]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/traps.c
x86/vector: Rename used_vectors to system_vectors
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / traps.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9 /*
10 * Handle hardware traps and faults.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40
41 #if defined(CONFIG_EDAC)
42 #include <linux/edac.h>
43 #endif
44
45 #include <asm/kmemcheck.h>
46 #include <asm/stacktrace.h>
47 #include <asm/processor.h>
48 #include <asm/debugreg.h>
49 #include <linux/atomic.h>
50 #include <asm/text-patching.h>
51 #include <asm/ftrace.h>
52 #include <asm/traps.h>
53 #include <asm/desc.h>
54 #include <asm/fpu/internal.h>
55 #include <asm/mce.h>
56 #include <asm/fixmap.h>
57 #include <asm/mach_traps.h>
58 #include <asm/alternative.h>
59 #include <asm/fpu/xstate.h>
60 #include <asm/trace/mpx.h>
61 #include <asm/mpx.h>
62 #include <asm/vm86.h>
63
64 #ifdef CONFIG_X86_64
65 #include <asm/x86_init.h>
66 #include <asm/pgalloc.h>
67 #include <asm/proto.h>
68 #else
69 #include <asm/processor-flags.h>
70 #include <asm/setup.h>
71 #include <asm/proto.h>
72 #endif
73
74 DECLARE_BITMAP(system_vectors, NR_VECTORS);
75
76 static inline void cond_local_irq_enable(struct pt_regs *regs)
77 {
78 if (regs->flags & X86_EFLAGS_IF)
79 local_irq_enable();
80 }
81
82 static inline void cond_local_irq_disable(struct pt_regs *regs)
83 {
84 if (regs->flags & X86_EFLAGS_IF)
85 local_irq_disable();
86 }
87
88 /*
89 * In IST context, we explicitly disable preemption. This serves two
90 * purposes: it makes it much less likely that we would accidentally
91 * schedule in IST context and it will force a warning if we somehow
92 * manage to schedule by accident.
93 */
94 void ist_enter(struct pt_regs *regs)
95 {
96 if (user_mode(regs)) {
97 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
98 } else {
99 /*
100 * We might have interrupted pretty much anything. In
101 * fact, if we're a machine check, we can even interrupt
102 * NMI processing. We don't want in_nmi() to return true,
103 * but we need to notify RCU.
104 */
105 rcu_nmi_enter();
106 }
107
108 preempt_disable();
109
110 /* This code is a bit fragile. Test it. */
111 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
112 }
113
114 void ist_exit(struct pt_regs *regs)
115 {
116 preempt_enable_no_resched();
117
118 if (!user_mode(regs))
119 rcu_nmi_exit();
120 }
121
122 /**
123 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
124 * @regs: regs passed to the IST exception handler
125 *
126 * IST exception handlers normally cannot schedule. As a special
127 * exception, if the exception interrupted userspace code (i.e.
128 * user_mode(regs) would return true) and the exception was not
129 * a double fault, it can be safe to schedule. ist_begin_non_atomic()
130 * begins a non-atomic section within an ist_enter()/ist_exit() region.
131 * Callers are responsible for enabling interrupts themselves inside
132 * the non-atomic section, and callers must call ist_end_non_atomic()
133 * before ist_exit().
134 */
135 void ist_begin_non_atomic(struct pt_regs *regs)
136 {
137 BUG_ON(!user_mode(regs));
138
139 /*
140 * Sanity check: we need to be on the normal thread stack. This
141 * will catch asm bugs and any attempt to use ist_preempt_enable
142 * from double_fault.
143 */
144 BUG_ON((unsigned long)(current_top_of_stack() -
145 current_stack_pointer()) >= THREAD_SIZE);
146
147 preempt_enable_no_resched();
148 }
149
150 /**
151 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
152 *
153 * Ends a non-atomic section started with ist_begin_non_atomic().
154 */
155 void ist_end_non_atomic(void)
156 {
157 preempt_disable();
158 }
159
160 int is_valid_bugaddr(unsigned long addr)
161 {
162 unsigned short ud;
163
164 if (addr < TASK_SIZE_MAX)
165 return 0;
166
167 if (probe_kernel_address((unsigned short *)addr, ud))
168 return 0;
169
170 return ud == INSN_UD0 || ud == INSN_UD2;
171 }
172
173 int fixup_bug(struct pt_regs *regs, int trapnr)
174 {
175 if (trapnr != X86_TRAP_UD)
176 return 0;
177
178 switch (report_bug(regs->ip, regs)) {
179 case BUG_TRAP_TYPE_NONE:
180 case BUG_TRAP_TYPE_BUG:
181 break;
182
183 case BUG_TRAP_TYPE_WARN:
184 regs->ip += LEN_UD0;
185 return 1;
186 }
187
188 return 0;
189 }
190
191 static nokprobe_inline int
192 do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
193 struct pt_regs *regs, long error_code)
194 {
195 if (v8086_mode(regs)) {
196 /*
197 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
198 * On nmi (interrupt 2), do_trap should not be called.
199 */
200 if (trapnr < X86_TRAP_UD) {
201 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
202 error_code, trapnr))
203 return 0;
204 }
205 return -1;
206 }
207
208 if (!user_mode(regs)) {
209 if (fixup_exception(regs, trapnr))
210 return 0;
211
212 if (fixup_bug(regs, trapnr))
213 return 0;
214
215 tsk->thread.error_code = error_code;
216 tsk->thread.trap_nr = trapnr;
217 die(str, regs, error_code);
218 }
219
220 return -1;
221 }
222
223 static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
224 siginfo_t *info)
225 {
226 unsigned long siaddr;
227 int sicode;
228
229 switch (trapnr) {
230 default:
231 return SEND_SIG_PRIV;
232
233 case X86_TRAP_DE:
234 sicode = FPE_INTDIV;
235 siaddr = uprobe_get_trap_addr(regs);
236 break;
237 case X86_TRAP_UD:
238 sicode = ILL_ILLOPN;
239 siaddr = uprobe_get_trap_addr(regs);
240 break;
241 case X86_TRAP_AC:
242 sicode = BUS_ADRALN;
243 siaddr = 0;
244 break;
245 }
246
247 info->si_signo = signr;
248 info->si_errno = 0;
249 info->si_code = sicode;
250 info->si_addr = (void __user *)siaddr;
251 return info;
252 }
253
254 static void
255 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
256 long error_code, siginfo_t *info)
257 {
258 struct task_struct *tsk = current;
259
260
261 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
262 return;
263 /*
264 * We want error_code and trap_nr set for userspace faults and
265 * kernelspace faults which result in die(), but not
266 * kernelspace faults which are fixed up. die() gives the
267 * process no chance to handle the signal and notice the
268 * kernel fault information, so that won't result in polluting
269 * the information about previously queued, but not yet
270 * delivered, faults. See also do_general_protection below.
271 */
272 tsk->thread.error_code = error_code;
273 tsk->thread.trap_nr = trapnr;
274
275 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
276 printk_ratelimit()) {
277 pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
278 tsk->comm, tsk->pid, str,
279 regs->ip, regs->sp, error_code);
280 print_vma_addr(KERN_CONT " in ", regs->ip);
281 pr_cont("\n");
282 }
283
284 force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
285 }
286 NOKPROBE_SYMBOL(do_trap);
287
288 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
289 unsigned long trapnr, int signr)
290 {
291 siginfo_t info;
292
293 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
294
295 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
296 NOTIFY_STOP) {
297 cond_local_irq_enable(regs);
298 do_trap(trapnr, signr, str, regs, error_code,
299 fill_trap_info(regs, signr, trapnr, &info));
300 }
301 }
302
303 #define DO_ERROR(trapnr, signr, str, name) \
304 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
305 { \
306 do_error_trap(regs, error_code, str, trapnr, signr); \
307 }
308
309 DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error)
310 DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow)
311 DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op)
312 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun)
313 DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
314 DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present)
315 DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment)
316 DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check)
317
318 #ifdef CONFIG_VMAP_STACK
319 __visible void __noreturn handle_stack_overflow(const char *message,
320 struct pt_regs *regs,
321 unsigned long fault_address)
322 {
323 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
324 (void *)fault_address, current->stack,
325 (char *)current->stack + THREAD_SIZE - 1);
326 die(message, regs, 0);
327
328 /* Be absolutely certain we don't return. */
329 panic(message);
330 }
331 #endif
332
333 #ifdef CONFIG_X86_64
334 /* Runs on IST stack */
335 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
336 {
337 static const char str[] = "double fault";
338 struct task_struct *tsk = current;
339 #ifdef CONFIG_VMAP_STACK
340 unsigned long cr2;
341 #endif
342
343 #ifdef CONFIG_X86_ESPFIX64
344 extern unsigned char native_irq_return_iret[];
345
346 /*
347 * If IRET takes a non-IST fault on the espfix64 stack, then we
348 * end up promoting it to a doublefault. In that case, modify
349 * the stack to make it look like we just entered the #GP
350 * handler from user space, similar to bad_iret.
351 *
352 * No need for ist_enter here because we don't use RCU.
353 */
354 if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY &&
355 regs->cs == __KERNEL_CS &&
356 regs->ip == (unsigned long)native_irq_return_iret)
357 {
358 struct pt_regs *normal_regs = task_pt_regs(current);
359
360 /* Fake a #GP(0) from userspace. */
361 memmove(&normal_regs->ip, (void *)regs->sp, 5*8);
362 normal_regs->orig_ax = 0; /* Missing (lost) #GP error code */
363 regs->ip = (unsigned long)general_protection;
364 regs->sp = (unsigned long)&normal_regs->orig_ax;
365
366 return;
367 }
368 #endif
369
370 ist_enter(regs);
371 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
372
373 tsk->thread.error_code = error_code;
374 tsk->thread.trap_nr = X86_TRAP_DF;
375
376 #ifdef CONFIG_VMAP_STACK
377 /*
378 * If we overflow the stack into a guard page, the CPU will fail
379 * to deliver #PF and will send #DF instead. Similarly, if we
380 * take any non-IST exception while too close to the bottom of
381 * the stack, the processor will get a page fault while
382 * delivering the exception and will generate a double fault.
383 *
384 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
385 * Page-Fault Exception (#PF):
386 *
387 * Processors update CR2 whenever a page fault is detected. If a
388 * second page fault occurs while an earlier page fault is being
389 * deliv- ered, the faulting linear address of the second fault will
390 * overwrite the contents of CR2 (replacing the previous
391 * address). These updates to CR2 occur even if the page fault
392 * results in a double fault or occurs during the delivery of a
393 * double fault.
394 *
395 * The logic below has a small possibility of incorrectly diagnosing
396 * some errors as stack overflows. For example, if the IDT or GDT
397 * gets corrupted such that #GP delivery fails due to a bad descriptor
398 * causing #GP and we hit this condition while CR2 coincidentally
399 * points to the stack guard page, we'll think we overflowed the
400 * stack. Given that we're going to panic one way or another
401 * if this happens, this isn't necessarily worth fixing.
402 *
403 * If necessary, we could improve the test by only diagnosing
404 * a stack overflow if the saved RSP points within 47 bytes of
405 * the bottom of the stack: if RSP == tsk_stack + 48 and we
406 * take an exception, the stack is already aligned and there
407 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
408 * possible error code, so a stack overflow would *not* double
409 * fault. With any less space left, exception delivery could
410 * fail, and, as a practical matter, we've overflowed the
411 * stack even if the actual trigger for the double fault was
412 * something else.
413 */
414 cr2 = read_cr2();
415 if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
416 handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
417 #endif
418
419 #ifdef CONFIG_DOUBLEFAULT
420 df_debug(regs, error_code);
421 #endif
422 /*
423 * This is always a kernel trap and never fixable (and thus must
424 * never return).
425 */
426 for (;;)
427 die(str, regs, error_code);
428 }
429 #endif
430
431 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
432 {
433 const struct mpx_bndcsr *bndcsr;
434 siginfo_t *info;
435
436 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
437 if (notify_die(DIE_TRAP, "bounds", regs, error_code,
438 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
439 return;
440 cond_local_irq_enable(regs);
441
442 if (!user_mode(regs))
443 die("bounds", regs, error_code);
444
445 if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
446 /* The exception is not from Intel MPX */
447 goto exit_trap;
448 }
449
450 /*
451 * We need to look at BNDSTATUS to resolve this exception.
452 * A NULL here might mean that it is in its 'init state',
453 * which is all zeros which indicates MPX was not
454 * responsible for the exception.
455 */
456 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
457 if (!bndcsr)
458 goto exit_trap;
459
460 trace_bounds_exception_mpx(bndcsr);
461 /*
462 * The error code field of the BNDSTATUS register communicates status
463 * information of a bound range exception #BR or operation involving
464 * bound directory.
465 */
466 switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
467 case 2: /* Bound directory has invalid entry. */
468 if (mpx_handle_bd_fault())
469 goto exit_trap;
470 break; /* Success, it was handled */
471 case 1: /* Bound violation. */
472 info = mpx_generate_siginfo(regs);
473 if (IS_ERR(info)) {
474 /*
475 * We failed to decode the MPX instruction. Act as if
476 * the exception was not caused by MPX.
477 */
478 goto exit_trap;
479 }
480 /*
481 * Success, we decoded the instruction and retrieved
482 * an 'info' containing the address being accessed
483 * which caused the exception. This information
484 * allows and application to possibly handle the
485 * #BR exception itself.
486 */
487 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
488 kfree(info);
489 break;
490 case 0: /* No exception caused by Intel MPX operations. */
491 goto exit_trap;
492 default:
493 die("bounds", regs, error_code);
494 }
495
496 return;
497
498 exit_trap:
499 /*
500 * This path out is for all the cases where we could not
501 * handle the exception in some way (like allocating a
502 * table or telling userspace about it. We will also end
503 * up here if the kernel has MPX turned off at compile
504 * time..
505 */
506 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
507 }
508
509 dotraplinkage void
510 do_general_protection(struct pt_regs *regs, long error_code)
511 {
512 struct task_struct *tsk;
513
514 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
515 cond_local_irq_enable(regs);
516
517 if (v8086_mode(regs)) {
518 local_irq_enable();
519 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
520 return;
521 }
522
523 tsk = current;
524 if (!user_mode(regs)) {
525 if (fixup_exception(regs, X86_TRAP_GP))
526 return;
527
528 tsk->thread.error_code = error_code;
529 tsk->thread.trap_nr = X86_TRAP_GP;
530 if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
531 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
532 die("general protection fault", regs, error_code);
533 return;
534 }
535
536 tsk->thread.error_code = error_code;
537 tsk->thread.trap_nr = X86_TRAP_GP;
538
539 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
540 printk_ratelimit()) {
541 pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
542 tsk->comm, task_pid_nr(tsk),
543 regs->ip, regs->sp, error_code);
544 print_vma_addr(KERN_CONT " in ", regs->ip);
545 pr_cont("\n");
546 }
547
548 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
549 }
550 NOKPROBE_SYMBOL(do_general_protection);
551
552 /* May run on IST stack. */
553 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
554 {
555 #ifdef CONFIG_DYNAMIC_FTRACE
556 /*
557 * ftrace must be first, everything else may cause a recursive crash.
558 * See note by declaration of modifying_ftrace_code in ftrace.c
559 */
560 if (unlikely(atomic_read(&modifying_ftrace_code)) &&
561 ftrace_int3_handler(regs))
562 return;
563 #endif
564 if (poke_int3_handler(regs))
565 return;
566
567 ist_enter(regs);
568 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
569 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
570 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
571 SIGTRAP) == NOTIFY_STOP)
572 goto exit;
573 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
574
575 #ifdef CONFIG_KPROBES
576 if (kprobe_int3_handler(regs))
577 goto exit;
578 #endif
579
580 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
581 SIGTRAP) == NOTIFY_STOP)
582 goto exit;
583
584 /*
585 * Let others (NMI) know that the debug stack is in use
586 * as we may switch to the interrupt stack.
587 */
588 debug_stack_usage_inc();
589 cond_local_irq_enable(regs);
590 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
591 cond_local_irq_disable(regs);
592 debug_stack_usage_dec();
593 exit:
594 ist_exit(regs);
595 }
596 NOKPROBE_SYMBOL(do_int3);
597
598 #ifdef CONFIG_X86_64
599 /*
600 * Help handler running on IST stack to switch off the IST stack if the
601 * interrupted code was in user mode. The actual stack switch is done in
602 * entry_64.S
603 */
604 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
605 {
606 struct pt_regs *regs = task_pt_regs(current);
607 *regs = *eregs;
608 return regs;
609 }
610 NOKPROBE_SYMBOL(sync_regs);
611
612 struct bad_iret_stack {
613 void *error_entry_ret;
614 struct pt_regs regs;
615 };
616
617 asmlinkage __visible notrace
618 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
619 {
620 /*
621 * This is called from entry_64.S early in handling a fault
622 * caused by a bad iret to user mode. To handle the fault
623 * correctly, we want move our stack frame to task_pt_regs
624 * and we want to pretend that the exception came from the
625 * iret target.
626 */
627 struct bad_iret_stack *new_stack =
628 container_of(task_pt_regs(current),
629 struct bad_iret_stack, regs);
630
631 /* Copy the IRET target to the new stack. */
632 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
633
634 /* Copy the remainder of the stack from the current stack. */
635 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
636
637 BUG_ON(!user_mode(&new_stack->regs));
638 return new_stack;
639 }
640 NOKPROBE_SYMBOL(fixup_bad_iret);
641 #endif
642
643 static bool is_sysenter_singlestep(struct pt_regs *regs)
644 {
645 /*
646 * We don't try for precision here. If we're anywhere in the region of
647 * code that can be single-stepped in the SYSENTER entry path, then
648 * assume that this is a useless single-step trap due to SYSENTER
649 * being invoked with TF set. (We don't know in advance exactly
650 * which instructions will be hit because BTF could plausibly
651 * be set.)
652 */
653 #ifdef CONFIG_X86_32
654 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
655 (unsigned long)__end_SYSENTER_singlestep_region -
656 (unsigned long)__begin_SYSENTER_singlestep_region;
657 #elif defined(CONFIG_IA32_EMULATION)
658 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
659 (unsigned long)__end_entry_SYSENTER_compat -
660 (unsigned long)entry_SYSENTER_compat;
661 #else
662 return false;
663 #endif
664 }
665
666 /*
667 * Our handling of the processor debug registers is non-trivial.
668 * We do not clear them on entry and exit from the kernel. Therefore
669 * it is possible to get a watchpoint trap here from inside the kernel.
670 * However, the code in ./ptrace.c has ensured that the user can
671 * only set watchpoints on userspace addresses. Therefore the in-kernel
672 * watchpoint trap can only occur in code which is reading/writing
673 * from user space. Such code must not hold kernel locks (since it
674 * can equally take a page fault), therefore it is safe to call
675 * force_sig_info even though that claims and releases locks.
676 *
677 * Code in ./signal.c ensures that the debug control register
678 * is restored before we deliver any signal, and therefore that
679 * user code runs with the correct debug control register even though
680 * we clear it here.
681 *
682 * Being careful here means that we don't have to be as careful in a
683 * lot of more complicated places (task switching can be a bit lazy
684 * about restoring all the debug state, and ptrace doesn't have to
685 * find every occurrence of the TF bit that could be saved away even
686 * by user code)
687 *
688 * May run on IST stack.
689 */
690 dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
691 {
692 struct task_struct *tsk = current;
693 int user_icebp = 0;
694 unsigned long dr6;
695 int si_code;
696
697 ist_enter(regs);
698
699 get_debugreg(dr6, 6);
700 /*
701 * The Intel SDM says:
702 *
703 * Certain debug exceptions may clear bits 0-3. The remaining
704 * contents of the DR6 register are never cleared by the
705 * processor. To avoid confusion in identifying debug
706 * exceptions, debug handlers should clear the register before
707 * returning to the interrupted task.
708 *
709 * Keep it simple: clear DR6 immediately.
710 */
711 set_debugreg(0, 6);
712
713 /* Filter out all the reserved bits which are preset to 1 */
714 dr6 &= ~DR6_RESERVED;
715
716 /*
717 * The SDM says "The processor clears the BTF flag when it
718 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
719 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
720 */
721 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
722
723 if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
724 is_sysenter_singlestep(regs))) {
725 dr6 &= ~DR_STEP;
726 if (!dr6)
727 goto exit;
728 /*
729 * else we might have gotten a single-step trap and hit a
730 * watchpoint at the same time, in which case we should fall
731 * through and handle the watchpoint.
732 */
733 }
734
735 /*
736 * If dr6 has no reason to give us about the origin of this trap,
737 * then it's very likely the result of an icebp/int01 trap.
738 * User wants a sigtrap for that.
739 */
740 if (!dr6 && user_mode(regs))
741 user_icebp = 1;
742
743 /* Catch kmemcheck conditions! */
744 if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
745 goto exit;
746
747 /* Store the virtualized DR6 value */
748 tsk->thread.debugreg6 = dr6;
749
750 #ifdef CONFIG_KPROBES
751 if (kprobe_debug_handler(regs))
752 goto exit;
753 #endif
754
755 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
756 SIGTRAP) == NOTIFY_STOP)
757 goto exit;
758
759 /*
760 * Let others (NMI) know that the debug stack is in use
761 * as we may switch to the interrupt stack.
762 */
763 debug_stack_usage_inc();
764
765 /* It's safe to allow irq's after DR6 has been saved */
766 cond_local_irq_enable(regs);
767
768 if (v8086_mode(regs)) {
769 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
770 X86_TRAP_DB);
771 cond_local_irq_disable(regs);
772 debug_stack_usage_dec();
773 goto exit;
774 }
775
776 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
777 /*
778 * Historical junk that used to handle SYSENTER single-stepping.
779 * This should be unreachable now. If we survive for a while
780 * without anyone hitting this warning, we'll turn this into
781 * an oops.
782 */
783 tsk->thread.debugreg6 &= ~DR_STEP;
784 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
785 regs->flags &= ~X86_EFLAGS_TF;
786 }
787 si_code = get_si_code(tsk->thread.debugreg6);
788 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
789 send_sigtrap(tsk, regs, error_code, si_code);
790 cond_local_irq_disable(regs);
791 debug_stack_usage_dec();
792
793 exit:
794 #if defined(CONFIG_X86_32)
795 /*
796 * This is the most likely code path that involves non-trivial use
797 * of the SYSENTER stack. Check that we haven't overrun it.
798 */
799 WARN(this_cpu_read(cpu_tss.SYSENTER_stack_canary) != STACK_END_MAGIC,
800 "Overran or corrupted SYSENTER stack\n");
801 #endif
802 ist_exit(regs);
803 }
804 NOKPROBE_SYMBOL(do_debug);
805
806 /*
807 * Note that we play around with the 'TS' bit in an attempt to get
808 * the correct behaviour even in the presence of the asynchronous
809 * IRQ13 behaviour
810 */
811 static void math_error(struct pt_regs *regs, int error_code, int trapnr)
812 {
813 struct task_struct *task = current;
814 struct fpu *fpu = &task->thread.fpu;
815 siginfo_t info;
816 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
817 "simd exception";
818
819 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
820 return;
821 cond_local_irq_enable(regs);
822
823 if (!user_mode(regs)) {
824 if (!fixup_exception(regs, trapnr)) {
825 task->thread.error_code = error_code;
826 task->thread.trap_nr = trapnr;
827 die(str, regs, error_code);
828 }
829 return;
830 }
831
832 /*
833 * Save the info for the exception handler and clear the error.
834 */
835 fpu__save(fpu);
836
837 task->thread.trap_nr = trapnr;
838 task->thread.error_code = error_code;
839 info.si_signo = SIGFPE;
840 info.si_errno = 0;
841 info.si_addr = (void __user *)uprobe_get_trap_addr(regs);
842
843 info.si_code = fpu__exception_code(fpu, trapnr);
844
845 /* Retry when we get spurious exceptions: */
846 if (!info.si_code)
847 return;
848
849 force_sig_info(SIGFPE, &info, task);
850 }
851
852 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
853 {
854 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
855 math_error(regs, error_code, X86_TRAP_MF);
856 }
857
858 dotraplinkage void
859 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
860 {
861 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
862 math_error(regs, error_code, X86_TRAP_XF);
863 }
864
865 dotraplinkage void
866 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
867 {
868 cond_local_irq_enable(regs);
869 }
870
871 dotraplinkage void
872 do_device_not_available(struct pt_regs *regs, long error_code)
873 {
874 unsigned long cr0;
875
876 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
877
878 #ifdef CONFIG_MATH_EMULATION
879 if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
880 struct math_emu_info info = { };
881
882 cond_local_irq_enable(regs);
883
884 info.regs = regs;
885 math_emulate(&info);
886 return;
887 }
888 #endif
889
890 /* This should not happen. */
891 cr0 = read_cr0();
892 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
893 /* Try to fix it up and carry on. */
894 write_cr0(cr0 & ~X86_CR0_TS);
895 } else {
896 /*
897 * Something terrible happened, and we're better off trying
898 * to kill the task than getting stuck in a never-ending
899 * loop of #NM faults.
900 */
901 die("unexpected #NM exception", regs, error_code);
902 }
903 }
904 NOKPROBE_SYMBOL(do_device_not_available);
905
906 #ifdef CONFIG_X86_32
907 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
908 {
909 siginfo_t info;
910
911 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
912 local_irq_enable();
913
914 info.si_signo = SIGILL;
915 info.si_errno = 0;
916 info.si_code = ILL_BADSTK;
917 info.si_addr = NULL;
918 if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
919 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
920 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
921 &info);
922 }
923 }
924 #endif
925
926 void __init trap_init(void)
927 {
928 idt_setup_traps();
929
930 /*
931 * Set the IDT descriptor to a fixed read-only location, so that the
932 * "sidt" instruction will not leak the location of the kernel, and
933 * to defend the IDT against arbitrary memory write vulnerabilities.
934 * It will be reloaded in cpu_init() */
935 __set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
936 idt_descr.address = fix_to_virt(FIX_RO_IDT);
937
938 /*
939 * Should be a barrier for any external CPU state:
940 */
941 cpu_init();
942
943 idt_setup_ist_traps();
944
945 x86_init.irqs.trap_init();
946
947 idt_setup_debugidt_traps();
948 }