]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/kernel/smpboot_64.c
Merge branch 'release' of git://lm-sensors.org/kernel/mhoffman/hwmon-2.6
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / kernel / smpboot_64.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
15 * This code is released under the GNU General Public License version 2
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIP report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Andi Kleen : Changed for SMP boot into long mode.
33 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
34 * Andi Kleen : Converted to new state machine.
35 * Various cleanups.
36 * Probably mostly hotplug CPU ready now.
37 * Ashok Raj : CPU hotplug support
38 */
39
40
41 #include <linux/init.h>
42
43 #include <linux/mm.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/bootmem.h>
46 #include <linux/thread_info.h>
47 #include <linux/module.h>
48 #include <linux/delay.h>
49 #include <linux/mc146818rtc.h>
50 #include <linux/smp.h>
51 #include <linux/kdebug.h>
52
53 #include <asm/mtrr.h>
54 #include <asm/pgalloc.h>
55 #include <asm/desc.h>
56 #include <asm/tlbflush.h>
57 #include <asm/proto.h>
58 #include <asm/nmi.h>
59 #include <asm/irq.h>
60 #include <asm/hw_irq.h>
61 #include <asm/numa.h>
62
63 /* Number of siblings per CPU package */
64 int smp_num_siblings = 1;
65 EXPORT_SYMBOL(smp_num_siblings);
66
67 /* Last level cache ID of each logical CPU */
68 u8 cpu_llc_id[NR_CPUS] __cpuinitdata = {[0 ... NR_CPUS-1] = BAD_APICID};
69
70 /* Bitmask of currently online CPUs */
71 cpumask_t cpu_online_map __read_mostly;
72
73 EXPORT_SYMBOL(cpu_online_map);
74
75 /*
76 * Private maps to synchronize booting between AP and BP.
77 * Probably not needed anymore, but it makes for easier debugging. -AK
78 */
79 cpumask_t cpu_callin_map;
80 cpumask_t cpu_callout_map;
81 EXPORT_SYMBOL(cpu_callout_map);
82
83 cpumask_t cpu_possible_map;
84 EXPORT_SYMBOL(cpu_possible_map);
85
86 /* Per CPU bogomips and other parameters */
87 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
88 EXPORT_SYMBOL(cpu_data);
89
90 /* Set when the idlers are all forked */
91 int smp_threads_ready;
92
93 /* representing HT siblings of each logical CPU */
94 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
95 EXPORT_SYMBOL(cpu_sibling_map);
96
97 /* representing HT and core siblings of each logical CPU */
98 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
99 EXPORT_SYMBOL(cpu_core_map);
100
101 /*
102 * Trampoline 80x86 program as an array.
103 */
104
105 extern unsigned char trampoline_data[];
106 extern unsigned char trampoline_end[];
107
108 /* State of each CPU */
109 DEFINE_PER_CPU(int, cpu_state) = { 0 };
110
111 /*
112 * Store all idle threads, this can be reused instead of creating
113 * a new thread. Also avoids complicated thread destroy functionality
114 * for idle threads.
115 */
116 struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
117
118 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
119 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
120
121 /*
122 * Currently trivial. Write the real->protected mode
123 * bootstrap into the page concerned. The caller
124 * has made sure it's suitably aligned.
125 */
126
127 static unsigned long __cpuinit setup_trampoline(void)
128 {
129 void *tramp = __va(SMP_TRAMPOLINE_BASE);
130 memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
131 return virt_to_phys(tramp);
132 }
133
134 /*
135 * The bootstrap kernel entry code has set these up. Save them for
136 * a given CPU
137 */
138
139 static void __cpuinit smp_store_cpu_info(int id)
140 {
141 struct cpuinfo_x86 *c = cpu_data + id;
142
143 *c = boot_cpu_data;
144 identify_cpu(c);
145 print_cpu_info(c);
146 }
147
148 static atomic_t init_deasserted __cpuinitdata;
149
150 /*
151 * Report back to the Boot Processor.
152 * Running on AP.
153 */
154 void __cpuinit smp_callin(void)
155 {
156 int cpuid, phys_id;
157 unsigned long timeout;
158
159 /*
160 * If waken up by an INIT in an 82489DX configuration
161 * we may get here before an INIT-deassert IPI reaches
162 * our local APIC. We have to wait for the IPI or we'll
163 * lock up on an APIC access.
164 */
165 while (!atomic_read(&init_deasserted))
166 cpu_relax();
167
168 /*
169 * (This works even if the APIC is not enabled.)
170 */
171 phys_id = GET_APIC_ID(apic_read(APIC_ID));
172 cpuid = smp_processor_id();
173 if (cpu_isset(cpuid, cpu_callin_map)) {
174 panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
175 phys_id, cpuid);
176 }
177 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
178
179 /*
180 * STARTUP IPIs are fragile beasts as they might sometimes
181 * trigger some glue motherboard logic. Complete APIC bus
182 * silence for 1 second, this overestimates the time the
183 * boot CPU is spending to send the up to 2 STARTUP IPIs
184 * by a factor of two. This should be enough.
185 */
186
187 /*
188 * Waiting 2s total for startup (udelay is not yet working)
189 */
190 timeout = jiffies + 2*HZ;
191 while (time_before(jiffies, timeout)) {
192 /*
193 * Has the boot CPU finished it's STARTUP sequence?
194 */
195 if (cpu_isset(cpuid, cpu_callout_map))
196 break;
197 cpu_relax();
198 }
199
200 if (!time_before(jiffies, timeout)) {
201 panic("smp_callin: CPU%d started up but did not get a callout!\n",
202 cpuid);
203 }
204
205 /*
206 * the boot CPU has finished the init stage and is spinning
207 * on callin_map until we finish. We are free to set up this
208 * CPU, first the APIC. (this is probably redundant on most
209 * boards)
210 */
211
212 Dprintk("CALLIN, before setup_local_APIC().\n");
213 setup_local_APIC();
214
215 /*
216 * Get our bogomips.
217 *
218 * Need to enable IRQs because it can take longer and then
219 * the NMI watchdog might kill us.
220 */
221 local_irq_enable();
222 calibrate_delay();
223 local_irq_disable();
224 Dprintk("Stack at about %p\n",&cpuid);
225
226 /*
227 * Save our processor parameters
228 */
229 smp_store_cpu_info(cpuid);
230
231 /*
232 * Allow the master to continue.
233 */
234 cpu_set(cpuid, cpu_callin_map);
235 }
236
237 /* maps the cpu to the sched domain representing multi-core */
238 cpumask_t cpu_coregroup_map(int cpu)
239 {
240 struct cpuinfo_x86 *c = cpu_data + cpu;
241 /*
242 * For perf, we return last level cache shared map.
243 * And for power savings, we return cpu_core_map
244 */
245 if (sched_mc_power_savings || sched_smt_power_savings)
246 return cpu_core_map[cpu];
247 else
248 return c->llc_shared_map;
249 }
250
251 /* representing cpus for which sibling maps can be computed */
252 static cpumask_t cpu_sibling_setup_map;
253
254 static inline void set_cpu_sibling_map(int cpu)
255 {
256 int i;
257 struct cpuinfo_x86 *c = cpu_data;
258
259 cpu_set(cpu, cpu_sibling_setup_map);
260
261 if (smp_num_siblings > 1) {
262 for_each_cpu_mask(i, cpu_sibling_setup_map) {
263 if (c[cpu].phys_proc_id == c[i].phys_proc_id &&
264 c[cpu].cpu_core_id == c[i].cpu_core_id) {
265 cpu_set(i, cpu_sibling_map[cpu]);
266 cpu_set(cpu, cpu_sibling_map[i]);
267 cpu_set(i, cpu_core_map[cpu]);
268 cpu_set(cpu, cpu_core_map[i]);
269 cpu_set(i, c[cpu].llc_shared_map);
270 cpu_set(cpu, c[i].llc_shared_map);
271 }
272 }
273 } else {
274 cpu_set(cpu, cpu_sibling_map[cpu]);
275 }
276
277 cpu_set(cpu, c[cpu].llc_shared_map);
278
279 if (current_cpu_data.x86_max_cores == 1) {
280 cpu_core_map[cpu] = cpu_sibling_map[cpu];
281 c[cpu].booted_cores = 1;
282 return;
283 }
284
285 for_each_cpu_mask(i, cpu_sibling_setup_map) {
286 if (cpu_llc_id[cpu] != BAD_APICID &&
287 cpu_llc_id[cpu] == cpu_llc_id[i]) {
288 cpu_set(i, c[cpu].llc_shared_map);
289 cpu_set(cpu, c[i].llc_shared_map);
290 }
291 if (c[cpu].phys_proc_id == c[i].phys_proc_id) {
292 cpu_set(i, cpu_core_map[cpu]);
293 cpu_set(cpu, cpu_core_map[i]);
294 /*
295 * Does this new cpu bringup a new core?
296 */
297 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
298 /*
299 * for each core in package, increment
300 * the booted_cores for this new cpu
301 */
302 if (first_cpu(cpu_sibling_map[i]) == i)
303 c[cpu].booted_cores++;
304 /*
305 * increment the core count for all
306 * the other cpus in this package
307 */
308 if (i != cpu)
309 c[i].booted_cores++;
310 } else if (i != cpu && !c[cpu].booted_cores)
311 c[cpu].booted_cores = c[i].booted_cores;
312 }
313 }
314 }
315
316 /*
317 * Setup code on secondary processor (after comming out of the trampoline)
318 */
319 void __cpuinit start_secondary(void)
320 {
321 /*
322 * Dont put anything before smp_callin(), SMP
323 * booting is too fragile that we want to limit the
324 * things done here to the most necessary things.
325 */
326 cpu_init();
327 preempt_disable();
328 smp_callin();
329
330 /* otherwise gcc will move up the smp_processor_id before the cpu_init */
331 barrier();
332
333 /*
334 * Check TSC sync first:
335 */
336 check_tsc_sync_target();
337
338 Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
339 setup_secondary_APIC_clock();
340
341 Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
342
343 if (nmi_watchdog == NMI_IO_APIC) {
344 disable_8259A_irq(0);
345 enable_NMI_through_LVT0(NULL);
346 enable_8259A_irq(0);
347 }
348
349 /*
350 * The sibling maps must be set before turing the online map on for
351 * this cpu
352 */
353 set_cpu_sibling_map(smp_processor_id());
354
355 /*
356 * We need to hold call_lock, so there is no inconsistency
357 * between the time smp_call_function() determines number of
358 * IPI receipients, and the time when the determination is made
359 * for which cpus receive the IPI in genapic_flat.c. Holding this
360 * lock helps us to not include this cpu in a currently in progress
361 * smp_call_function().
362 */
363 lock_ipi_call_lock();
364 spin_lock(&vector_lock);
365
366 /* Setup the per cpu irq handling data structures */
367 __setup_vector_irq(smp_processor_id());
368 /*
369 * Allow the master to continue.
370 */
371 cpu_set(smp_processor_id(), cpu_online_map);
372 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
373 spin_unlock(&vector_lock);
374
375 unlock_ipi_call_lock();
376
377 cpu_idle();
378 }
379
380 extern volatile unsigned long init_rsp;
381 extern void (*initial_code)(void);
382
383 #ifdef APIC_DEBUG
384 static void inquire_remote_apic(int apicid)
385 {
386 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
387 char *names[] = { "ID", "VERSION", "SPIV" };
388 int timeout;
389 unsigned int status;
390
391 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
392
393 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
394 printk("... APIC #%d %s: ", apicid, names[i]);
395
396 /*
397 * Wait for idle.
398 */
399 status = safe_apic_wait_icr_idle();
400 if (status)
401 printk("a previous APIC delivery may have failed\n");
402
403 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
404 apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]);
405
406 timeout = 0;
407 do {
408 udelay(100);
409 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
410 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
411
412 switch (status) {
413 case APIC_ICR_RR_VALID:
414 status = apic_read(APIC_RRR);
415 printk("%08x\n", status);
416 break;
417 default:
418 printk("failed\n");
419 }
420 }
421 }
422 #endif
423
424 /*
425 * Kick the secondary to wake up.
426 */
427 static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
428 {
429 unsigned long send_status, accept_status = 0;
430 int maxlvt, num_starts, j;
431
432 Dprintk("Asserting INIT.\n");
433
434 /*
435 * Turn INIT on target chip
436 */
437 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
438
439 /*
440 * Send IPI
441 */
442 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
443 | APIC_DM_INIT);
444
445 Dprintk("Waiting for send to finish...\n");
446 send_status = safe_apic_wait_icr_idle();
447
448 mdelay(10);
449
450 Dprintk("Deasserting INIT.\n");
451
452 /* Target chip */
453 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
454
455 /* Send IPI */
456 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
457
458 Dprintk("Waiting for send to finish...\n");
459 send_status = safe_apic_wait_icr_idle();
460
461 mb();
462 atomic_set(&init_deasserted, 1);
463
464 num_starts = 2;
465
466 /*
467 * Run STARTUP IPI loop.
468 */
469 Dprintk("#startup loops: %d.\n", num_starts);
470
471 maxlvt = get_maxlvt();
472
473 for (j = 1; j <= num_starts; j++) {
474 Dprintk("Sending STARTUP #%d.\n",j);
475 apic_write(APIC_ESR, 0);
476 apic_read(APIC_ESR);
477 Dprintk("After apic_write.\n");
478
479 /*
480 * STARTUP IPI
481 */
482
483 /* Target chip */
484 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
485
486 /* Boot on the stack */
487 /* Kick the second */
488 apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12));
489
490 /*
491 * Give the other CPU some time to accept the IPI.
492 */
493 udelay(300);
494
495 Dprintk("Startup point 1.\n");
496
497 Dprintk("Waiting for send to finish...\n");
498 send_status = safe_apic_wait_icr_idle();
499
500 /*
501 * Give the other CPU some time to accept the IPI.
502 */
503 udelay(200);
504 /*
505 * Due to the Pentium erratum 3AP.
506 */
507 if (maxlvt > 3) {
508 apic_write(APIC_ESR, 0);
509 }
510 accept_status = (apic_read(APIC_ESR) & 0xEF);
511 if (send_status || accept_status)
512 break;
513 }
514 Dprintk("After Startup.\n");
515
516 if (send_status)
517 printk(KERN_ERR "APIC never delivered???\n");
518 if (accept_status)
519 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
520
521 return (send_status | accept_status);
522 }
523
524 struct create_idle {
525 struct work_struct work;
526 struct task_struct *idle;
527 struct completion done;
528 int cpu;
529 };
530
531 void do_fork_idle(struct work_struct *work)
532 {
533 struct create_idle *c_idle =
534 container_of(work, struct create_idle, work);
535
536 c_idle->idle = fork_idle(c_idle->cpu);
537 complete(&c_idle->done);
538 }
539
540 /*
541 * Boot one CPU.
542 */
543 static int __cpuinit do_boot_cpu(int cpu, int apicid)
544 {
545 unsigned long boot_error;
546 int timeout;
547 unsigned long start_rip;
548 struct create_idle c_idle = {
549 .work = __WORK_INITIALIZER(c_idle.work, do_fork_idle),
550 .cpu = cpu,
551 .done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
552 };
553
554 /* allocate memory for gdts of secondary cpus. Hotplug is considered */
555 if (!cpu_gdt_descr[cpu].address &&
556 !(cpu_gdt_descr[cpu].address = get_zeroed_page(GFP_KERNEL))) {
557 printk(KERN_ERR "Failed to allocate GDT for CPU %d\n", cpu);
558 return -1;
559 }
560
561 /* Allocate node local memory for AP pdas */
562 if (cpu_pda(cpu) == &boot_cpu_pda[cpu]) {
563 struct x8664_pda *newpda, *pda;
564 int node = cpu_to_node(cpu);
565 pda = cpu_pda(cpu);
566 newpda = kmalloc_node(sizeof (struct x8664_pda), GFP_ATOMIC,
567 node);
568 if (newpda) {
569 memcpy(newpda, pda, sizeof (struct x8664_pda));
570 cpu_pda(cpu) = newpda;
571 } else
572 printk(KERN_ERR
573 "Could not allocate node local PDA for CPU %d on node %d\n",
574 cpu, node);
575 }
576
577 alternatives_smp_switch(1);
578
579 c_idle.idle = get_idle_for_cpu(cpu);
580
581 if (c_idle.idle) {
582 c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
583 (THREAD_SIZE + task_stack_page(c_idle.idle))) - 1);
584 init_idle(c_idle.idle, cpu);
585 goto do_rest;
586 }
587
588 /*
589 * During cold boot process, keventd thread is not spun up yet.
590 * When we do cpu hot-add, we create idle threads on the fly, we should
591 * not acquire any attributes from the calling context. Hence the clean
592 * way to create kernel_threads() is to do that from keventd().
593 * We do the current_is_keventd() due to the fact that ACPI notifier
594 * was also queuing to keventd() and when the caller is already running
595 * in context of keventd(), we would end up with locking up the keventd
596 * thread.
597 */
598 if (!keventd_up() || current_is_keventd())
599 c_idle.work.func(&c_idle.work);
600 else {
601 schedule_work(&c_idle.work);
602 wait_for_completion(&c_idle.done);
603 }
604
605 if (IS_ERR(c_idle.idle)) {
606 printk("failed fork for CPU %d\n", cpu);
607 return PTR_ERR(c_idle.idle);
608 }
609
610 set_idle_for_cpu(cpu, c_idle.idle);
611
612 do_rest:
613
614 cpu_pda(cpu)->pcurrent = c_idle.idle;
615
616 start_rip = setup_trampoline();
617
618 init_rsp = c_idle.idle->thread.rsp;
619 per_cpu(init_tss,cpu).rsp0 = init_rsp;
620 initial_code = start_secondary;
621 clear_tsk_thread_flag(c_idle.idle, TIF_FORK);
622
623 printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
624 cpus_weight(cpu_present_map),
625 apicid);
626
627 /*
628 * This grunge runs the startup process for
629 * the targeted processor.
630 */
631
632 atomic_set(&init_deasserted, 0);
633
634 Dprintk("Setting warm reset code and vector.\n");
635
636 CMOS_WRITE(0xa, 0xf);
637 local_flush_tlb();
638 Dprintk("1.\n");
639 *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
640 Dprintk("2.\n");
641 *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
642 Dprintk("3.\n");
643
644 /*
645 * Be paranoid about clearing APIC errors.
646 */
647 apic_write(APIC_ESR, 0);
648 apic_read(APIC_ESR);
649
650 /*
651 * Status is now clean
652 */
653 boot_error = 0;
654
655 /*
656 * Starting actual IPI sequence...
657 */
658 boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
659
660 if (!boot_error) {
661 /*
662 * allow APs to start initializing.
663 */
664 Dprintk("Before Callout %d.\n", cpu);
665 cpu_set(cpu, cpu_callout_map);
666 Dprintk("After Callout %d.\n", cpu);
667
668 /*
669 * Wait 5s total for a response
670 */
671 for (timeout = 0; timeout < 50000; timeout++) {
672 if (cpu_isset(cpu, cpu_callin_map))
673 break; /* It has booted */
674 udelay(100);
675 }
676
677 if (cpu_isset(cpu, cpu_callin_map)) {
678 /* number CPUs logically, starting from 1 (BSP is 0) */
679 Dprintk("CPU has booted.\n");
680 } else {
681 boot_error = 1;
682 if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
683 == 0xA5)
684 /* trampoline started but...? */
685 printk("Stuck ??\n");
686 else
687 /* trampoline code not run */
688 printk("Not responding.\n");
689 #ifdef APIC_DEBUG
690 inquire_remote_apic(apicid);
691 #endif
692 }
693 }
694 if (boot_error) {
695 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
696 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
697 clear_node_cpumask(cpu); /* was set by numa_add_cpu */
698 cpu_clear(cpu, cpu_present_map);
699 cpu_clear(cpu, cpu_possible_map);
700 x86_cpu_to_apicid[cpu] = BAD_APICID;
701 x86_cpu_to_log_apicid[cpu] = BAD_APICID;
702 return -EIO;
703 }
704
705 return 0;
706 }
707
708 cycles_t cacheflush_time;
709 unsigned long cache_decay_ticks;
710
711 /*
712 * Cleanup possible dangling ends...
713 */
714 static __cpuinit void smp_cleanup_boot(void)
715 {
716 /*
717 * Paranoid: Set warm reset code and vector here back
718 * to default values.
719 */
720 CMOS_WRITE(0, 0xf);
721
722 /*
723 * Reset trampoline flag
724 */
725 *((volatile int *) phys_to_virt(0x467)) = 0;
726 }
727
728 /*
729 * Fall back to non SMP mode after errors.
730 *
731 * RED-PEN audit/test this more. I bet there is more state messed up here.
732 */
733 static __init void disable_smp(void)
734 {
735 cpu_present_map = cpumask_of_cpu(0);
736 cpu_possible_map = cpumask_of_cpu(0);
737 if (smp_found_config)
738 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
739 else
740 phys_cpu_present_map = physid_mask_of_physid(0);
741 cpu_set(0, cpu_sibling_map[0]);
742 cpu_set(0, cpu_core_map[0]);
743 }
744
745 #ifdef CONFIG_HOTPLUG_CPU
746
747 int additional_cpus __initdata = -1;
748
749 /*
750 * cpu_possible_map should be static, it cannot change as cpu's
751 * are onlined, or offlined. The reason is per-cpu data-structures
752 * are allocated by some modules at init time, and dont expect to
753 * do this dynamically on cpu arrival/departure.
754 * cpu_present_map on the other hand can change dynamically.
755 * In case when cpu_hotplug is not compiled, then we resort to current
756 * behaviour, which is cpu_possible == cpu_present.
757 * - Ashok Raj
758 *
759 * Three ways to find out the number of additional hotplug CPUs:
760 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
761 * - The user can overwrite it with additional_cpus=NUM
762 * - Otherwise don't reserve additional CPUs.
763 * We do this because additional CPUs waste a lot of memory.
764 * -AK
765 */
766 __init void prefill_possible_map(void)
767 {
768 int i;
769 int possible;
770
771 if (additional_cpus == -1) {
772 if (disabled_cpus > 0)
773 additional_cpus = disabled_cpus;
774 else
775 additional_cpus = 0;
776 }
777 possible = num_processors + additional_cpus;
778 if (possible > NR_CPUS)
779 possible = NR_CPUS;
780
781 printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
782 possible,
783 max_t(int, possible - num_processors, 0));
784
785 for (i = 0; i < possible; i++)
786 cpu_set(i, cpu_possible_map);
787 }
788 #endif
789
790 /*
791 * Various sanity checks.
792 */
793 static int __init smp_sanity_check(unsigned max_cpus)
794 {
795 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
796 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
797 hard_smp_processor_id());
798 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
799 }
800
801 /*
802 * If we couldn't find an SMP configuration at boot time,
803 * get out of here now!
804 */
805 if (!smp_found_config) {
806 printk(KERN_NOTICE "SMP motherboard not detected.\n");
807 disable_smp();
808 if (APIC_init_uniprocessor())
809 printk(KERN_NOTICE "Local APIC not detected."
810 " Using dummy APIC emulation.\n");
811 return -1;
812 }
813
814 /*
815 * Should not be necessary because the MP table should list the boot
816 * CPU too, but we do it for the sake of robustness anyway.
817 */
818 if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
819 printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
820 boot_cpu_id);
821 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
822 }
823
824 /*
825 * If we couldn't find a local APIC, then get out of here now!
826 */
827 if (!cpu_has_apic) {
828 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
829 boot_cpu_id);
830 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
831 nr_ioapics = 0;
832 return -1;
833 }
834
835 /*
836 * If SMP should be disabled, then really disable it!
837 */
838 if (!max_cpus) {
839 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
840 nr_ioapics = 0;
841 return -1;
842 }
843
844 return 0;
845 }
846
847 /*
848 * Prepare for SMP bootup. The MP table or ACPI has been read
849 * earlier. Just do some sanity checking here and enable APIC mode.
850 */
851 void __init smp_prepare_cpus(unsigned int max_cpus)
852 {
853 nmi_watchdog_default();
854 current_cpu_data = boot_cpu_data;
855 current_thread_info()->cpu = 0; /* needed? */
856 set_cpu_sibling_map(0);
857
858 if (smp_sanity_check(max_cpus) < 0) {
859 printk(KERN_INFO "SMP disabled\n");
860 disable_smp();
861 return;
862 }
863
864
865 /*
866 * Switch from PIC to APIC mode.
867 */
868 setup_local_APIC();
869
870 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
871 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
872 GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
873 /* Or can we switch back to PIC here? */
874 }
875
876 /*
877 * Now start the IO-APICs
878 */
879 if (!skip_ioapic_setup && nr_ioapics)
880 setup_IO_APIC();
881 else
882 nr_ioapics = 0;
883
884 /*
885 * Set up local APIC timer on boot CPU.
886 */
887
888 setup_boot_APIC_clock();
889 }
890
891 /*
892 * Early setup to make printk work.
893 */
894 void __init smp_prepare_boot_cpu(void)
895 {
896 int me = smp_processor_id();
897 cpu_set(me, cpu_online_map);
898 cpu_set(me, cpu_callout_map);
899 per_cpu(cpu_state, me) = CPU_ONLINE;
900 }
901
902 /*
903 * Entry point to boot a CPU.
904 */
905 int __cpuinit __cpu_up(unsigned int cpu)
906 {
907 int apicid = cpu_present_to_apicid(cpu);
908 unsigned long flags;
909 int err;
910
911 WARN_ON(irqs_disabled());
912
913 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
914
915 if (apicid == BAD_APICID || apicid == boot_cpu_id ||
916 !physid_isset(apicid, phys_cpu_present_map)) {
917 printk("__cpu_up: bad cpu %d\n", cpu);
918 return -EINVAL;
919 }
920
921 /*
922 * Already booted CPU?
923 */
924 if (cpu_isset(cpu, cpu_callin_map)) {
925 Dprintk("do_boot_cpu %d Already started\n", cpu);
926 return -ENOSYS;
927 }
928
929 /*
930 * Save current MTRR state in case it was changed since early boot
931 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
932 */
933 mtrr_save_state();
934
935 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
936 /* Boot it! */
937 err = do_boot_cpu(cpu, apicid);
938 if (err < 0) {
939 Dprintk("do_boot_cpu failed %d\n", err);
940 return err;
941 }
942
943 /* Unleash the CPU! */
944 Dprintk("waiting for cpu %d\n", cpu);
945
946 /*
947 * Make sure and check TSC sync:
948 */
949 local_irq_save(flags);
950 check_tsc_sync_source(cpu);
951 local_irq_restore(flags);
952
953 while (!cpu_isset(cpu, cpu_online_map))
954 cpu_relax();
955 err = 0;
956
957 return err;
958 }
959
960 /*
961 * Finish the SMP boot.
962 */
963 void __init smp_cpus_done(unsigned int max_cpus)
964 {
965 smp_cleanup_boot();
966 setup_ioapic_dest();
967 check_nmi_watchdog();
968 }
969
970 #ifdef CONFIG_HOTPLUG_CPU
971
972 static void remove_siblinginfo(int cpu)
973 {
974 int sibling;
975 struct cpuinfo_x86 *c = cpu_data;
976
977 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
978 cpu_clear(cpu, cpu_core_map[sibling]);
979 /*
980 * last thread sibling in this cpu core going down
981 */
982 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
983 c[sibling].booted_cores--;
984 }
985
986 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
987 cpu_clear(cpu, cpu_sibling_map[sibling]);
988 cpus_clear(cpu_sibling_map[cpu]);
989 cpus_clear(cpu_core_map[cpu]);
990 c[cpu].phys_proc_id = 0;
991 c[cpu].cpu_core_id = 0;
992 cpu_clear(cpu, cpu_sibling_setup_map);
993 }
994
995 void remove_cpu_from_maps(void)
996 {
997 int cpu = smp_processor_id();
998
999 cpu_clear(cpu, cpu_callout_map);
1000 cpu_clear(cpu, cpu_callin_map);
1001 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
1002 clear_node_cpumask(cpu);
1003 }
1004
1005 int __cpu_disable(void)
1006 {
1007 int cpu = smp_processor_id();
1008
1009 /*
1010 * Perhaps use cpufreq to drop frequency, but that could go
1011 * into generic code.
1012 *
1013 * We won't take down the boot processor on i386 due to some
1014 * interrupts only being able to be serviced by the BSP.
1015 * Especially so if we're not using an IOAPIC -zwane
1016 */
1017 if (cpu == 0)
1018 return -EBUSY;
1019
1020 if (nmi_watchdog == NMI_LOCAL_APIC)
1021 stop_apic_nmi_watchdog(NULL);
1022 clear_local_APIC();
1023
1024 /*
1025 * HACK:
1026 * Allow any queued timer interrupts to get serviced
1027 * This is only a temporary solution until we cleanup
1028 * fixup_irqs as we do for IA64.
1029 */
1030 local_irq_enable();
1031 mdelay(1);
1032
1033 local_irq_disable();
1034 remove_siblinginfo(cpu);
1035
1036 spin_lock(&vector_lock);
1037 /* It's now safe to remove this processor from the online map */
1038 cpu_clear(cpu, cpu_online_map);
1039 spin_unlock(&vector_lock);
1040 remove_cpu_from_maps();
1041 fixup_irqs(cpu_online_map);
1042 return 0;
1043 }
1044
1045 void __cpu_die(unsigned int cpu)
1046 {
1047 /* We don't do anything here: idle task is faking death itself. */
1048 unsigned int i;
1049
1050 for (i = 0; i < 10; i++) {
1051 /* They ack this in play_dead by setting CPU_DEAD */
1052 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1053 printk ("CPU %d is now offline\n", cpu);
1054 if (1 == num_online_cpus())
1055 alternatives_smp_switch(0);
1056 return;
1057 }
1058 msleep(100);
1059 }
1060 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1061 }
1062
1063 static __init int setup_additional_cpus(char *s)
1064 {
1065 return s && get_option(&s, &additional_cpus) ? 0 : -EINVAL;
1066 }
1067 early_param("additional_cpus", setup_additional_cpus);
1068
1069 #else /* ... !CONFIG_HOTPLUG_CPU */
1070
1071 int __cpu_disable(void)
1072 {
1073 return -ENOSYS;
1074 }
1075
1076 void __cpu_die(unsigned int cpu)
1077 {
1078 /* We said "no" in __cpu_disable */
1079 BUG();
1080 }
1081 #endif /* CONFIG_HOTPLUG_CPU */