]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/tlb_uv.c
x86: cpu/common.c more cleanups
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / tlb_uv.c
1 /*
2 * SGI UltraViolet TLB flush routines.
3 *
4 * (c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
5 *
6 * This code is released under the GNU General Public License version 2 or
7 * later.
8 */
9 #include <linux/seq_file.h>
10 #include <linux/proc_fs.h>
11 #include <linux/kernel.h>
12
13 #include <asm/mmu_context.h>
14 #include <asm/uv/uv.h>
15 #include <asm/uv/uv_mmrs.h>
16 #include <asm/uv/uv_hub.h>
17 #include <asm/uv/uv_bau.h>
18 #include <asm/apic.h>
19 #include <asm/idle.h>
20 #include <asm/tsc.h>
21 #include <asm/irq_vectors.h>
22
23 static struct bau_control **uv_bau_table_bases __read_mostly;
24 static int uv_bau_retry_limit __read_mostly;
25
26 /* position of pnode (which is nasid>>1): */
27 static int uv_nshift __read_mostly;
28
29 static unsigned long uv_mmask __read_mostly;
30
31 static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
32 static DEFINE_PER_CPU(struct bau_control, bau_control);
33
34 /*
35 * Free a software acknowledge hardware resource by clearing its Pending
36 * bit. This will return a reply to the sender.
37 * If the message has timed out, a reply has already been sent by the
38 * hardware but the resource has not been released. In that case our
39 * clear of the Timeout bit (as well) will free the resource. No reply will
40 * be sent (the hardware will only do one reply per message).
41 */
42 static void uv_reply_to_message(int resource,
43 struct bau_payload_queue_entry *msg,
44 struct bau_msg_status *msp)
45 {
46 unsigned long dw;
47
48 dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
49 msg->replied_to = 1;
50 msg->sw_ack_vector = 0;
51 if (msp)
52 msp->seen_by.bits = 0;
53 uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
54 }
55
56 /*
57 * Do all the things a cpu should do for a TLB shootdown message.
58 * Other cpu's may come here at the same time for this message.
59 */
60 static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
61 int msg_slot, int sw_ack_slot)
62 {
63 unsigned long this_cpu_mask;
64 struct bau_msg_status *msp;
65 int cpu;
66
67 msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
68 cpu = uv_blade_processor_id();
69 msg->number_of_cpus =
70 uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
71 this_cpu_mask = 1UL << cpu;
72 if (msp->seen_by.bits & this_cpu_mask)
73 return;
74 atomic_or_long(&msp->seen_by.bits, this_cpu_mask);
75
76 if (msg->replied_to == 1)
77 return;
78
79 if (msg->address == TLB_FLUSH_ALL) {
80 local_flush_tlb();
81 __get_cpu_var(ptcstats).alltlb++;
82 } else {
83 __flush_tlb_one(msg->address);
84 __get_cpu_var(ptcstats).onetlb++;
85 }
86
87 __get_cpu_var(ptcstats).requestee++;
88
89 atomic_inc_short(&msg->acknowledge_count);
90 if (msg->number_of_cpus == msg->acknowledge_count)
91 uv_reply_to_message(sw_ack_slot, msg, msp);
92 }
93
94 /*
95 * Examine the payload queue on one distribution node to see
96 * which messages have not been seen, and which cpu(s) have not seen them.
97 *
98 * Returns the number of cpu's that have not responded.
99 */
100 static int uv_examine_destination(struct bau_control *bau_tablesp, int sender)
101 {
102 struct bau_payload_queue_entry *msg;
103 struct bau_msg_status *msp;
104 int count = 0;
105 int i;
106 int j;
107
108 for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE;
109 msg++, i++) {
110 if ((msg->sending_cpu == sender) && (!msg->replied_to)) {
111 msp = bau_tablesp->msg_statuses + i;
112 printk(KERN_DEBUG
113 "blade %d: address:%#lx %d of %d, not cpu(s): ",
114 i, msg->address, msg->acknowledge_count,
115 msg->number_of_cpus);
116 for (j = 0; j < msg->number_of_cpus; j++) {
117 if (!((1L << j) & msp->seen_by.bits)) {
118 count++;
119 printk("%d ", j);
120 }
121 }
122 printk("\n");
123 }
124 }
125 return count;
126 }
127
128 /*
129 * Examine the payload queue on all the distribution nodes to see
130 * which messages have not been seen, and which cpu(s) have not seen them.
131 *
132 * Returns the number of cpu's that have not responded.
133 */
134 static int uv_examine_destinations(struct bau_target_nodemask *distribution)
135 {
136 int sender;
137 int i;
138 int count = 0;
139
140 sender = smp_processor_id();
141 for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) {
142 if (!bau_node_isset(i, distribution))
143 continue;
144 count += uv_examine_destination(uv_bau_table_bases[i], sender);
145 }
146 return count;
147 }
148
149 /*
150 * wait for completion of a broadcast message
151 *
152 * return COMPLETE, RETRY or GIVEUP
153 */
154 static int uv_wait_completion(struct bau_desc *bau_desc,
155 unsigned long mmr_offset, int right_shift)
156 {
157 int exams = 0;
158 long destination_timeouts = 0;
159 long source_timeouts = 0;
160 unsigned long descriptor_status;
161
162 while ((descriptor_status = (((unsigned long)
163 uv_read_local_mmr(mmr_offset) >>
164 right_shift) & UV_ACT_STATUS_MASK)) !=
165 DESC_STATUS_IDLE) {
166 if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
167 source_timeouts++;
168 if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
169 source_timeouts = 0;
170 __get_cpu_var(ptcstats).s_retry++;
171 return FLUSH_RETRY;
172 }
173 /*
174 * spin here looking for progress at the destinations
175 */
176 if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
177 destination_timeouts++;
178 if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
179 /*
180 * returns number of cpus not responding
181 */
182 if (uv_examine_destinations
183 (&bau_desc->distribution) == 0) {
184 __get_cpu_var(ptcstats).d_retry++;
185 return FLUSH_RETRY;
186 }
187 exams++;
188 if (exams >= uv_bau_retry_limit) {
189 printk(KERN_DEBUG
190 "uv_flush_tlb_others");
191 printk("giving up on cpu %d\n",
192 smp_processor_id());
193 return FLUSH_GIVEUP;
194 }
195 /*
196 * delays can hang the simulator
197 udelay(1000);
198 */
199 destination_timeouts = 0;
200 }
201 }
202 cpu_relax();
203 }
204 return FLUSH_COMPLETE;
205 }
206
207 /**
208 * uv_flush_send_and_wait
209 *
210 * Send a broadcast and wait for a broadcast message to complete.
211 *
212 * The flush_mask contains the cpus the broadcast was sent to.
213 *
214 * Returns NULL if all remote flushing was done. The mask is zeroed.
215 * Returns @flush_mask if some remote flushing remains to be done. The
216 * mask will have some bits still set.
217 */
218 const struct cpumask *uv_flush_send_and_wait(int cpu, int this_blade,
219 struct bau_desc *bau_desc,
220 struct cpumask *flush_mask)
221 {
222 int completion_status = 0;
223 int right_shift;
224 int tries = 0;
225 int blade;
226 int bit;
227 unsigned long mmr_offset;
228 unsigned long index;
229 cycles_t time1;
230 cycles_t time2;
231
232 if (cpu < UV_CPUS_PER_ACT_STATUS) {
233 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
234 right_shift = cpu * UV_ACT_STATUS_SIZE;
235 } else {
236 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
237 right_shift =
238 ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
239 }
240 time1 = get_cycles();
241 do {
242 tries++;
243 index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
244 cpu;
245 uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
246 completion_status = uv_wait_completion(bau_desc, mmr_offset,
247 right_shift);
248 } while (completion_status == FLUSH_RETRY);
249 time2 = get_cycles();
250 __get_cpu_var(ptcstats).sflush += (time2 - time1);
251 if (tries > 1)
252 __get_cpu_var(ptcstats).retriesok++;
253
254 if (completion_status == FLUSH_GIVEUP) {
255 /*
256 * Cause the caller to do an IPI-style TLB shootdown on
257 * the cpu's, all of which are still in the mask.
258 */
259 __get_cpu_var(ptcstats).ptc_i++;
260 return flush_mask;
261 }
262
263 /*
264 * Success, so clear the remote cpu's from the mask so we don't
265 * use the IPI method of shootdown on them.
266 */
267 for_each_cpu(bit, flush_mask) {
268 blade = uv_cpu_to_blade_id(bit);
269 if (blade == this_blade)
270 continue;
271 cpumask_clear_cpu(bit, flush_mask);
272 }
273 if (!cpumask_empty(flush_mask))
274 return flush_mask;
275 return NULL;
276 }
277
278 /**
279 * uv_flush_tlb_others - globally purge translation cache of a virtual
280 * address or all TLB's
281 * @cpumask: mask of all cpu's in which the address is to be removed
282 * @mm: mm_struct containing virtual address range
283 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
284 * @cpu: the current cpu
285 *
286 * This is the entry point for initiating any UV global TLB shootdown.
287 *
288 * Purges the translation caches of all specified processors of the given
289 * virtual address, or purges all TLB's on specified processors.
290 *
291 * The caller has derived the cpumask from the mm_struct. This function
292 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
293 *
294 * The cpumask is converted into a nodemask of the nodes containing
295 * the cpus.
296 *
297 * Note that this function should be called with preemption disabled.
298 *
299 * Returns NULL if all remote flushing was done.
300 * Returns pointer to cpumask if some remote flushing remains to be
301 * done. The returned pointer is valid till preemption is re-enabled.
302 */
303 const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
304 struct mm_struct *mm,
305 unsigned long va, unsigned int cpu)
306 {
307 static DEFINE_PER_CPU(cpumask_t, flush_tlb_mask);
308 struct cpumask *flush_mask = &__get_cpu_var(flush_tlb_mask);
309 int i;
310 int bit;
311 int blade;
312 int uv_cpu;
313 int this_blade;
314 int locals = 0;
315 struct bau_desc *bau_desc;
316
317 WARN_ON(!in_atomic());
318
319 cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
320
321 uv_cpu = uv_blade_processor_id();
322 this_blade = uv_numa_blade_id();
323 bau_desc = __get_cpu_var(bau_control).descriptor_base;
324 bau_desc += UV_ITEMS_PER_DESCRIPTOR * uv_cpu;
325
326 bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
327
328 i = 0;
329 for_each_cpu(bit, flush_mask) {
330 blade = uv_cpu_to_blade_id(bit);
331 BUG_ON(blade > (UV_DISTRIBUTION_SIZE - 1));
332 if (blade == this_blade) {
333 locals++;
334 continue;
335 }
336 bau_node_set(blade, &bau_desc->distribution);
337 i++;
338 }
339 if (i == 0) {
340 /*
341 * no off_node flushing; return status for local node
342 */
343 if (locals)
344 return flush_mask;
345 else
346 return NULL;
347 }
348 __get_cpu_var(ptcstats).requestor++;
349 __get_cpu_var(ptcstats).ntargeted += i;
350
351 bau_desc->payload.address = va;
352 bau_desc->payload.sending_cpu = cpu;
353
354 return uv_flush_send_and_wait(uv_cpu, this_blade, bau_desc, flush_mask);
355 }
356
357 /*
358 * The BAU message interrupt comes here. (registered by set_intr_gate)
359 * See entry_64.S
360 *
361 * We received a broadcast assist message.
362 *
363 * Interrupts may have been disabled; this interrupt could represent
364 * the receipt of several messages.
365 *
366 * All cores/threads on this node get this interrupt.
367 * The last one to see it does the s/w ack.
368 * (the resource will not be freed until noninterruptable cpus see this
369 * interrupt; hardware will timeout the s/w ack and reply ERROR)
370 */
371 void uv_bau_message_interrupt(struct pt_regs *regs)
372 {
373 struct bau_payload_queue_entry *va_queue_first;
374 struct bau_payload_queue_entry *va_queue_last;
375 struct bau_payload_queue_entry *msg;
376 struct pt_regs *old_regs = set_irq_regs(regs);
377 cycles_t time1;
378 cycles_t time2;
379 int msg_slot;
380 int sw_ack_slot;
381 int fw;
382 int count = 0;
383 unsigned long local_pnode;
384
385 ack_APIC_irq();
386 exit_idle();
387 irq_enter();
388
389 time1 = get_cycles();
390
391 local_pnode = uv_blade_to_pnode(uv_numa_blade_id());
392
393 va_queue_first = __get_cpu_var(bau_control).va_queue_first;
394 va_queue_last = __get_cpu_var(bau_control).va_queue_last;
395
396 msg = __get_cpu_var(bau_control).bau_msg_head;
397 while (msg->sw_ack_vector) {
398 count++;
399 fw = msg->sw_ack_vector;
400 msg_slot = msg - va_queue_first;
401 sw_ack_slot = ffs(fw) - 1;
402
403 uv_bau_process_message(msg, msg_slot, sw_ack_slot);
404
405 msg++;
406 if (msg > va_queue_last)
407 msg = va_queue_first;
408 __get_cpu_var(bau_control).bau_msg_head = msg;
409 }
410 if (!count)
411 __get_cpu_var(ptcstats).nomsg++;
412 else if (count > 1)
413 __get_cpu_var(ptcstats).multmsg++;
414
415 time2 = get_cycles();
416 __get_cpu_var(ptcstats).dflush += (time2 - time1);
417
418 irq_exit();
419 set_irq_regs(old_regs);
420 }
421
422 static void uv_enable_timeouts(void)
423 {
424 int i;
425 int blade;
426 int last_blade;
427 int pnode;
428 int cur_cpu = 0;
429 unsigned long apicid;
430
431 last_blade = -1;
432 for_each_online_node(i) {
433 blade = uv_node_to_blade_id(i);
434 if (blade == last_blade)
435 continue;
436 last_blade = blade;
437 apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
438 pnode = uv_blade_to_pnode(blade);
439 cur_cpu += uv_blade_nr_possible_cpus(i);
440 }
441 }
442
443 static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
444 {
445 if (*offset < num_possible_cpus())
446 return offset;
447 return NULL;
448 }
449
450 static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
451 {
452 (*offset)++;
453 if (*offset < num_possible_cpus())
454 return offset;
455 return NULL;
456 }
457
458 static void uv_ptc_seq_stop(struct seq_file *file, void *data)
459 {
460 }
461
462 /*
463 * Display the statistics thru /proc
464 * data points to the cpu number
465 */
466 static int uv_ptc_seq_show(struct seq_file *file, void *data)
467 {
468 struct ptc_stats *stat;
469 int cpu;
470
471 cpu = *(loff_t *)data;
472
473 if (!cpu) {
474 seq_printf(file,
475 "# cpu requestor requestee one all sretry dretry ptc_i ");
476 seq_printf(file,
477 "sw_ack sflush dflush sok dnomsg dmult starget\n");
478 }
479 if (cpu < num_possible_cpus() && cpu_online(cpu)) {
480 stat = &per_cpu(ptcstats, cpu);
481 seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
482 cpu, stat->requestor,
483 stat->requestee, stat->onetlb, stat->alltlb,
484 stat->s_retry, stat->d_retry, stat->ptc_i);
485 seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
486 uv_read_global_mmr64(uv_blade_to_pnode
487 (uv_cpu_to_blade_id(cpu)),
488 UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
489 stat->sflush, stat->dflush,
490 stat->retriesok, stat->nomsg,
491 stat->multmsg, stat->ntargeted);
492 }
493
494 return 0;
495 }
496
497 /*
498 * 0: display meaning of the statistics
499 * >0: retry limit
500 */
501 static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
502 size_t count, loff_t *data)
503 {
504 long newmode;
505 char optstr[64];
506
507 if (count == 0 || count > sizeof(optstr))
508 return -EINVAL;
509 if (copy_from_user(optstr, user, count))
510 return -EFAULT;
511 optstr[count - 1] = '\0';
512 if (strict_strtoul(optstr, 10, &newmode) < 0) {
513 printk(KERN_DEBUG "%s is invalid\n", optstr);
514 return -EINVAL;
515 }
516
517 if (newmode == 0) {
518 printk(KERN_DEBUG "# cpu: cpu number\n");
519 printk(KERN_DEBUG
520 "requestor: times this cpu was the flush requestor\n");
521 printk(KERN_DEBUG
522 "requestee: times this cpu was requested to flush its TLBs\n");
523 printk(KERN_DEBUG
524 "one: times requested to flush a single address\n");
525 printk(KERN_DEBUG
526 "all: times requested to flush all TLB's\n");
527 printk(KERN_DEBUG
528 "sretry: number of retries of source-side timeouts\n");
529 printk(KERN_DEBUG
530 "dretry: number of retries of destination-side timeouts\n");
531 printk(KERN_DEBUG
532 "ptc_i: times UV fell through to IPI-style flushes\n");
533 printk(KERN_DEBUG
534 "sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
535 printk(KERN_DEBUG
536 "sflush_us: cycles spent in uv_flush_tlb_others()\n");
537 printk(KERN_DEBUG
538 "dflush_us: cycles spent in handling flush requests\n");
539 printk(KERN_DEBUG "sok: successes on retry\n");
540 printk(KERN_DEBUG "dnomsg: interrupts with no message\n");
541 printk(KERN_DEBUG
542 "dmult: interrupts with multiple messages\n");
543 printk(KERN_DEBUG "starget: nodes targeted\n");
544 } else {
545 uv_bau_retry_limit = newmode;
546 printk(KERN_DEBUG "timeout retry limit:%d\n",
547 uv_bau_retry_limit);
548 }
549
550 return count;
551 }
552
553 static const struct seq_operations uv_ptc_seq_ops = {
554 .start = uv_ptc_seq_start,
555 .next = uv_ptc_seq_next,
556 .stop = uv_ptc_seq_stop,
557 .show = uv_ptc_seq_show
558 };
559
560 static int uv_ptc_proc_open(struct inode *inode, struct file *file)
561 {
562 return seq_open(file, &uv_ptc_seq_ops);
563 }
564
565 static const struct file_operations proc_uv_ptc_operations = {
566 .open = uv_ptc_proc_open,
567 .read = seq_read,
568 .write = uv_ptc_proc_write,
569 .llseek = seq_lseek,
570 .release = seq_release,
571 };
572
573 static int __init uv_ptc_init(void)
574 {
575 struct proc_dir_entry *proc_uv_ptc;
576
577 if (!is_uv_system())
578 return 0;
579
580 proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
581 if (!proc_uv_ptc) {
582 printk(KERN_ERR "unable to create %s proc entry\n",
583 UV_PTC_BASENAME);
584 return -EINVAL;
585 }
586 proc_uv_ptc->proc_fops = &proc_uv_ptc_operations;
587 return 0;
588 }
589
590 /*
591 * begin the initialization of the per-blade control structures
592 */
593 static struct bau_control * __init uv_table_bases_init(int blade, int node)
594 {
595 int i;
596 struct bau_msg_status *msp;
597 struct bau_control *bau_tabp;
598
599 bau_tabp =
600 kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node);
601 BUG_ON(!bau_tabp);
602
603 bau_tabp->msg_statuses =
604 kmalloc_node(sizeof(struct bau_msg_status) *
605 DEST_Q_SIZE, GFP_KERNEL, node);
606 BUG_ON(!bau_tabp->msg_statuses);
607
608 for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++)
609 bau_cpubits_clear(&msp->seen_by, (int)
610 uv_blade_nr_possible_cpus(blade));
611
612 uv_bau_table_bases[blade] = bau_tabp;
613
614 return bau_tabp;
615 }
616
617 /*
618 * finish the initialization of the per-blade control structures
619 */
620 static void __init
621 uv_table_bases_finish(int blade, int node, int cur_cpu,
622 struct bau_control *bau_tablesp,
623 struct bau_desc *adp)
624 {
625 struct bau_control *bcp;
626 int i;
627
628 for (i = cur_cpu; i < cur_cpu + uv_blade_nr_possible_cpus(blade); i++) {
629 bcp = (struct bau_control *)&per_cpu(bau_control, i);
630
631 bcp->bau_msg_head = bau_tablesp->va_queue_first;
632 bcp->va_queue_first = bau_tablesp->va_queue_first;
633 bcp->va_queue_last = bau_tablesp->va_queue_last;
634 bcp->msg_statuses = bau_tablesp->msg_statuses;
635 bcp->descriptor_base = adp;
636 }
637 }
638
639 /*
640 * initialize the sending side's sending buffers
641 */
642 static struct bau_desc * __init
643 uv_activation_descriptor_init(int node, int pnode)
644 {
645 int i;
646 unsigned long pa;
647 unsigned long m;
648 unsigned long n;
649 unsigned long mmr_image;
650 struct bau_desc *adp;
651 struct bau_desc *ad2;
652
653 adp = (struct bau_desc *)
654 kmalloc_node(16384, GFP_KERNEL, node);
655 BUG_ON(!adp);
656
657 pa = __pa((unsigned long)adp);
658 n = pa >> uv_nshift;
659 m = pa & uv_mmask;
660
661 mmr_image = uv_read_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE);
662 if (mmr_image) {
663 uv_write_global_mmr64(pnode, (unsigned long)
664 UVH_LB_BAU_SB_DESCRIPTOR_BASE,
665 (n << UV_DESC_BASE_PNODE_SHIFT | m));
666 }
667
668 for (i = 0, ad2 = adp; i < UV_ACTIVATION_DESCRIPTOR_SIZE; i++, ad2++) {
669 memset(ad2, 0, sizeof(struct bau_desc));
670 ad2->header.sw_ack_flag = 1;
671 ad2->header.base_dest_nodeid =
672 uv_blade_to_pnode(uv_cpu_to_blade_id(0));
673 ad2->header.command = UV_NET_ENDPOINT_INTD;
674 ad2->header.int_both = 1;
675 /*
676 * all others need to be set to zero:
677 * fairness chaining multilevel count replied_to
678 */
679 }
680 return adp;
681 }
682
683 /*
684 * initialize the destination side's receiving buffers
685 */
686 static struct bau_payload_queue_entry * __init
687 uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp)
688 {
689 struct bau_payload_queue_entry *pqp;
690 char *cp;
691
692 pqp = (struct bau_payload_queue_entry *) kmalloc_node(
693 (DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
694 GFP_KERNEL, node);
695 BUG_ON(!pqp);
696
697 cp = (char *)pqp + 31;
698 pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
699 bau_tablesp->va_queue_first = pqp;
700 uv_write_global_mmr64(pnode,
701 UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
702 ((unsigned long)pnode <<
703 UV_PAYLOADQ_PNODE_SHIFT) |
704 uv_physnodeaddr(pqp));
705 uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
706 uv_physnodeaddr(pqp));
707 bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
708 uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
709 (unsigned long)
710 uv_physnodeaddr(bau_tablesp->va_queue_last));
711 memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
712
713 return pqp;
714 }
715
716 /*
717 * Initialization of each UV blade's structures
718 */
719 static int __init uv_init_blade(int blade, int node, int cur_cpu)
720 {
721 int pnode;
722 unsigned long pa;
723 unsigned long apicid;
724 struct bau_desc *adp;
725 struct bau_payload_queue_entry *pqp;
726 struct bau_control *bau_tablesp;
727
728 bau_tablesp = uv_table_bases_init(blade, node);
729 pnode = uv_blade_to_pnode(blade);
730 adp = uv_activation_descriptor_init(node, pnode);
731 pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
732 uv_table_bases_finish(blade, node, cur_cpu, bau_tablesp, adp);
733 /*
734 * the below initialization can't be in firmware because the
735 * messaging IRQ will be determined by the OS
736 */
737 apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
738 pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
739 if ((pa & 0xff) != UV_BAU_MESSAGE) {
740 uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
741 ((apicid << 32) | UV_BAU_MESSAGE));
742 }
743 return 0;
744 }
745
746 /*
747 * Initialization of BAU-related structures
748 */
749 static int __init uv_bau_init(void)
750 {
751 int blade;
752 int node;
753 int nblades;
754 int last_blade;
755 int cur_cpu = 0;
756
757 if (!is_uv_system())
758 return 0;
759
760 uv_bau_retry_limit = 1;
761 uv_nshift = uv_hub_info->n_val;
762 uv_mmask = (1UL << uv_hub_info->n_val) - 1;
763 nblades = 0;
764 last_blade = -1;
765 for_each_online_node(node) {
766 blade = uv_node_to_blade_id(node);
767 if (blade == last_blade)
768 continue;
769 last_blade = blade;
770 nblades++;
771 }
772 uv_bau_table_bases = (struct bau_control **)
773 kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
774 BUG_ON(!uv_bau_table_bases);
775
776 last_blade = -1;
777 for_each_online_node(node) {
778 blade = uv_node_to_blade_id(node);
779 if (blade == last_blade)
780 continue;
781 last_blade = blade;
782 uv_init_blade(blade, node, cur_cpu);
783 cur_cpu += uv_blade_nr_possible_cpus(blade);
784 }
785 alloc_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
786 uv_enable_timeouts();
787
788 return 0;
789 }
790 __initcall(uv_bau_init);
791 __initcall(uv_ptc_init);