]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/traps.c
2818c83892b3d98aa121e0158adc1a64fe833e1c
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / traps.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9 /*
10 * Handle hardware traps and faults.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40
41 #ifdef CONFIG_EISA
42 #include <linux/ioport.h>
43 #include <linux/eisa.h>
44 #endif
45
46 #if defined(CONFIG_EDAC)
47 #include <linux/edac.h>
48 #endif
49
50 #include <asm/kmemcheck.h>
51 #include <asm/stacktrace.h>
52 #include <asm/processor.h>
53 #include <asm/debugreg.h>
54 #include <linux/atomic.h>
55 #include <asm/text-patching.h>
56 #include <asm/ftrace.h>
57 #include <asm/traps.h>
58 #include <asm/desc.h>
59 #include <asm/fpu/internal.h>
60 #include <asm/mce.h>
61 #include <asm/fixmap.h>
62 #include <asm/mach_traps.h>
63 #include <asm/alternative.h>
64 #include <asm/fpu/xstate.h>
65 #include <asm/trace/mpx.h>
66 #include <asm/mpx.h>
67 #include <asm/vm86.h>
68
69 #ifdef CONFIG_X86_64
70 #include <asm/x86_init.h>
71 #include <asm/pgalloc.h>
72 #include <asm/proto.h>
73
74 /* No need to be aligned, but done to keep all IDTs defined the same way. */
75 gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss;
76 #else
77 #include <asm/processor-flags.h>
78 #include <asm/setup.h>
79 #include <asm/proto.h>
80 #endif
81
82 /* Must be page-aligned because the real IDT is used in a fixmap. */
83 gate_desc idt_table[NR_VECTORS] __page_aligned_bss;
84
85 DECLARE_BITMAP(used_vectors, NR_VECTORS);
86 EXPORT_SYMBOL_GPL(used_vectors);
87
88 static inline void cond_local_irq_enable(struct pt_regs *regs)
89 {
90 if (regs->flags & X86_EFLAGS_IF)
91 local_irq_enable();
92 }
93
94 static inline void cond_local_irq_disable(struct pt_regs *regs)
95 {
96 if (regs->flags & X86_EFLAGS_IF)
97 local_irq_disable();
98 }
99
100 /*
101 * In IST context, we explicitly disable preemption. This serves two
102 * purposes: it makes it much less likely that we would accidentally
103 * schedule in IST context and it will force a warning if we somehow
104 * manage to schedule by accident.
105 */
106 void ist_enter(struct pt_regs *regs)
107 {
108 if (user_mode(regs)) {
109 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
110 } else {
111 /*
112 * We might have interrupted pretty much anything. In
113 * fact, if we're a machine check, we can even interrupt
114 * NMI processing. We don't want in_nmi() to return true,
115 * but we need to notify RCU.
116 */
117 rcu_nmi_enter();
118 }
119
120 preempt_disable();
121
122 /* This code is a bit fragile. Test it. */
123 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
124 }
125
126 void ist_exit(struct pt_regs *regs)
127 {
128 preempt_enable_no_resched();
129
130 if (!user_mode(regs))
131 rcu_nmi_exit();
132 }
133
134 /**
135 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
136 * @regs: regs passed to the IST exception handler
137 *
138 * IST exception handlers normally cannot schedule. As a special
139 * exception, if the exception interrupted userspace code (i.e.
140 * user_mode(regs) would return true) and the exception was not
141 * a double fault, it can be safe to schedule. ist_begin_non_atomic()
142 * begins a non-atomic section within an ist_enter()/ist_exit() region.
143 * Callers are responsible for enabling interrupts themselves inside
144 * the non-atomic section, and callers must call ist_end_non_atomic()
145 * before ist_exit().
146 */
147 void ist_begin_non_atomic(struct pt_regs *regs)
148 {
149 BUG_ON(!user_mode(regs));
150
151 /*
152 * Sanity check: we need to be on the normal thread stack. This
153 * will catch asm bugs and any attempt to use ist_preempt_enable
154 * from double_fault.
155 */
156 BUG_ON(!on_thread_stack());
157
158 preempt_enable_no_resched();
159 }
160
161 /**
162 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
163 *
164 * Ends a non-atomic section started with ist_begin_non_atomic().
165 */
166 void ist_end_non_atomic(void)
167 {
168 preempt_disable();
169 }
170
171 int is_valid_bugaddr(unsigned long addr)
172 {
173 unsigned short ud;
174
175 if (addr < TASK_SIZE_MAX)
176 return 0;
177
178 if (probe_kernel_address((unsigned short *)addr, ud))
179 return 0;
180
181 return ud == INSN_UD0 || ud == INSN_UD2;
182 }
183
184 int fixup_bug(struct pt_regs *regs, int trapnr)
185 {
186 if (trapnr != X86_TRAP_UD)
187 return 0;
188
189 switch (report_bug(regs->ip, regs)) {
190 case BUG_TRAP_TYPE_NONE:
191 case BUG_TRAP_TYPE_BUG:
192 break;
193
194 case BUG_TRAP_TYPE_WARN:
195 regs->ip += LEN_UD0;
196 return 1;
197 }
198
199 return 0;
200 }
201
202 static nokprobe_inline int
203 do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
204 struct pt_regs *regs, long error_code)
205 {
206 if (v8086_mode(regs)) {
207 /*
208 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
209 * On nmi (interrupt 2), do_trap should not be called.
210 */
211 if (trapnr < X86_TRAP_UD) {
212 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
213 error_code, trapnr))
214 return 0;
215 }
216 return -1;
217 }
218
219 if (!user_mode(regs)) {
220 if (fixup_exception(regs, trapnr))
221 return 0;
222
223 tsk->thread.error_code = error_code;
224 tsk->thread.trap_nr = trapnr;
225 die(str, regs, error_code);
226 }
227
228 return -1;
229 }
230
231 static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
232 siginfo_t *info)
233 {
234 unsigned long siaddr;
235 int sicode;
236
237 switch (trapnr) {
238 default:
239 return SEND_SIG_PRIV;
240
241 case X86_TRAP_DE:
242 sicode = FPE_INTDIV;
243 siaddr = uprobe_get_trap_addr(regs);
244 break;
245 case X86_TRAP_UD:
246 sicode = ILL_ILLOPN;
247 siaddr = uprobe_get_trap_addr(regs);
248 break;
249 case X86_TRAP_AC:
250 sicode = BUS_ADRALN;
251 siaddr = 0;
252 break;
253 }
254
255 info->si_signo = signr;
256 info->si_errno = 0;
257 info->si_code = sicode;
258 info->si_addr = (void __user *)siaddr;
259 return info;
260 }
261
262 static void
263 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
264 long error_code, siginfo_t *info)
265 {
266 struct task_struct *tsk = current;
267
268
269 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
270 return;
271 /*
272 * We want error_code and trap_nr set for userspace faults and
273 * kernelspace faults which result in die(), but not
274 * kernelspace faults which are fixed up. die() gives the
275 * process no chance to handle the signal and notice the
276 * kernel fault information, so that won't result in polluting
277 * the information about previously queued, but not yet
278 * delivered, faults. See also do_general_protection below.
279 */
280 tsk->thread.error_code = error_code;
281 tsk->thread.trap_nr = trapnr;
282
283 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
284 printk_ratelimit()) {
285 pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
286 tsk->comm, tsk->pid, str,
287 regs->ip, regs->sp, error_code);
288 print_vma_addr(KERN_CONT " in ", regs->ip);
289 pr_cont("\n");
290 }
291
292 force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
293 }
294 NOKPROBE_SYMBOL(do_trap);
295
296 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
297 unsigned long trapnr, int signr)
298 {
299 siginfo_t info;
300
301 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
302
303 /*
304 * WARN*()s end up here; fix them up before we call the
305 * notifier chain.
306 */
307 if (!user_mode(regs) && fixup_bug(regs, trapnr))
308 return;
309
310 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
311 NOTIFY_STOP) {
312 cond_local_irq_enable(regs);
313 do_trap(trapnr, signr, str, regs, error_code,
314 fill_trap_info(regs, signr, trapnr, &info));
315 }
316 }
317
318 #define DO_ERROR(trapnr, signr, str, name) \
319 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
320 { \
321 do_error_trap(regs, error_code, str, trapnr, signr); \
322 }
323
324 DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error)
325 DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow)
326 DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op)
327 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun)
328 DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
329 DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present)
330 DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment)
331 DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check)
332
333 #ifdef CONFIG_VMAP_STACK
334 __visible void __noreturn handle_stack_overflow(const char *message,
335 struct pt_regs *regs,
336 unsigned long fault_address)
337 {
338 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
339 (void *)fault_address, current->stack,
340 (char *)current->stack + THREAD_SIZE - 1);
341 die(message, regs, 0);
342
343 /* Be absolutely certain we don't return. */
344 panic(message);
345 }
346 #endif
347
348 #ifdef CONFIG_X86_64
349 /* Runs on IST stack */
350 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
351 {
352 static const char str[] = "double fault";
353 struct task_struct *tsk = current;
354 #ifdef CONFIG_VMAP_STACK
355 unsigned long cr2;
356 #endif
357
358 #ifdef CONFIG_X86_ESPFIX64
359 extern unsigned char native_irq_return_iret[];
360
361 /*
362 * If IRET takes a non-IST fault on the espfix64 stack, then we
363 * end up promoting it to a doublefault. In that case, take
364 * advantage of the fact that we're not using the normal (TSS.sp0)
365 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
366 * and then modify our own IRET frame so that, when we return,
367 * we land directly at the #GP(0) vector with the stack already
368 * set up according to its expectations.
369 *
370 * The net result is that our #GP handler will think that we
371 * entered from usermode with the bad user context.
372 *
373 * No need for ist_enter here because we don't use RCU.
374 */
375 if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY &&
376 regs->cs == __KERNEL_CS &&
377 regs->ip == (unsigned long)native_irq_return_iret)
378 {
379 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss.x86_tss.sp0) - 1;
380
381 /*
382 * regs->sp points to the failing IRET frame on the
383 * ESPFIX64 stack. Copy it to the entry stack. This fills
384 * in gpregs->ss through gpregs->ip.
385 *
386 */
387 memmove(&gpregs->ip, (void *)regs->sp, 5*8);
388 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
389
390 /*
391 * Adjust our frame so that we return straight to the #GP
392 * vector with the expected RSP value. This is safe because
393 * we won't enable interupts or schedule before we invoke
394 * general_protection, so nothing will clobber the stack
395 * frame we just set up.
396 */
397 regs->ip = (unsigned long)general_protection;
398 regs->sp = (unsigned long)&gpregs->orig_ax;
399
400 return;
401 }
402 #endif
403
404 ist_enter(regs);
405 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
406
407 tsk->thread.error_code = error_code;
408 tsk->thread.trap_nr = X86_TRAP_DF;
409
410 #ifdef CONFIG_VMAP_STACK
411 /*
412 * If we overflow the stack into a guard page, the CPU will fail
413 * to deliver #PF and will send #DF instead. Similarly, if we
414 * take any non-IST exception while too close to the bottom of
415 * the stack, the processor will get a page fault while
416 * delivering the exception and will generate a double fault.
417 *
418 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
419 * Page-Fault Exception (#PF):
420 *
421 * Processors update CR2 whenever a page fault is detected. If a
422 * second page fault occurs while an earlier page fault is being
423 * delivered, the faulting linear address of the second fault will
424 * overwrite the contents of CR2 (replacing the previous
425 * address). These updates to CR2 occur even if the page fault
426 * results in a double fault or occurs during the delivery of a
427 * double fault.
428 *
429 * The logic below has a small possibility of incorrectly diagnosing
430 * some errors as stack overflows. For example, if the IDT or GDT
431 * gets corrupted such that #GP delivery fails due to a bad descriptor
432 * causing #GP and we hit this condition while CR2 coincidentally
433 * points to the stack guard page, we'll think we overflowed the
434 * stack. Given that we're going to panic one way or another
435 * if this happens, this isn't necessarily worth fixing.
436 *
437 * If necessary, we could improve the test by only diagnosing
438 * a stack overflow if the saved RSP points within 47 bytes of
439 * the bottom of the stack: if RSP == tsk_stack + 48 and we
440 * take an exception, the stack is already aligned and there
441 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
442 * possible error code, so a stack overflow would *not* double
443 * fault. With any less space left, exception delivery could
444 * fail, and, as a practical matter, we've overflowed the
445 * stack even if the actual trigger for the double fault was
446 * something else.
447 */
448 cr2 = read_cr2();
449 if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
450 handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
451 #endif
452
453 #ifdef CONFIG_DOUBLEFAULT
454 df_debug(regs, error_code);
455 #endif
456 /*
457 * This is always a kernel trap and never fixable (and thus must
458 * never return).
459 */
460 for (;;)
461 die(str, regs, error_code);
462 }
463 #endif
464
465 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
466 {
467 const struct mpx_bndcsr *bndcsr;
468 siginfo_t *info;
469
470 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
471 if (notify_die(DIE_TRAP, "bounds", regs, error_code,
472 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
473 return;
474 cond_local_irq_enable(regs);
475
476 if (!user_mode(regs))
477 die("bounds", regs, error_code);
478
479 if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
480 /* The exception is not from Intel MPX */
481 goto exit_trap;
482 }
483
484 /*
485 * We need to look at BNDSTATUS to resolve this exception.
486 * A NULL here might mean that it is in its 'init state',
487 * which is all zeros which indicates MPX was not
488 * responsible for the exception.
489 */
490 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
491 if (!bndcsr)
492 goto exit_trap;
493
494 trace_bounds_exception_mpx(bndcsr);
495 /*
496 * The error code field of the BNDSTATUS register communicates status
497 * information of a bound range exception #BR or operation involving
498 * bound directory.
499 */
500 switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
501 case 2: /* Bound directory has invalid entry. */
502 if (mpx_handle_bd_fault())
503 goto exit_trap;
504 break; /* Success, it was handled */
505 case 1: /* Bound violation. */
506 info = mpx_generate_siginfo(regs);
507 if (IS_ERR(info)) {
508 /*
509 * We failed to decode the MPX instruction. Act as if
510 * the exception was not caused by MPX.
511 */
512 goto exit_trap;
513 }
514 /*
515 * Success, we decoded the instruction and retrieved
516 * an 'info' containing the address being accessed
517 * which caused the exception. This information
518 * allows and application to possibly handle the
519 * #BR exception itself.
520 */
521 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
522 kfree(info);
523 break;
524 case 0: /* No exception caused by Intel MPX operations. */
525 goto exit_trap;
526 default:
527 die("bounds", regs, error_code);
528 }
529
530 return;
531
532 exit_trap:
533 /*
534 * This path out is for all the cases where we could not
535 * handle the exception in some way (like allocating a
536 * table or telling userspace about it. We will also end
537 * up here if the kernel has MPX turned off at compile
538 * time..
539 */
540 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
541 }
542
543 dotraplinkage void
544 do_general_protection(struct pt_regs *regs, long error_code)
545 {
546 struct task_struct *tsk;
547
548 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
549 cond_local_irq_enable(regs);
550
551 if (v8086_mode(regs)) {
552 local_irq_enable();
553 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
554 return;
555 }
556
557 tsk = current;
558 if (!user_mode(regs)) {
559 if (fixup_exception(regs, X86_TRAP_GP))
560 return;
561
562 tsk->thread.error_code = error_code;
563 tsk->thread.trap_nr = X86_TRAP_GP;
564 if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
565 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
566 die("general protection fault", regs, error_code);
567 return;
568 }
569
570 tsk->thread.error_code = error_code;
571 tsk->thread.trap_nr = X86_TRAP_GP;
572
573 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
574 printk_ratelimit()) {
575 pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
576 tsk->comm, task_pid_nr(tsk),
577 regs->ip, regs->sp, error_code);
578 print_vma_addr(KERN_CONT " in ", regs->ip);
579 pr_cont("\n");
580 }
581
582 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
583 }
584 NOKPROBE_SYMBOL(do_general_protection);
585
586 /* May run on IST stack. */
587 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
588 {
589 #ifdef CONFIG_DYNAMIC_FTRACE
590 /*
591 * ftrace must be first, everything else may cause a recursive crash.
592 * See note by declaration of modifying_ftrace_code in ftrace.c
593 */
594 if (unlikely(atomic_read(&modifying_ftrace_code)) &&
595 ftrace_int3_handler(regs))
596 return;
597 #endif
598 if (poke_int3_handler(regs))
599 return;
600
601 ist_enter(regs);
602 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
603 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
604 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
605 SIGTRAP) == NOTIFY_STOP)
606 goto exit;
607 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
608
609 #ifdef CONFIG_KPROBES
610 if (kprobe_int3_handler(regs))
611 goto exit;
612 #endif
613
614 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
615 SIGTRAP) == NOTIFY_STOP)
616 goto exit;
617
618 /*
619 * Let others (NMI) know that the debug stack is in use
620 * as we may switch to the interrupt stack.
621 */
622 debug_stack_usage_inc();
623 cond_local_irq_enable(regs);
624 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
625 cond_local_irq_disable(regs);
626 debug_stack_usage_dec();
627 exit:
628 ist_exit(regs);
629 }
630 NOKPROBE_SYMBOL(do_int3);
631
632 #ifdef CONFIG_X86_64
633 /*
634 * Help handler running on a per-cpu (IST or entry trampoline) stack
635 * to switch to the normal thread stack if the interrupted code was in
636 * user mode. The actual stack switch is done in entry_64.S
637 */
638 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
639 {
640 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
641 if (regs != eregs)
642 *regs = *eregs;
643 return regs;
644 }
645 NOKPROBE_SYMBOL(sync_regs);
646
647 struct bad_iret_stack {
648 void *error_entry_ret;
649 struct pt_regs regs;
650 };
651
652 asmlinkage __visible notrace
653 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
654 {
655 /*
656 * This is called from entry_64.S early in handling a fault
657 * caused by a bad iret to user mode. To handle the fault
658 * correctly, we want to move our stack frame to where it would
659 * be had we entered directly on the entry stack (rather than
660 * just below the IRET frame) and we want to pretend that the
661 * exception came from the IRET target.
662 */
663 struct bad_iret_stack *new_stack =
664 (struct bad_iret_stack *)this_cpu_read(cpu_tss.x86_tss.sp0) - 1;
665
666 /* Copy the IRET target to the new stack. */
667 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
668
669 /* Copy the remainder of the stack from the current stack. */
670 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
671
672 BUG_ON(!user_mode(&new_stack->regs));
673 return new_stack;
674 }
675 NOKPROBE_SYMBOL(fixup_bad_iret);
676 #endif
677
678 static bool is_sysenter_singlestep(struct pt_regs *regs)
679 {
680 /*
681 * We don't try for precision here. If we're anywhere in the region of
682 * code that can be single-stepped in the SYSENTER entry path, then
683 * assume that this is a useless single-step trap due to SYSENTER
684 * being invoked with TF set. (We don't know in advance exactly
685 * which instructions will be hit because BTF could plausibly
686 * be set.)
687 */
688 #ifdef CONFIG_X86_32
689 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
690 (unsigned long)__end_SYSENTER_singlestep_region -
691 (unsigned long)__begin_SYSENTER_singlestep_region;
692 #elif defined(CONFIG_IA32_EMULATION)
693 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
694 (unsigned long)__end_entry_SYSENTER_compat -
695 (unsigned long)entry_SYSENTER_compat;
696 #else
697 return false;
698 #endif
699 }
700
701 /*
702 * Our handling of the processor debug registers is non-trivial.
703 * We do not clear them on entry and exit from the kernel. Therefore
704 * it is possible to get a watchpoint trap here from inside the kernel.
705 * However, the code in ./ptrace.c has ensured that the user can
706 * only set watchpoints on userspace addresses. Therefore the in-kernel
707 * watchpoint trap can only occur in code which is reading/writing
708 * from user space. Such code must not hold kernel locks (since it
709 * can equally take a page fault), therefore it is safe to call
710 * force_sig_info even though that claims and releases locks.
711 *
712 * Code in ./signal.c ensures that the debug control register
713 * is restored before we deliver any signal, and therefore that
714 * user code runs with the correct debug control register even though
715 * we clear it here.
716 *
717 * Being careful here means that we don't have to be as careful in a
718 * lot of more complicated places (task switching can be a bit lazy
719 * about restoring all the debug state, and ptrace doesn't have to
720 * find every occurrence of the TF bit that could be saved away even
721 * by user code)
722 *
723 * May run on IST stack.
724 */
725 dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
726 {
727 struct task_struct *tsk = current;
728 int user_icebp = 0;
729 unsigned long dr6;
730 int si_code;
731
732 ist_enter(regs);
733
734 get_debugreg(dr6, 6);
735 /*
736 * The Intel SDM says:
737 *
738 * Certain debug exceptions may clear bits 0-3. The remaining
739 * contents of the DR6 register are never cleared by the
740 * processor. To avoid confusion in identifying debug
741 * exceptions, debug handlers should clear the register before
742 * returning to the interrupted task.
743 *
744 * Keep it simple: clear DR6 immediately.
745 */
746 set_debugreg(0, 6);
747
748 /* Filter out all the reserved bits which are preset to 1 */
749 dr6 &= ~DR6_RESERVED;
750
751 /*
752 * The SDM says "The processor clears the BTF flag when it
753 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
754 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
755 */
756 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
757
758 if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
759 is_sysenter_singlestep(regs))) {
760 dr6 &= ~DR_STEP;
761 if (!dr6)
762 goto exit;
763 /*
764 * else we might have gotten a single-step trap and hit a
765 * watchpoint at the same time, in which case we should fall
766 * through and handle the watchpoint.
767 */
768 }
769
770 /*
771 * If dr6 has no reason to give us about the origin of this trap,
772 * then it's very likely the result of an icebp/int01 trap.
773 * User wants a sigtrap for that.
774 */
775 if (!dr6 && user_mode(regs))
776 user_icebp = 1;
777
778 /* Catch kmemcheck conditions! */
779 if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
780 goto exit;
781
782 /* Store the virtualized DR6 value */
783 tsk->thread.debugreg6 = dr6;
784
785 #ifdef CONFIG_KPROBES
786 if (kprobe_debug_handler(regs))
787 goto exit;
788 #endif
789
790 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
791 SIGTRAP) == NOTIFY_STOP)
792 goto exit;
793
794 /*
795 * Let others (NMI) know that the debug stack is in use
796 * as we may switch to the interrupt stack.
797 */
798 debug_stack_usage_inc();
799
800 /* It's safe to allow irq's after DR6 has been saved */
801 cond_local_irq_enable(regs);
802
803 if (v8086_mode(regs)) {
804 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
805 X86_TRAP_DB);
806 cond_local_irq_disable(regs);
807 debug_stack_usage_dec();
808 goto exit;
809 }
810
811 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
812 /*
813 * Historical junk that used to handle SYSENTER single-stepping.
814 * This should be unreachable now. If we survive for a while
815 * without anyone hitting this warning, we'll turn this into
816 * an oops.
817 */
818 tsk->thread.debugreg6 &= ~DR_STEP;
819 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
820 regs->flags &= ~X86_EFLAGS_TF;
821 }
822 si_code = get_si_code(tsk->thread.debugreg6);
823 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
824 send_sigtrap(tsk, regs, error_code, si_code);
825 cond_local_irq_disable(regs);
826 debug_stack_usage_dec();
827
828 exit:
829 ist_exit(regs);
830 }
831 NOKPROBE_SYMBOL(do_debug);
832
833 /*
834 * Note that we play around with the 'TS' bit in an attempt to get
835 * the correct behaviour even in the presence of the asynchronous
836 * IRQ13 behaviour
837 */
838 static void math_error(struct pt_regs *regs, int error_code, int trapnr)
839 {
840 struct task_struct *task = current;
841 struct fpu *fpu = &task->thread.fpu;
842 siginfo_t info;
843 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
844 "simd exception";
845
846 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
847 return;
848 cond_local_irq_enable(regs);
849
850 if (!user_mode(regs)) {
851 if (!fixup_exception(regs, trapnr)) {
852 task->thread.error_code = error_code;
853 task->thread.trap_nr = trapnr;
854 die(str, regs, error_code);
855 }
856 return;
857 }
858
859 /*
860 * Save the info for the exception handler and clear the error.
861 */
862 fpu__save(fpu);
863
864 task->thread.trap_nr = trapnr;
865 task->thread.error_code = error_code;
866 info.si_signo = SIGFPE;
867 info.si_errno = 0;
868 info.si_addr = (void __user *)uprobe_get_trap_addr(regs);
869
870 info.si_code = fpu__exception_code(fpu, trapnr);
871
872 /* Retry when we get spurious exceptions: */
873 if (!info.si_code)
874 return;
875
876 force_sig_info(SIGFPE, &info, task);
877 }
878
879 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
880 {
881 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
882 math_error(regs, error_code, X86_TRAP_MF);
883 }
884
885 dotraplinkage void
886 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
887 {
888 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
889 math_error(regs, error_code, X86_TRAP_XF);
890 }
891
892 dotraplinkage void
893 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
894 {
895 cond_local_irq_enable(regs);
896 }
897
898 dotraplinkage void
899 do_device_not_available(struct pt_regs *regs, long error_code)
900 {
901 unsigned long cr0;
902
903 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
904
905 #ifdef CONFIG_MATH_EMULATION
906 if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
907 struct math_emu_info info = { };
908
909 cond_local_irq_enable(regs);
910
911 info.regs = regs;
912 math_emulate(&info);
913 return;
914 }
915 #endif
916
917 /* This should not happen. */
918 cr0 = read_cr0();
919 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
920 /* Try to fix it up and carry on. */
921 write_cr0(cr0 & ~X86_CR0_TS);
922 } else {
923 /*
924 * Something terrible happened, and we're better off trying
925 * to kill the task than getting stuck in a never-ending
926 * loop of #NM faults.
927 */
928 die("unexpected #NM exception", regs, error_code);
929 }
930 }
931 NOKPROBE_SYMBOL(do_device_not_available);
932
933 #ifdef CONFIG_X86_32
934 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
935 {
936 siginfo_t info;
937
938 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
939 local_irq_enable();
940
941 info.si_signo = SIGILL;
942 info.si_errno = 0;
943 info.si_code = ILL_BADSTK;
944 info.si_addr = NULL;
945 if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
946 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
947 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
948 &info);
949 }
950 }
951 #endif
952
953 /* Set of traps needed for early debugging. */
954 void __init early_trap_init(void)
955 {
956 /*
957 * Don't use IST to set DEBUG_STACK as it doesn't work until TSS
958 * is ready in cpu_init() <-- trap_init(). Before trap_init(),
959 * CPU runs at ring 0 so it is impossible to hit an invalid
960 * stack. Using the original stack works well enough at this
961 * early stage. DEBUG_STACK will be equipped after cpu_init() in
962 * trap_init().
963 *
964 * We don't need to set trace_idt_table like set_intr_gate(),
965 * since we don't have trace_debug and it will be reset to
966 * 'debug' in trap_init() by set_intr_gate_ist().
967 */
968 set_intr_gate_notrace(X86_TRAP_DB, debug);
969 /* int3 can be called from all */
970 set_system_intr_gate(X86_TRAP_BP, &int3);
971 #ifdef CONFIG_X86_32
972 set_intr_gate(X86_TRAP_PF, page_fault);
973 #endif
974 load_idt(&idt_descr);
975 }
976
977 void __init early_trap_pf_init(void)
978 {
979 #ifdef CONFIG_X86_64
980 set_intr_gate(X86_TRAP_PF, page_fault);
981 #endif
982 }
983
984 void __init trap_init(void)
985 {
986 int i;
987
988 /* Init cpu_entry_area before IST entries are set up */
989 setup_cpu_entry_areas();
990
991 #ifdef CONFIG_EISA
992 void __iomem *p = early_ioremap(0x0FFFD9, 4);
993
994 if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
995 EISA_bus = 1;
996 early_iounmap(p, 4);
997 #endif
998
999 set_intr_gate(X86_TRAP_DE, divide_error);
1000 set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
1001 /* int4 can be called from all */
1002 set_system_intr_gate(X86_TRAP_OF, &overflow);
1003 set_intr_gate(X86_TRAP_BR, bounds);
1004 set_intr_gate(X86_TRAP_UD, invalid_op);
1005 set_intr_gate(X86_TRAP_NM, device_not_available);
1006 #ifdef CONFIG_X86_32
1007 set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
1008 #else
1009 set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
1010 #endif
1011 set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun);
1012 set_intr_gate(X86_TRAP_TS, invalid_TSS);
1013 set_intr_gate(X86_TRAP_NP, segment_not_present);
1014 set_intr_gate(X86_TRAP_SS, stack_segment);
1015 set_intr_gate(X86_TRAP_GP, general_protection);
1016 set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug);
1017 set_intr_gate(X86_TRAP_MF, coprocessor_error);
1018 set_intr_gate(X86_TRAP_AC, alignment_check);
1019 #ifdef CONFIG_X86_MCE
1020 set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
1021 #endif
1022 set_intr_gate(X86_TRAP_XF, simd_coprocessor_error);
1023
1024 /* Reserve all the builtin and the syscall vector: */
1025 for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
1026 set_bit(i, used_vectors);
1027
1028 #ifdef CONFIG_IA32_EMULATION
1029 set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_compat);
1030 set_bit(IA32_SYSCALL_VECTOR, used_vectors);
1031 #endif
1032
1033 #ifdef CONFIG_X86_32
1034 set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_32);
1035 set_bit(IA32_SYSCALL_VECTOR, used_vectors);
1036 #endif
1037
1038 /*
1039 * Set the IDT descriptor to a fixed read-only location, so that the
1040 * "sidt" instruction will not leak the location of the kernel, and
1041 * to defend the IDT against arbitrary memory write vulnerabilities.
1042 * It will be reloaded in cpu_init() */
1043 __set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
1044 idt_descr.address = fix_to_virt(FIX_RO_IDT);
1045
1046 /*
1047 * Should be a barrier for any external CPU state:
1048 */
1049 cpu_init();
1050
1051 /*
1052 * X86_TRAP_DB and X86_TRAP_BP have been set
1053 * in early_trap_init(). However, ITS works only after
1054 * cpu_init() loads TSS. See comments in early_trap_init().
1055 */
1056 set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
1057 /* int3 can be called from all */
1058 set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
1059
1060 x86_init.irqs.trap_init();
1061
1062 #ifdef CONFIG_X86_64
1063 memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16);
1064 set_nmi_gate(X86_TRAP_DB, &debug);
1065 set_nmi_gate(X86_TRAP_BP, &int3);
1066 #endif
1067 }