a cpu.
223 */
224 lock_vector_lock();
225 set_cpu_online(smp_processor_id(), true);
226 unlock_vector_lock();
227 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
228 x86_platform.nmi_init();
229
230 /* enable local interrupts */
231 local_irq_enable();
232
233 /* to prevent fake stack check failure in clock setup */
234 boot_init_stack_canary();
235
236 x86_cpuinit.setup_percpu_clockev();
237
238 wmb();
239 cpu_startup_entry(CPUHP_ONLINE);
240 }
241
242 void __init smp_store_boot_cpu_info(void)
243 {
244 int id = 0; /* CPU 0 */
245 struct cpuinfo_x86 *c = &cpu_data(id);
246
247 *c = boot_cpu_data;
248 c->cpu_index = id;
249 }
250
251 /*
252 * The bootstrap kernel entry code has set these up. Save them for
253 * a given CPU
254 */
255 void smp_store_cpu_info(int id)
256 {
257 struct cpuinfo_x86 *c = &cpu_data(id);
258
259 *c = boot_cpu_data;
260 c->cpu_index = id;
261 /*
262 * During boot time, CPU0 has this setup already. Save the info when
263 * bringing up AP or offlined CPU0.
264 */
265 identify_secondary_cpu(c);
266 }
267
268 static bool
269 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
270 {
271 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
272
273 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
274 }
275
276 static bool
277 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
278 {
279 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
280
281 return !WARN_ONCE(!topology_same_node(c, o),
282 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
283 "[node: %d != %d]. Ignoring dependency.\n",
284 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
285 }
286
287 #define link_mask(_m, c1, c2) \
288 do { \
289 cpumask_set_cpu((c1), cpu_##_m##_mask(c2)); \
290 cpumask_set_cpu((c2), cpu_##_m##_mask(c1)); \
291 } while (0)
292
293 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
294 {
295 if (cpu_has_topoext) {
296 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
297
298 if (c->phys_proc_id == o->phys_proc_id &&
299 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2) &&
300 c->compute_unit_id == o->compute_unit_id)
301 return topology_sane(c, o, "smt");
302
303 } else if (c->phys_proc_id == o->phys_proc_id &&
304 c->cpu_core_id == o->cpu_core_id) {
305 return topology_sane(c, o, "smt");
306 }
307
308 return false;
309 }
310
311 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
312 {
313 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
314
315 if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID &&
316 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2))
317 return topology_sane(c, o, "llc");
318
319 return false;
320 }
321
322 /*
323 * Unlike the other levels, we do not enforce keeping a
324 * multicore group inside a NUMA node. If this happens, we will
325 * discard the MC level of the topology later.
326 */
327 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
328 {
329 if (c->phys_proc_id == o->phys_proc_id)
330 return true;
331 return false;
332 }
333
334 static struct sched_domain_topology_level numa_inside_package_topology[] = {
335 #ifdef CONFIG_SCHED_SMT
336 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
337 #endif
338 #ifdef CONFIG_SCHED_MC
339 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
340 #endif
341 { NULL, },
342 };
343 /*
344 * set_sched_topology() sets the topology internal to a CPU. The
345 * NUMA topologies are layered on top of it to build the full
346 * system topology.
347 *
348 * If NUMA nodes are observed to occur within a CPU package, this
349 * function should be called. It forces the sched domain code to
350 * only use the SMT level for the CPU portion of the topology.
351 * This essentially falls back to relying on NUMA information
352 * from the SRAT table to describe the entire system topology
353 * (except for hyperthreads).
354 */
355 static void primarily_use_numa_for_topology(void)
356 {
357 set_sched_topology(numa_inside_package_topology);
358 }
359
360 void set_cpu_sibling_map(int cpu)
361 {
362 bool has_smt = smp_num_siblings > 1;
363 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
364 struct cpuinfo_x86 *c = &cpu_data(cpu);
365 struct cpuinfo_x86 *o;
366 int i;
367
368 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
369
370 if (!has_mp) {
371 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
372 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
373 cpumask_set_cpu(cpu, cpu_core_mask(cpu));
374 c->booted_cores = 1;
375 return;
376 }
377
378 for_each_cpu(i, cpu_sibling_setup_mask) {
379 o = &cpu_data(i);
380
381 if ((i == cpu) || (has_smt && match_smt(c, o)))
382 link_mask(sibling, cpu, i);
383
384 if ((i == cpu) || (has_mp && match_llc(c, o)))
385 link_mask(llc_shared, cpu, i);
386
387 }
388
389 /*
390 * This needs a separate iteration over the cpus because we rely on all
391 * cpu_sibling_mask links to be set-up.
392 */
393 for_each_cpu(i, cpu_sibling_setup_mask) {
394 o = &cpu_data(i);
395
396 if ((i == cpu) || (has_mp && match_die(c, o))) {
397 link_mask(core, cpu, i);
398
399 /*
400 * Does this new cpu bringup a new core?
401 */
402 if (cpumask_weight(cpu_sibling_mask(cpu)) == 1) {
403 /*
404 * for each core in package, increment
405 * the booted_cores for this new cpu
406 */
407 if (cpumask_first(cpu_sibling_mask(i)) == i)
408 c->booted_cores++;
409 /*
410 * increment the core count for all
411 * the other cpus in this package
412 */
413 if (i != cpu)
414 cpu_data(i).booted_cores++;
415 } else if (i != cpu && !c->booted_cores)
416 c->booted_cores = cpu_data(i).booted_cores;
417 }
418 if (match_die(c, o) && !topology_same_node(c, o))
419 primarily_use_numa_for_topology();
420 }
421 }
422
423 /* maps the cpu to the sched domain representing multi-core */
424 const struct cpumask *cpu_coregroup_mask(int cpu)
425 {
426 return cpu_llc_shared_mask(cpu);
427 }
428
429 static void impress_friends(void)
430 {
431 int cpu;
432 unsigned long bogosum = 0;
433 /*
434 * Allow the user to impress friends.
435 */
436 pr_debug("Before bogomips\n");
437 for_each_possible_cpu(cpu)
438 if (cpumask_test_cpu(cpu, cpu_callout_mask))
439 bogosum += cpu_data(cpu).loops_per_jiffy;
440 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
441 num_online_cpus(),
442 bogosum/(500000/HZ),
443 (bogosum/(5000/HZ))%100);
444
445 pr_debug("Before bogocount - setting activated=1\n");
446 }
447
448 void __inquire_remote_apic(int apicid)
449 {
450 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
451 const char * const names[] = { "ID", "VERSION", "SPIV" };
452 int timeout;
453 u32 status;
454
455 pr_info("Inquiring remote APIC 0x%x...\n", apicid);
456
457 for (i = 0; i < ARRAY_SIZE(regs); i++) {
458 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
459
460 /*
461 * Wait for idle.
462 */
463 status = safe_apic_wait_icr_idle();
464 if (status)
465 pr_cont("a previous APIC delivery may have failed\n");
466
467 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
468
469 timeout = 0;
470 do {
471 udelay(100);
472 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
473 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
474
475 switch (status) {
476 case APIC_ICR_RR_VALID:
477 status = apic_read(APIC_RRR);
478 pr_cont("%08x\n", status);
479 break;
480 default:
481 pr_cont("failed\n");
482 }
483 }
484 }
485
486 /*
487 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
488 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
489 * won't ... remember to clear down the APIC, etc later.
490 */
491 int
492 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
493 {
494 unsigned long send_status, accept_status = 0;
495 int maxlvt;
496
497 /* Target chip */
498 /* Boot on the stack */
499 /* Kick the second */
500 apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
501
502 pr_debug("Waiting for send to finish...\n");
503 send_status = safe_apic_wait_icr_idle();
504
505 /*
506 * Give the other CPU some time to accept the IPI.
507 */
508 udelay(200);
509 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
510 maxlvt = lapic_get_maxlvt();
511 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
512 apic_write(APIC_ESR, 0);
513 accept_status = (apic_read(APIC_ESR) & 0xEF);
514 }
515 pr_debug("NMI sent\n");
516
517 if (send_status)
518 pr_err("APIC never delivered???\n");
519 if (accept_status)
520 pr_err("APIC delivery error (%lx)\n", accept_status);
521
522 return (send_status | accept_status);
523 }
524
525 static int
526 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
527 {
528 unsigned long send_status, accept_status = 0;
529 int maxlvt, num_starts, j;
530
531 maxlvt = lapic_get_maxlvt();
532
533 /*
534 * Be paranoid about clearing APIC errors.
535 */
536 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
537 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
538 apic_write(APIC_ESR, 0);
539 apic_read(APIC_ESR);
540 }
541
542 pr_debug("Asserting INIT\n");
543
544 /*
545 * Turn INIT on target chip
546 */
547 /*
548 * Send IPI
549 */
550 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
551 phys_apicid);
552
553 pr_debug("Waiting for send to finish...\n");
554 send_status = safe_apic_wait_icr_idle();
555
556 mdelay(10);
557
558 pr_debug("Deasserting INIT\n");
559
560 /* Target chip */
561 /* Send IPI */
562 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
563
564 pr_debug("Waiting for send to finish...\n");
565 send_status = safe_apic_wait_icr_idle();
566
567 mb();
568 atomic_set(&init_deasserted, 1);
569
570 /*
571 * Should we send STARTUP IPIs ?
572 *
573 * Determine this based on the APIC version.
574 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
575 */
576 if (APIC_INTEGRATED(apic_version[phys_apicid]))
577 num_starts = 2;
578 else
579 num_starts = 0;
580
581 /*
582 * Paravirt / VMI wants a startup IPI hook here to set up the
583 * target processor state.
584 */
585 startup_ipi_hook(phys_apicid, (unsigned long) start_secondary,
586 stack_start);
587
588 /*
589 * Run STARTUP IPI loop.
590 */
591 pr_debug("#startup loops: %d\n", num_starts);
592
593 for (j = 1; j <= num_starts; j++) {
594 pr_debug("Sending STARTUP #%d\n", j);
595 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
596 apic_write(APIC_ESR, 0);
597 apic_read(APIC_ESR);
598 pr_debug("After apic_write\n");
599
600 /*
601 * STARTUP IPI
602 */
603
604 /* Target chip */
605 /* Boot on the stack */
606 /* Kick the second */
607 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
608 phys_apicid);
609
610 /*
611 * Give the other CPU some time to accept the IPI.
612 */
613 udelay(300);
614
615 pr_debug("Startup point 1\n");
616
617 pr_debug("Waiting for send to finish...\n");
618 send_status = safe_apic_wait_icr_idle();
619
620 /*
621 * Give the other CPU some time to accept the IPI.
622 */
623 udelay(200);
624 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
625 apic_write(APIC_ESR, 0);
626 accept_status = (apic_read(APIC_ESR) & 0xEF);
627 if (send_status || accept_status)
628 break;
629 }
630 pr_debug("After Startup\n");
631
632 if (send_status)
633 pr_err("APIC never delivered???\n");
634 if (accept_status)
635 pr_err("APIC delivery error (%lx)\n", accept_status);
636
637 return (send_status | accept_status);
638 }
639
640 void smp_announce(void)
641 {
642 int num_nodes = num_online_nodes();
643
644 printk(KERN_INFO "x86: Booted up %d node%s, %d CPUs\n",
645 num_nodes, (num_nodes > 1 ? "s" : ""), num_online_cpus());
646 }
647
648 /* reduce the number of lines printed when booting a large cpu count system */
649 static void announce_cpu(int cpu, int apicid)
650 {
651 static int current_node = -1;
652 int node = early_cpu_to_node(cpu);
653 static int width, node_width;
654
655 if (!width)
656 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
657
658 if (!node_width)
659 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
660
661 if (cpu == 1)
662 printk(KERN_INFO "x86: Booting SMP configuration:\n");
663
664 if (system_state == SYSTEM_BOOTING) {
665 if (node != current_node) {
666 if (current_node > (-1))
667 pr_cont("\n");
668 current_node = node;
669
670 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
671 node_width - num_digits(node), " ", node);
672 }
673
674 /* Add padding for the BSP */
675 if (cpu == 1)
676 pr_cont("%*s", width + 1, " ");
677
678 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
679
680 } else
681 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
682 node, cpu, apicid);
683 }
684
685 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
686 {
687 int cpu;
688
689 cpu = smp_processor_id();
690 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
691 return NMI_HANDLED;
692
693 return NMI_DONE;
694 }
695
696 /*
697 * Wake up AP by INIT, INIT, STARTUP sequence.
698 *
699 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
700 * boot-strap code which is not a desired behavior for waking up BSP. To
701 * void the boot-strap code, wake up CPU0 by NMI instead.
702 *
703 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
704 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
705 * We'll change this code in the future to wake up hard offlined CPU0 if
706 * real platform and request are available.
707 */
708 static int
709 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
710 int *cpu0_nmi_registered)
711 {
712 int id;
713 int boot_error;
714
715 preempt_disable();
716
717 /*
718 * Wake up AP by INIT, INIT, STARTUP sequence.
719 */
720 if (cpu) {
721 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
722 goto out;
723 }
724
725 /*
726 * Wake up BSP by nmi.
727 *
728 * Register a NMI handler to help wake up CPU0.
729 */
730 boot_error = register_nmi_handler(NMI_LOCAL,
731 wakeup_cpu0_nmi, 0, "wake_cpu0");
732
733 if (!boot_error) {
734 enable_start_cpu0 = 1;
735 *cpu0_nmi_registered = 1;
736 if (apic->dest_logical == APIC_DEST_LOGICAL)
737 id = cpu0_logical_apicid;
738 else
739 id = apicid;
740 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
741 }
742
743 out:
744 preempt_enable();
745
746 return boot_error;
747 }
748
749 /*
750 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
751 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
752 * Returns zero if CPU booted OK, else error code from
753 * ->wakeup_secondary_cpu.
754 */
755 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
756 {
757 volatile u32 *trampoline_status =
758 (volatile u32 *) __va(real_mode_header->trampoline_status);
759 /* start_ip had better be page-aligned! */
760 unsigned long start_ip = real_mode_header->trampoline_start;
761
762 unsigned long boot_error = 0;
763 int cpu0_nmi_registered = 0;
764 unsigned long timeout;
765
766 /* Just in case we booted with a single CPU. */
767 alternatives_enable_smp();
768
769 idle->thread.sp = (unsigned long) (((struct pt_regs *)
770 (THREAD_SIZE + task_stack_page(idle))) - 1);
771 per_cpu(current_task, cpu) = idle;
772
773 #ifdef CONFIG_X86_32
774 /* Stack for startup_32 can be just as for start_secondary onwards */
775 irq_ctx_init(cpu);
776 #else
777 clear_tsk_thread_flag(idle, TIF_FORK);
778 initial_gs = per_cpu_offset(cpu);
779 #endif
780 per_cpu(kernel_stack, cpu) =
781 (unsigned long)task_stack_page(idle) -
782 KERNEL_STACK_OFFSET + THREAD_SIZE;
783 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
784 initial_code = (unsigned long)start_secondary;
785 stack_start = idle->thread.sp;
786
787 /* So we see what's up */
788 announce_cpu(cpu, apicid);
789
790 /*
791 * This grunge runs the startup process for
792 * the targeted processor.
793 */
794
795 atomic_set(&init_deasserted, 0);
796
797 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
798
799 pr_debug("Setting warm reset code and vector.\n");
800
801 smpboot_setup_warm_reset_vector(start_ip);
802 /*
803 * Be paranoid about clearing APIC errors.
804 */
805 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
806 apic_write(APIC_ESR, 0);
807 apic_read(APIC_ESR);
808 }
809 }
810
811 /*
812 * AP might wait on cpu_callout_mask in cpu_init() with
813 * cpu_initialized_mask set if previous attempt to online
814 * it timed-out. Clear cpu_initialized_mask so that after
815 * INIT/SIPI it could start with a clean state.
816 */
817 cpumask_clear_cpu(cpu, cpu_initialized_mask);
818 smp_mb();
819
820 /*
821 * Wake up a CPU in difference cases:
822 * - Use the method in the APIC driver if it's defined
823 * Otherwise,
824 * - Use an INIT boot APIC message for APs or NMI for BSP.
825 */
826 if (apic->wakeup_secondary_cpu)
827 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
828 else
829 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
830 &cpu0_nmi_registered);
831
832 if (!boot_error) {
833 /*
834 * Wait 10s total for a response from AP
835 */
836 boot_error = -1;
837 timeout = jiffies + 10*HZ;
838 while (time_before(jiffies, timeout)) {
839 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
840 /*
841 * Tell AP to proceed with initialization
842 */
843 cpumask_set_cpu(cpu, cpu_callout_mask);
844 boot_error = 0;
845 break;
846 }
847 udelay(100);
848 schedule();
849 }
850 }
851
852 if (!boot_error) {
853 /*
854 * Wait till AP completes initial initialization
855 */
856 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
857 /*
858 * Allow other tasks to run while we wait for the
859 * AP to come online. This also gives a chance
860 * for the MTRR work(triggered by the AP coming online)
861 * to be completed in the stop machine context.
862 */
863 udelay(100);
864 schedule();
865 }
866 }
867
868 /* mark "stuck" area as not stuck */
869 *trampoline_status = 0;
870
871 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
872 /*
873 * Cleanup possible dangling ends...
874 */
875 smpboot_restore_warm_reset_vector();
876 }
877 /*
878 * Clean up the nmi handler. Do this after the callin and callout sync
879 * to avoid impact of possible long unregister time.
880 */
881 if (cpu0_nmi_registered)
882 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
883
884 return boot_error;
885 }
886
887 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
888 {
889 int apicid = apic->cpu_present_to_apicid(cpu);
890 unsigned long flags;
891 int err;
892
893 WARN_ON(irqs_disabled());
894
895 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
896
897 if (apicid == BAD_APICID ||
898 !physid_isset(apicid, phys_cpu_present_map) ||
899 !apic->apic_id_valid(apicid)) {
900 pr_err("%s: bad cpu %d\n", __func__, cpu);
901 return -EINVAL;
902 }
903
904 /*
905 * Already booted CPU?
906 */
907 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
908 pr_debug("do_boot_cpu %d Already started\n", cpu);
909 return -ENOSYS;
910 }
911
912 /*
913 * Save current MTRR state in case it was changed since early boot
914 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
915 */
916 mtrr_save_state();
917
918 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
919
920 /* the FPU context is blank, nobody can own it */
921 __cpu_disable_lazy_restore(cpu);
922
923 err = do_boot_cpu(apicid, cpu, tidle);
924 if (err) {
925 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
926 return -EIO;
927 }
928
929 /*
930 * Check TSC synchronization with the AP (keep irqs disabled
931 * while doing so):
932 */
933 local_irq_save(flags);
934 check_tsc_sync_source(cpu);
935 local_irq_restore(flags);
936
937 while (!cpu_online(cpu)) {
938 cpu_relax();
939 touch_nmi_watchdog();
940 }
941
942 return 0;
943 }
944
945 /**
946 * arch_disable_smp_support() - disables SMP support for x86 at runtime
947 */
948 void arch_disable_smp_support(void)
949 {
950 disable_ioapic_support();
951 }
952
953 /*
954 * Fall back to non SMP mode after errors.
955 *
956 * RED-PEN audit/test this more. I bet there is more state messed up here.
957 */
958 static __init void disable_smp(void)
959 {
960 init_cpu_present(cpumask_of(0));
961 init_cpu_possible(cpumask_of(0));
962 smpboot_clear_io_apic_irqs();
963
964 if (smp_found_config)
965 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
966 else
967 physid_set_mask_of_physid(0, &phys_cpu_present_map);
968 cpumask_set_cpu(0, cpu_sibling_mask(0));
969 cpumask_set_cpu(0, cpu_core_mask(0));
970 }
971
972 /*
973 * Various sanity checks.
974 */
975 static int __init smp_sanity_check(unsigned max_cpus)
976 {
977 preempt_disable();
978
979 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
980 if (def_to_bigsmp && nr_cpu_ids > 8) {
981 unsigned int cpu;
982 unsigned nr;
983
984 pr_warn("More than 8 CPUs detected - skipping them\n"
985 "Use CONFIG_X86_BIGSMP\n");
986
987 nr = 0;
988 for_each_present_cpu(cpu) {
989 if (nr >= 8)
990 set_cpu_present(cpu, false);
991 nr++;
992 }
993
994 nr = 0;
995 for_each_possible_cpu(cpu) {
996 if (nr >= 8)
997 set_cpu_possible(cpu, false);
998 nr++;
999 }
1000
1001 nr_cpu_ids = 8;
1002 }
1003 #endif
1004
1005 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1006 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1007 hard_smp_processor_id());
1008
1009 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1010 }
1011
1012 /*
1013 * If we couldn't find an SMP configuration at boot time,
1014 * get out of here now!
1015 */
1016 if (!smp_found_config && !acpi_lapic) {
1017 preempt_enable();
1018 pr_notice("SMP motherboard not detected\n");
1019 disable_smp();
1020 if (APIC_init_uniprocessor())
1021 pr_notice("Local APIC not detected. Using dummy APIC emulation.\n");
1022 return -1;
1023 }
1024
1025 /*
1026 * Should not be necessary because the MP table should list the boot
1027 * CPU too, but we do it for the sake of robustness anyway.
1028 */
1029 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1030 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1031 boot_cpu_physical_apicid);
1032 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1033 }
1034 preempt_enable();
1035
1036 /*
1037 * If we couldn't find a local APIC, then get out of here now!
1038 */
1039 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
1040 !cpu_has_apic) {
1041 if (!disable_apic) {
1042 pr_err("BIOS bug, local APIC #%d not detected!...\n",
1043 boot_cpu_physical_apicid);
1044 pr_err("... forcing use of dummy APIC emulation (tell your hw vendor)\n");
1045 }
1046 smpboot_clear_io_apic();
1047 disable_ioapic_support();
1048 return -1;
1049 }
1050
1051 verify_local_APIC();
1052
1053 /*
1054 * If SMP should be disabled, then really disable it!
1055 */
1056 if (!max_cpus) {
1057 pr_info("SMP mode deactivated\n");
1058 smpboot_clear_io_apic();
1059
1060 connect_bsp_APIC();
1061 setup_local_APIC();
1062 bsp_end_local_APIC_setup();
1063 return -1;
1064 }
1065
1066 return 0;
1067 }
1068
1069 static void __init smp_cpu_index_default(void)
1070 {
1071 int i;
1072 struct cpuinfo_x86 *c;
1073
1074 for_each_possible_cpu(i) {
1075 c = &cpu_data(i);
1076 /* mark all to hotplug */
1077 c->cpu_index = nr_cpu_ids;
1078 }
1079 }
1080
1081 /*
1082 * Prepare for SMP bootup. The MP table or ACPI has been read
1083 * earlier. Just do some sanity checking here and enable APIC mode.
1084 */
1085 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1086 {
1087 unsigned int i;
1088
1089 preempt_disable();
1090 smp_cpu_index_default();
1091
1092 /*
1093 * Setup boot CPU information
1094 */
1095 smp_store_boot_cpu_info(); /* Final full version of the data */
1096 cpumask_copy(cpu_callin_mask, cpumask_of(0));
1097 mb();
1098
1099 current_thread_info()->cpu = 0; /* needed? */
1100 for_each_possible_cpu(i) {
1101 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1102 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1103 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1104 }
1105 set_cpu_sibling_map(0);
1106
1107
1108 if (smp_sanity_check(max_cpus) < 0) {
1109 pr_info("SMP disabled\n");
1110 disable_smp();
1111 goto out;
1112 }
1113
1114 default_setup_apic_routing();
1115
1116 preempt_disable();
1117 if (read_apic_id() != boot_cpu_physical_apicid) {
1118 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1119 read_apic_id(), boot_cpu_physical_apicid);
1120 /* Or can we switch back to PIC here? */
1121 }
1122 preempt_enable();
1123
1124 connect_bsp_APIC();
1125
1126 /*
1127 * Switch from PIC to APIC mode.
1128 */
1129 setup_local_APIC();
1130
1131 if (x2apic_mode)
1132 cpu0_logical_apicid = apic_read(APIC_LDR);
1133 else
1134 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1135
1136 /*
1137 * Enable IO APIC before setting up error vector
1138 */
1139 if (!skip_ioapic_setup && nr_ioapics)
1140 enable_IO_APIC();
1141
1142 bsp_end_local_APIC_setup();
1143 smpboot_setup_io_apic();
1144 /*
1145 * Set up local APIC timer on boot CPU.
1146 */
1147
1148 pr_info("CPU%d: ", 0);
1149 print_cpu_info(&cpu_data(0));
1150 x86_init.timers.setup_percpu_clockev();
1151
1152 if (is_uv_system())
1153 uv_system_init();
1154
1155 set_mtrr_aps_delayed_init();
1156 out:
1157 preempt_enable();
1158 }
1159
1160 void arch_enable_nonboot_cpus_begin(void)
1161 {
1162 set_mtrr_aps_delayed_init();
1163 }
1164
1165 void arch_enable_nonboot_cpus_end(void)
1166 {
1167 mtrr_aps_init();
1168 }
1169
1170 /*
1171 * Early setup to make printk work.
1172 */
1173 void __init native_smp_prepare_boot_cpu(void)
1174 {
1175 int me = smp_processor_id();
1176 switch_to_new_gdt(me);
1177 /* already set me in cpu_online_mask in boot_cpu_init() */
1178 cpumask_set_cpu(me, cpu_callout_mask);
1179 per_cpu(cpu_state, me) = CPU_ONLINE;
1180 }
1181
1182 void __init native_smp_cpus_done(unsigned int max_cpus)
1183 {
1184 pr_debug("Boot done\n");
1185
1186 nmi_selftest();
1187 impress_friends();
1188 #ifdef CONFIG_X86_IO_APIC
1189 setup_ioapic_dest();
1190 #endif
1191 mtrr_aps_init();
1192 }
1193
1194 static int __initdata setup_possible_cpus = -1;
1195 static int __init _setup_possible_cpus(char *str)
1196 {
1197 get_option(&str, &setup_possible_cpus);
1198 return 0;
1199 }
1200 early_param("possible_cpus", _setup_possible_cpus);
1201
1202
1203 /*
1204 * cpu_possible_mask should be static, it cannot change as cpu's
1205 * are onlined, or offlined. The reason is per-cpu data-structures
1206 * are allocated by some modules at init time, and dont expect to
1207 * do this dynamically on cpu arrival/departure.
1208 * cpu_present_mask on the other hand can change dynamically.
1209 * In case when cpu_hotplug is not compiled, then we resort to current
1210 * behaviour, which is cpu_possible == cpu_present.
1211 * - Ashok Raj
1212 *
1213 * Three ways to find out the number of additional hotplug CPUs:
1214 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1215 * - The user can overwrite it with possible_cpus=NUM
1216 * - Otherwise don't reserve additional CPUs.
1217 * We do this because additional CPUs waste a lot of memory.
1218 * -AK
1219 */
1220 __init void prefill_possible_map(void)
1221 {
1222 int i, possible;
1223
1224 /* no processor from mptable or madt */
1225 if (!num_processors)
1226 num_processors = 1;
1227
1228 i = setup_max_cpus ?: 1;
1229 if (setup_possible_cpus == -1) {
1230 possible = num_processors;
1231 #ifdef CONFIG_HOTPLUG_CPU
1232 if (setup_max_cpus)
1233 possible += disabled_cpus;
1234 #else
1235 if (possible > i)
1236 possible = i;
1237 #endif
1238 } else
1239 possible = setup_possible_cpus;
1240
1241 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1242
1243 /* nr_cpu_ids could be reduced via nr_cpus= */
1244 if (possible > nr_cpu_ids) {
1245 pr_warn("%d Processors exceeds NR_CPUS limit of %d\n",
1246 possible, nr_cpu_ids);
1247 possible = nr_cpu_ids;
1248 }
1249
1250 #ifdef CONFIG_HOTPLUG_CPU
1251 if (!setup_max_cpus)
1252 #endif
1253 if (possible > i) {
1254 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1255 possible, setup_max_cpus);
1256 possible = i;
1257 }
1258
1259 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1260 possible, max_t(int, possible - num_processors, 0));
1261
1262 for (i = 0; i < possible; i++)
1263 set_cpu_possible(i, true);
1264 for (; i < NR_CPUS; i++)
1265 set_cpu_possible(i, false);
1266
1267 nr_cpu_ids = possible;
1268 }
1269
1270 #ifdef CONFIG_HOTPLUG_CPU
1271
1272 static void remove_siblinginfo(int cpu)
1273 {
1274 int sibling;
1275 struct cpuinfo_x86 *c = &cpu_data(cpu);
1276
1277 for_each_cpu(sibling, cpu_core_mask(cpu)) {
1278 cpumask_clear_cpu(cpu, cpu_core_mask(sibling));
1279 /*/
1280 * last thread sibling in this cpu core going down
1281 */
1282 if (cpumask_weight(cpu_sibling_mask(cpu)) == 1)
1283 cpu_data(sibling).booted_cores--;
1284 }
1285
1286 for_each_cpu(sibling, cpu_sibling_mask(cpu))
1287 cpumask_clear_cpu(cpu, cpu_sibling_mask(sibling));
1288 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1289 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1290 cpumask_clear(cpu_llc_shared_mask(cpu));
1291 cpumask_clear(cpu_sibling_mask(cpu));
1292 cpumask_clear(cpu_core_mask(cpu));
1293 c->phys_proc_id = 0;
1294 c->cpu_core_id = 0;
1295 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1296 }
1297
1298 static void __ref remove_cpu_from_maps(int cpu)
1299 {
1300 set_cpu_online(cpu, false);
1301 cpumask_clear_cpu(cpu, cpu_callout_mask);
1302 cpumask_clear_cpu(cpu, cpu_callin_mask);
1303 /* was set by cpu_init() */
1304 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1305 numa_remove_cpu(cpu);
1306 }
1307
1308 void cpu_disable_common(void)
1309 {
1310 int cpu = smp_processor_id();
1311
1312 remove_siblinginfo(cpu);
1313
1314 /* It's now safe to remove this processor from the online map */
1315 lock_vector_lock();
1316 remove_cpu_from_maps(cpu);
1317 unlock_vector_lock();
1318 fixup_irqs();
1319 }
1320
1321 int native_cpu_disable(void)
1322 {
1323 int ret;
1324
1325 ret = check_irq_vectors_for_cpu_disable();
1326 if (ret)
1327 return ret;
1328
1329 clear_local_APIC();
1330 init_completion(&per_cpu(die_complete, smp_processor_id()));
1331 cpu_disable_common();
1332
1333 return 0;
1334 }
1335
1336 void native_cpu_die(unsigned int cpu)
1337 {
1338 /* We don't do anything here: idle task is faking death itself. */
1339 wait_for_completion_timeout(&per_cpu(die_complete, cpu), HZ);
1340
1341 /* They ack this in play_dead() by setting CPU_DEAD */
1342 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1343 if (system_state == SYSTEM_RUNNING)
1344 pr_info("CPU %u is now offline\n", cpu);
1345 } else {
1346 pr_err("CPU %u didn't die...\n", cpu);
1347 }
1348 }
1349
1350 void play_dead_common(void)
1351 {
1352 idle_task_exit();
1353 reset_lazy_tlbstate();
1354 amd_e400_remove_cpu(raw_smp_processor_id());
1355
1356 mb();
1357 /* Ack it */
1358 __this_cpu_write(cpu_state, CPU_DEAD);
1359 complete(&per_cpu(die_complete, smp_processor_id()));
1360
1361 /*
1362 * With physical CPU hotplug, we should halt the cpu
1363 */
1364 local_irq_disable();
1365 }
1366
1367 static bool wakeup_cpu0(void)
1368 {
1369 if (smp_processor_id() == 0 && enable_start_cpu0)
1370 return true;
1371
1372 return false;
1373 }
1374
1375 /*
1376 * We need to flush the caches before going to sleep, lest we have
1377 * dirty data in our caches when we come back up.
1378 */
1379 static inline void mwait_play_dead(void)
1380 {
1381 unsigned int eax, ebx, ecx, edx;
1382 unsigned int highest_cstate = 0;
1383 unsigned int highest_subcstate = 0;
1384 void *mwait_ptr;
1385 int i;
1386
1387 if (!this_cpu_has(X86_FEATURE_MWAIT))
1388 return;
1389 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1390 return;
1391 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1392 return;
1393
1394 eax = CPUID_MWAIT_LEAF;
1395 ecx = 0;
1396 native_cpuid(&eax, &ebx, &ecx, &edx);
1397
1398 /*
1399 * eax will be 0 if EDX enumeration is not valid.
1400 * Initialized below to cstate, sub_cstate value when EDX is valid.
1401 */
1402 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1403 eax = 0;
1404 } else {
1405 edx >>= MWAIT_SUBSTATE_SIZE;
1406 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1407 if (edx & MWAIT_SUBSTATE_MASK) {
1408 highest_cstate = i;
1409 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1410 }
1411 }
1412 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1413 (highest_subcstate - 1);
1414 }
1415
1416 /*
1417 * This should be a memory location in a cache line which is
1418 * unlikely to be touched by other processors. The actual
1419 * content is immaterial as it is not actually modified in any way.
1420 */
1421 mwait_ptr = &current_thread_info()->flags;
1422
1423 wbinvd();
1424
1425 while (1) {
1426 /*
1427 * The CLFLUSH is a workaround for erratum AAI65 for
1428 * the Xeon 7400 series. It's not clear it is actually
1429 * needed, but it should be harmless in either case.
1430 * The WBINVD is insufficient due to the spurious-wakeup
1431 * case where we return around the loop.
1432 */
1433 mb();
1434 clflush(mwait_ptr);
1435 mb();
1436 __monitor(mwait_ptr, 0, 0);
1437 mb();
1438 __mwait(eax, 0);
1439 /*
1440 * If NMI wants to wake up CPU0, start CPU0.
1441 */
1442 if (wakeup_cpu0())
1443 start_cpu0();
1444 }
1445 }
1446
1447 static inline void hlt_play_dead(void)
1448 {
1449 if (__this_cpu_read(cpu_info.x86) >= 4)
1450 wbinvd();
1451
1452 while (1) {
1453 native_halt();
1454 /*
1455 * If NMI wants to wake up CPU0, start CPU0.
1456 */
1457 if (wakeup_cpu0())
1458 start_cpu0();
1459 }
1460 }
1461
1462 void native_play_dead(void)
1463 {
1464 play_dead_common();
1465 tboot_shutdown(TB_SHUTDOWN_WFS);
1466
1467 mwait_play_dead(); /* Only returns on failure */
1468 if (cpuidle_play_dead())
1469 hlt_play_dead();
1470 }
1471
1472 #else /* ... !CONFIG_HOTPLUG_CPU */
1473 int native_cpu_disable(void)
1474 {
1475 return -ENOSYS;
1476 }
1477
1478 void native_cpu_die(unsigned int cpu)
1479 {
1480 /* We said "no" in __cpu_disable */
1481 BUG();
1482 }
1483
1484 void native_play_dead(void)
1485 {
1486 BUG();
1487 }
1488
1489 #endif