]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/traps.c
e98f8b66a460b98b31d262cff23fa063be33ac5a
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / traps.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9 /*
10 * Handle hardware traps and faults.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40
41 #if defined(CONFIG_EDAC)
42 #include <linux/edac.h>
43 #endif
44
45 #include <asm/stacktrace.h>
46 #include <asm/processor.h>
47 #include <asm/debugreg.h>
48 #include <linux/atomic.h>
49 #include <asm/text-patching.h>
50 #include <asm/ftrace.h>
51 #include <asm/traps.h>
52 #include <asm/desc.h>
53 #include <asm/fpu/internal.h>
54 #include <asm/mce.h>
55 #include <asm/fixmap.h>
56 #include <asm/mach_traps.h>
57 #include <asm/alternative.h>
58 #include <asm/fpu/xstate.h>
59 #include <asm/trace/mpx.h>
60 #include <asm/mpx.h>
61 #include <asm/vm86.h>
62 #include <asm/umip.h>
63
64 #ifdef CONFIG_X86_64
65 #include <asm/x86_init.h>
66 #include <asm/pgalloc.h>
67 #include <asm/proto.h>
68 #else
69 #include <asm/processor-flags.h>
70 #include <asm/setup.h>
71 #include <asm/proto.h>
72 #endif
73
74 DECLARE_BITMAP(system_vectors, NR_VECTORS);
75
76 static inline void cond_local_irq_enable(struct pt_regs *regs)
77 {
78 if (regs->flags & X86_EFLAGS_IF)
79 local_irq_enable();
80 }
81
82 static inline void cond_local_irq_disable(struct pt_regs *regs)
83 {
84 if (regs->flags & X86_EFLAGS_IF)
85 local_irq_disable();
86 }
87
88 /*
89 * In IST context, we explicitly disable preemption. This serves two
90 * purposes: it makes it much less likely that we would accidentally
91 * schedule in IST context and it will force a warning if we somehow
92 * manage to schedule by accident.
93 */
94 void ist_enter(struct pt_regs *regs)
95 {
96 if (user_mode(regs)) {
97 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
98 } else {
99 /*
100 * We might have interrupted pretty much anything. In
101 * fact, if we're a machine check, we can even interrupt
102 * NMI processing. We don't want in_nmi() to return true,
103 * but we need to notify RCU.
104 */
105 rcu_nmi_enter();
106 }
107
108 preempt_disable();
109
110 /* This code is a bit fragile. Test it. */
111 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
112 }
113
114 void ist_exit(struct pt_regs *regs)
115 {
116 preempt_enable_no_resched();
117
118 if (!user_mode(regs))
119 rcu_nmi_exit();
120 }
121
122 /**
123 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
124 * @regs: regs passed to the IST exception handler
125 *
126 * IST exception handlers normally cannot schedule. As a special
127 * exception, if the exception interrupted userspace code (i.e.
128 * user_mode(regs) would return true) and the exception was not
129 * a double fault, it can be safe to schedule. ist_begin_non_atomic()
130 * begins a non-atomic section within an ist_enter()/ist_exit() region.
131 * Callers are responsible for enabling interrupts themselves inside
132 * the non-atomic section, and callers must call ist_end_non_atomic()
133 * before ist_exit().
134 */
135 void ist_begin_non_atomic(struct pt_regs *regs)
136 {
137 BUG_ON(!user_mode(regs));
138
139 /*
140 * Sanity check: we need to be on the normal thread stack. This
141 * will catch asm bugs and any attempt to use ist_preempt_enable
142 * from double_fault.
143 */
144 BUG_ON(!on_thread_stack());
145
146 preempt_enable_no_resched();
147 }
148
149 /**
150 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
151 *
152 * Ends a non-atomic section started with ist_begin_non_atomic().
153 */
154 void ist_end_non_atomic(void)
155 {
156 preempt_disable();
157 }
158
159 int is_valid_bugaddr(unsigned long addr)
160 {
161 unsigned short ud;
162
163 if (addr < TASK_SIZE_MAX)
164 return 0;
165
166 if (probe_kernel_address((unsigned short *)addr, ud))
167 return 0;
168
169 return ud == INSN_UD0 || ud == INSN_UD2;
170 }
171
172 int fixup_bug(struct pt_regs *regs, int trapnr)
173 {
174 if (trapnr != X86_TRAP_UD)
175 return 0;
176
177 switch (report_bug(regs->ip, regs)) {
178 case BUG_TRAP_TYPE_NONE:
179 case BUG_TRAP_TYPE_BUG:
180 break;
181
182 case BUG_TRAP_TYPE_WARN:
183 regs->ip += LEN_UD0;
184 return 1;
185 }
186
187 return 0;
188 }
189
190 static nokprobe_inline int
191 do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
192 struct pt_regs *regs, long error_code)
193 {
194 if (v8086_mode(regs)) {
195 /*
196 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
197 * On nmi (interrupt 2), do_trap should not be called.
198 */
199 if (trapnr < X86_TRAP_UD) {
200 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
201 error_code, trapnr))
202 return 0;
203 }
204 return -1;
205 }
206
207 if (!user_mode(regs)) {
208 if (fixup_exception(regs, trapnr))
209 return 0;
210
211 tsk->thread.error_code = error_code;
212 tsk->thread.trap_nr = trapnr;
213 die(str, regs, error_code);
214 }
215
216 return -1;
217 }
218
219 static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
220 siginfo_t *info)
221 {
222 unsigned long siaddr;
223 int sicode;
224
225 switch (trapnr) {
226 default:
227 return SEND_SIG_PRIV;
228
229 case X86_TRAP_DE:
230 sicode = FPE_INTDIV;
231 siaddr = uprobe_get_trap_addr(regs);
232 break;
233 case X86_TRAP_UD:
234 sicode = ILL_ILLOPN;
235 siaddr = uprobe_get_trap_addr(regs);
236 break;
237 case X86_TRAP_AC:
238 sicode = BUS_ADRALN;
239 siaddr = 0;
240 break;
241 }
242
243 info->si_signo = signr;
244 info->si_errno = 0;
245 info->si_code = sicode;
246 info->si_addr = (void __user *)siaddr;
247 return info;
248 }
249
250 static void
251 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
252 long error_code, siginfo_t *info)
253 {
254 struct task_struct *tsk = current;
255
256
257 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
258 return;
259 /*
260 * We want error_code and trap_nr set for userspace faults and
261 * kernelspace faults which result in die(), but not
262 * kernelspace faults which are fixed up. die() gives the
263 * process no chance to handle the signal and notice the
264 * kernel fault information, so that won't result in polluting
265 * the information about previously queued, but not yet
266 * delivered, faults. See also do_general_protection below.
267 */
268 tsk->thread.error_code = error_code;
269 tsk->thread.trap_nr = trapnr;
270
271 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
272 printk_ratelimit()) {
273 pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
274 tsk->comm, tsk->pid, str,
275 regs->ip, regs->sp, error_code);
276 print_vma_addr(KERN_CONT " in ", regs->ip);
277 pr_cont("\n");
278 }
279
280 force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
281 }
282 NOKPROBE_SYMBOL(do_trap);
283
284 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
285 unsigned long trapnr, int signr)
286 {
287 siginfo_t info;
288
289 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
290
291 /*
292 * WARN*()s end up here; fix them up before we call the
293 * notifier chain.
294 */
295 if (!user_mode(regs) && fixup_bug(regs, trapnr))
296 return;
297
298 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
299 NOTIFY_STOP) {
300 cond_local_irq_enable(regs);
301 do_trap(trapnr, signr, str, regs, error_code,
302 fill_trap_info(regs, signr, trapnr, &info));
303 }
304 }
305
306 #define DO_ERROR(trapnr, signr, str, name) \
307 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
308 { \
309 do_error_trap(regs, error_code, str, trapnr, signr); \
310 }
311
312 DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error)
313 DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow)
314 DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op)
315 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun)
316 DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
317 DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present)
318 DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment)
319 DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check)
320
321 #ifdef CONFIG_VMAP_STACK
322 __visible void __noreturn handle_stack_overflow(const char *message,
323 struct pt_regs *regs,
324 unsigned long fault_address)
325 {
326 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
327 (void *)fault_address, current->stack,
328 (char *)current->stack + THREAD_SIZE - 1);
329 die(message, regs, 0);
330
331 /* Be absolutely certain we don't return. */
332 panic(message);
333 }
334 #endif
335
336 #ifdef CONFIG_X86_64
337 /* Runs on IST stack */
338 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
339 {
340 static const char str[] = "double fault";
341 struct task_struct *tsk = current;
342 #ifdef CONFIG_VMAP_STACK
343 unsigned long cr2;
344 #endif
345
346 #ifdef CONFIG_X86_ESPFIX64
347 extern unsigned char native_irq_return_iret[];
348
349 /*
350 * If IRET takes a non-IST fault on the espfix64 stack, then we
351 * end up promoting it to a doublefault. In that case, take
352 * advantage of the fact that we're not using the normal (TSS.sp0)
353 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
354 * and then modify our own IRET frame so that, when we return,
355 * we land directly at the #GP(0) vector with the stack already
356 * set up according to its expectations.
357 *
358 * The net result is that our #GP handler will think that we
359 * entered from usermode with the bad user context.
360 *
361 * No need for ist_enter here because we don't use RCU.
362 */
363 if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY &&
364 regs->cs == __KERNEL_CS &&
365 regs->ip == (unsigned long)native_irq_return_iret)
366 {
367 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
368
369 /*
370 * regs->sp points to the failing IRET frame on the
371 * ESPFIX64 stack. Copy it to the entry stack. This fills
372 * in gpregs->ss through gpregs->ip.
373 *
374 */
375 memmove(&gpregs->ip, (void *)regs->sp, 5*8);
376 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
377
378 /*
379 * Adjust our frame so that we return straight to the #GP
380 * vector with the expected RSP value. This is safe because
381 * we won't enable interupts or schedule before we invoke
382 * general_protection, so nothing will clobber the stack
383 * frame we just set up.
384 */
385 regs->ip = (unsigned long)general_protection;
386 regs->sp = (unsigned long)&gpregs->orig_ax;
387
388 return;
389 }
390 #endif
391
392 ist_enter(regs);
393 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
394
395 tsk->thread.error_code = error_code;
396 tsk->thread.trap_nr = X86_TRAP_DF;
397
398 #ifdef CONFIG_VMAP_STACK
399 /*
400 * If we overflow the stack into a guard page, the CPU will fail
401 * to deliver #PF and will send #DF instead. Similarly, if we
402 * take any non-IST exception while too close to the bottom of
403 * the stack, the processor will get a page fault while
404 * delivering the exception and will generate a double fault.
405 *
406 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
407 * Page-Fault Exception (#PF):
408 *
409 * Processors update CR2 whenever a page fault is detected. If a
410 * second page fault occurs while an earlier page fault is being
411 * delivered, the faulting linear address of the second fault will
412 * overwrite the contents of CR2 (replacing the previous
413 * address). These updates to CR2 occur even if the page fault
414 * results in a double fault or occurs during the delivery of a
415 * double fault.
416 *
417 * The logic below has a small possibility of incorrectly diagnosing
418 * some errors as stack overflows. For example, if the IDT or GDT
419 * gets corrupted such that #GP delivery fails due to a bad descriptor
420 * causing #GP and we hit this condition while CR2 coincidentally
421 * points to the stack guard page, we'll think we overflowed the
422 * stack. Given that we're going to panic one way or another
423 * if this happens, this isn't necessarily worth fixing.
424 *
425 * If necessary, we could improve the test by only diagnosing
426 * a stack overflow if the saved RSP points within 47 bytes of
427 * the bottom of the stack: if RSP == tsk_stack + 48 and we
428 * take an exception, the stack is already aligned and there
429 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
430 * possible error code, so a stack overflow would *not* double
431 * fault. With any less space left, exception delivery could
432 * fail, and, as a practical matter, we've overflowed the
433 * stack even if the actual trigger for the double fault was
434 * something else.
435 */
436 cr2 = read_cr2();
437 if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
438 handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
439 #endif
440
441 #ifdef CONFIG_DOUBLEFAULT
442 df_debug(regs, error_code);
443 #endif
444 /*
445 * This is always a kernel trap and never fixable (and thus must
446 * never return).
447 */
448 for (;;)
449 die(str, regs, error_code);
450 }
451 #endif
452
453 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
454 {
455 const struct mpx_bndcsr *bndcsr;
456 siginfo_t *info;
457
458 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
459 if (notify_die(DIE_TRAP, "bounds", regs, error_code,
460 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
461 return;
462 cond_local_irq_enable(regs);
463
464 if (!user_mode(regs))
465 die("bounds", regs, error_code);
466
467 if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
468 /* The exception is not from Intel MPX */
469 goto exit_trap;
470 }
471
472 /*
473 * We need to look at BNDSTATUS to resolve this exception.
474 * A NULL here might mean that it is in its 'init state',
475 * which is all zeros which indicates MPX was not
476 * responsible for the exception.
477 */
478 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
479 if (!bndcsr)
480 goto exit_trap;
481
482 trace_bounds_exception_mpx(bndcsr);
483 /*
484 * The error code field of the BNDSTATUS register communicates status
485 * information of a bound range exception #BR or operation involving
486 * bound directory.
487 */
488 switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
489 case 2: /* Bound directory has invalid entry. */
490 if (mpx_handle_bd_fault())
491 goto exit_trap;
492 break; /* Success, it was handled */
493 case 1: /* Bound violation. */
494 info = mpx_generate_siginfo(regs);
495 if (IS_ERR(info)) {
496 /*
497 * We failed to decode the MPX instruction. Act as if
498 * the exception was not caused by MPX.
499 */
500 goto exit_trap;
501 }
502 /*
503 * Success, we decoded the instruction and retrieved
504 * an 'info' containing the address being accessed
505 * which caused the exception. This information
506 * allows and application to possibly handle the
507 * #BR exception itself.
508 */
509 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
510 kfree(info);
511 break;
512 case 0: /* No exception caused by Intel MPX operations. */
513 goto exit_trap;
514 default:
515 die("bounds", regs, error_code);
516 }
517
518 return;
519
520 exit_trap:
521 /*
522 * This path out is for all the cases where we could not
523 * handle the exception in some way (like allocating a
524 * table or telling userspace about it. We will also end
525 * up here if the kernel has MPX turned off at compile
526 * time..
527 */
528 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
529 }
530
531 dotraplinkage void
532 do_general_protection(struct pt_regs *regs, long error_code)
533 {
534 struct task_struct *tsk;
535
536 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
537 cond_local_irq_enable(regs);
538
539 if (static_cpu_has(X86_FEATURE_UMIP)) {
540 if (user_mode(regs) && fixup_umip_exception(regs))
541 return;
542 }
543
544 if (v8086_mode(regs)) {
545 local_irq_enable();
546 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
547 return;
548 }
549
550 tsk = current;
551 if (!user_mode(regs)) {
552 if (fixup_exception(regs, X86_TRAP_GP))
553 return;
554
555 tsk->thread.error_code = error_code;
556 tsk->thread.trap_nr = X86_TRAP_GP;
557 if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
558 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
559 die("general protection fault", regs, error_code);
560 return;
561 }
562
563 tsk->thread.error_code = error_code;
564 tsk->thread.trap_nr = X86_TRAP_GP;
565
566 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
567 printk_ratelimit()) {
568 pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
569 tsk->comm, task_pid_nr(tsk),
570 regs->ip, regs->sp, error_code);
571 print_vma_addr(KERN_CONT " in ", regs->ip);
572 pr_cont("\n");
573 }
574
575 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
576 }
577 NOKPROBE_SYMBOL(do_general_protection);
578
579 /* May run on IST stack. */
580 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
581 {
582 #ifdef CONFIG_DYNAMIC_FTRACE
583 /*
584 * ftrace must be first, everything else may cause a recursive crash.
585 * See note by declaration of modifying_ftrace_code in ftrace.c
586 */
587 if (unlikely(atomic_read(&modifying_ftrace_code)) &&
588 ftrace_int3_handler(regs))
589 return;
590 #endif
591 if (poke_int3_handler(regs))
592 return;
593
594 ist_enter(regs);
595 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
596 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
597 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
598 SIGTRAP) == NOTIFY_STOP)
599 goto exit;
600 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
601
602 #ifdef CONFIG_KPROBES
603 if (kprobe_int3_handler(regs))
604 goto exit;
605 #endif
606
607 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
608 SIGTRAP) == NOTIFY_STOP)
609 goto exit;
610
611 /*
612 * Let others (NMI) know that the debug stack is in use
613 * as we may switch to the interrupt stack.
614 */
615 debug_stack_usage_inc();
616 cond_local_irq_enable(regs);
617 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
618 cond_local_irq_disable(regs);
619 debug_stack_usage_dec();
620 exit:
621 ist_exit(regs);
622 }
623 NOKPROBE_SYMBOL(do_int3);
624
625 #ifdef CONFIG_X86_64
626 /*
627 * Help handler running on a per-cpu (IST or entry trampoline) stack
628 * to switch to the normal thread stack if the interrupted code was in
629 * user mode. The actual stack switch is done in entry_64.S
630 */
631 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
632 {
633 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
634 if (regs != eregs)
635 *regs = *eregs;
636 return regs;
637 }
638 NOKPROBE_SYMBOL(sync_regs);
639
640 struct bad_iret_stack {
641 void *error_entry_ret;
642 struct pt_regs regs;
643 };
644
645 asmlinkage __visible notrace
646 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
647 {
648 /*
649 * This is called from entry_64.S early in handling a fault
650 * caused by a bad iret to user mode. To handle the fault
651 * correctly, we want to move our stack frame to where it would
652 * be had we entered directly on the entry stack (rather than
653 * just below the IRET frame) and we want to pretend that the
654 * exception came from the IRET target.
655 */
656 struct bad_iret_stack *new_stack =
657 (struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
658
659 /* Copy the IRET target to the new stack. */
660 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
661
662 /* Copy the remainder of the stack from the current stack. */
663 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
664
665 BUG_ON(!user_mode(&new_stack->regs));
666 return new_stack;
667 }
668 NOKPROBE_SYMBOL(fixup_bad_iret);
669 #endif
670
671 static bool is_sysenter_singlestep(struct pt_regs *regs)
672 {
673 /*
674 * We don't try for precision here. If we're anywhere in the region of
675 * code that can be single-stepped in the SYSENTER entry path, then
676 * assume that this is a useless single-step trap due to SYSENTER
677 * being invoked with TF set. (We don't know in advance exactly
678 * which instructions will be hit because BTF could plausibly
679 * be set.)
680 */
681 #ifdef CONFIG_X86_32
682 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
683 (unsigned long)__end_SYSENTER_singlestep_region -
684 (unsigned long)__begin_SYSENTER_singlestep_region;
685 #elif defined(CONFIG_IA32_EMULATION)
686 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
687 (unsigned long)__end_entry_SYSENTER_compat -
688 (unsigned long)entry_SYSENTER_compat;
689 #else
690 return false;
691 #endif
692 }
693
694 /*
695 * Our handling of the processor debug registers is non-trivial.
696 * We do not clear them on entry and exit from the kernel. Therefore
697 * it is possible to get a watchpoint trap here from inside the kernel.
698 * However, the code in ./ptrace.c has ensured that the user can
699 * only set watchpoints on userspace addresses. Therefore the in-kernel
700 * watchpoint trap can only occur in code which is reading/writing
701 * from user space. Such code must not hold kernel locks (since it
702 * can equally take a page fault), therefore it is safe to call
703 * force_sig_info even though that claims and releases locks.
704 *
705 * Code in ./signal.c ensures that the debug control register
706 * is restored before we deliver any signal, and therefore that
707 * user code runs with the correct debug control register even though
708 * we clear it here.
709 *
710 * Being careful here means that we don't have to be as careful in a
711 * lot of more complicated places (task switching can be a bit lazy
712 * about restoring all the debug state, and ptrace doesn't have to
713 * find every occurrence of the TF bit that could be saved away even
714 * by user code)
715 *
716 * May run on IST stack.
717 */
718 dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
719 {
720 struct task_struct *tsk = current;
721 int user_icebp = 0;
722 unsigned long dr6;
723 int si_code;
724
725 ist_enter(regs);
726
727 get_debugreg(dr6, 6);
728 /*
729 * The Intel SDM says:
730 *
731 * Certain debug exceptions may clear bits 0-3. The remaining
732 * contents of the DR6 register are never cleared by the
733 * processor. To avoid confusion in identifying debug
734 * exceptions, debug handlers should clear the register before
735 * returning to the interrupted task.
736 *
737 * Keep it simple: clear DR6 immediately.
738 */
739 set_debugreg(0, 6);
740
741 /* Filter out all the reserved bits which are preset to 1 */
742 dr6 &= ~DR6_RESERVED;
743
744 /*
745 * The SDM says "The processor clears the BTF flag when it
746 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
747 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
748 */
749 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
750
751 if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
752 is_sysenter_singlestep(regs))) {
753 dr6 &= ~DR_STEP;
754 if (!dr6)
755 goto exit;
756 /*
757 * else we might have gotten a single-step trap and hit a
758 * watchpoint at the same time, in which case we should fall
759 * through and handle the watchpoint.
760 */
761 }
762
763 /*
764 * If dr6 has no reason to give us about the origin of this trap,
765 * then it's very likely the result of an icebp/int01 trap.
766 * User wants a sigtrap for that.
767 */
768 if (!dr6 && user_mode(regs))
769 user_icebp = 1;
770
771 /* Store the virtualized DR6 value */
772 tsk->thread.debugreg6 = dr6;
773
774 #ifdef CONFIG_KPROBES
775 if (kprobe_debug_handler(regs))
776 goto exit;
777 #endif
778
779 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
780 SIGTRAP) == NOTIFY_STOP)
781 goto exit;
782
783 /*
784 * Let others (NMI) know that the debug stack is in use
785 * as we may switch to the interrupt stack.
786 */
787 debug_stack_usage_inc();
788
789 /* It's safe to allow irq's after DR6 has been saved */
790 cond_local_irq_enable(regs);
791
792 if (v8086_mode(regs)) {
793 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
794 X86_TRAP_DB);
795 cond_local_irq_disable(regs);
796 debug_stack_usage_dec();
797 goto exit;
798 }
799
800 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
801 /*
802 * Historical junk that used to handle SYSENTER single-stepping.
803 * This should be unreachable now. If we survive for a while
804 * without anyone hitting this warning, we'll turn this into
805 * an oops.
806 */
807 tsk->thread.debugreg6 &= ~DR_STEP;
808 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
809 regs->flags &= ~X86_EFLAGS_TF;
810 }
811 si_code = get_si_code(tsk->thread.debugreg6);
812 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
813 send_sigtrap(tsk, regs, error_code, si_code);
814 cond_local_irq_disable(regs);
815 debug_stack_usage_dec();
816
817 exit:
818 ist_exit(regs);
819 }
820 NOKPROBE_SYMBOL(do_debug);
821
822 /*
823 * Note that we play around with the 'TS' bit in an attempt to get
824 * the correct behaviour even in the presence of the asynchronous
825 * IRQ13 behaviour
826 */
827 static void math_error(struct pt_regs *regs, int error_code, int trapnr)
828 {
829 struct task_struct *task = current;
830 struct fpu *fpu = &task->thread.fpu;
831 siginfo_t info;
832 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
833 "simd exception";
834
835 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
836 return;
837 cond_local_irq_enable(regs);
838
839 if (!user_mode(regs)) {
840 if (!fixup_exception(regs, trapnr)) {
841 task->thread.error_code = error_code;
842 task->thread.trap_nr = trapnr;
843 die(str, regs, error_code);
844 }
845 return;
846 }
847
848 /*
849 * Save the info for the exception handler and clear the error.
850 */
851 fpu__save(fpu);
852
853 task->thread.trap_nr = trapnr;
854 task->thread.error_code = error_code;
855 info.si_signo = SIGFPE;
856 info.si_errno = 0;
857 info.si_addr = (void __user *)uprobe_get_trap_addr(regs);
858
859 info.si_code = fpu__exception_code(fpu, trapnr);
860
861 /* Retry when we get spurious exceptions: */
862 if (!info.si_code)
863 return;
864
865 force_sig_info(SIGFPE, &info, task);
866 }
867
868 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
869 {
870 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
871 math_error(regs, error_code, X86_TRAP_MF);
872 }
873
874 dotraplinkage void
875 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
876 {
877 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
878 math_error(regs, error_code, X86_TRAP_XF);
879 }
880
881 dotraplinkage void
882 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
883 {
884 cond_local_irq_enable(regs);
885 }
886
887 dotraplinkage void
888 do_device_not_available(struct pt_regs *regs, long error_code)
889 {
890 unsigned long cr0;
891
892 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
893
894 #ifdef CONFIG_MATH_EMULATION
895 if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
896 struct math_emu_info info = { };
897
898 cond_local_irq_enable(regs);
899
900 info.regs = regs;
901 math_emulate(&info);
902 return;
903 }
904 #endif
905
906 /* This should not happen. */
907 cr0 = read_cr0();
908 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
909 /* Try to fix it up and carry on. */
910 write_cr0(cr0 & ~X86_CR0_TS);
911 } else {
912 /*
913 * Something terrible happened, and we're better off trying
914 * to kill the task than getting stuck in a never-ending
915 * loop of #NM faults.
916 */
917 die("unexpected #NM exception", regs, error_code);
918 }
919 }
920 NOKPROBE_SYMBOL(do_device_not_available);
921
922 #ifdef CONFIG_X86_32
923 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
924 {
925 siginfo_t info;
926
927 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
928 local_irq_enable();
929
930 info.si_signo = SIGILL;
931 info.si_errno = 0;
932 info.si_code = ILL_BADSTK;
933 info.si_addr = NULL;
934 if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
935 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
936 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
937 &info);
938 }
939 }
940 #endif
941
942 void __init trap_init(void)
943 {
944 /* Init cpu_entry_area before IST entries are set up */
945 setup_cpu_entry_areas();
946
947 idt_setup_traps();
948
949 /*
950 * Set the IDT descriptor to a fixed read-only location, so that the
951 * "sidt" instruction will not leak the location of the kernel, and
952 * to defend the IDT against arbitrary memory write vulnerabilities.
953 * It will be reloaded in cpu_init() */
954 __set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
955 idt_descr.address = fix_to_virt(FIX_RO_IDT);
956
957 /*
958 * Should be a barrier for any external CPU state:
959 */
960 cpu_init();
961
962 idt_setup_ist_traps();
963
964 x86_init.irqs.trap_init();
965
966 idt_setup_debugidt_traps();
967 }