2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
10 * Handle hardware traps and faults.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
38 #include <linux/smp.h>
40 #include <linux/hardirq.h>
41 #include <linux/atomic.h>
43 #include <asm/stacktrace.h>
44 #include <asm/processor.h>
45 #include <asm/debugreg.h>
46 #include <asm/realmode.h>
47 #include <asm/text-patching.h>
48 #include <asm/ftrace.h>
49 #include <asm/traps.h>
51 #include <asm/fpu/internal.h>
53 #include <asm/cpu_entry_area.h>
55 #include <asm/fixmap.h>
56 #include <asm/mach_traps.h>
57 #include <asm/alternative.h>
58 #include <asm/fpu/xstate.h>
62 #include <asm/insn-eval.h>
65 #include <asm/x86_init.h>
66 #include <asm/proto.h>
68 #include <asm/processor-flags.h>
69 #include <asm/setup.h>
70 #include <asm/proto.h>
73 DECLARE_BITMAP(system_vectors
, NR_VECTORS
);
75 static inline void cond_local_irq_enable(struct pt_regs
*regs
)
77 if (regs
->flags
& X86_EFLAGS_IF
)
81 static inline void cond_local_irq_disable(struct pt_regs
*regs
)
83 if (regs
->flags
& X86_EFLAGS_IF
)
87 __always_inline
int is_valid_bugaddr(unsigned long addr
)
89 if (addr
< TASK_SIZE_MAX
)
93 * We got #UD, if the text isn't readable we'd have gotten
94 * a different exception.
96 return *(unsigned short *)addr
== INSN_UD2
;
99 static nokprobe_inline
int
100 do_trap_no_signal(struct task_struct
*tsk
, int trapnr
, const char *str
,
101 struct pt_regs
*regs
, long error_code
)
103 if (v8086_mode(regs
)) {
105 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
106 * On nmi (interrupt 2), do_trap should not be called.
108 if (trapnr
< X86_TRAP_UD
) {
109 if (!handle_vm86_trap((struct kernel_vm86_regs
*) regs
,
113 } else if (!user_mode(regs
)) {
114 if (fixup_exception(regs
, trapnr
, error_code
, 0))
117 tsk
->thread
.error_code
= error_code
;
118 tsk
->thread
.trap_nr
= trapnr
;
119 die(str
, regs
, error_code
);
123 * We want error_code and trap_nr set for userspace faults and
124 * kernelspace faults which result in die(), but not
125 * kernelspace faults which are fixed up. die() gives the
126 * process no chance to handle the signal and notice the
127 * kernel fault information, so that won't result in polluting
128 * the information about previously queued, but not yet
129 * delivered, faults. See also exc_general_protection below.
131 tsk
->thread
.error_code
= error_code
;
132 tsk
->thread
.trap_nr
= trapnr
;
137 static void show_signal(struct task_struct
*tsk
, int signr
,
138 const char *type
, const char *desc
,
139 struct pt_regs
*regs
, long error_code
)
141 if (show_unhandled_signals
&& unhandled_signal(tsk
, signr
) &&
142 printk_ratelimit()) {
143 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
144 tsk
->comm
, task_pid_nr(tsk
), type
, desc
,
145 regs
->ip
, regs
->sp
, error_code
);
146 print_vma_addr(KERN_CONT
" in ", regs
->ip
);
152 do_trap(int trapnr
, int signr
, char *str
, struct pt_regs
*regs
,
153 long error_code
, int sicode
, void __user
*addr
)
155 struct task_struct
*tsk
= current
;
157 if (!do_trap_no_signal(tsk
, trapnr
, str
, regs
, error_code
))
160 show_signal(tsk
, signr
, "trap ", str
, regs
, error_code
);
165 force_sig_fault(signr
, sicode
, addr
);
167 NOKPROBE_SYMBOL(do_trap
);
169 static void do_error_trap(struct pt_regs
*regs
, long error_code
, char *str
,
170 unsigned long trapnr
, int signr
, int sicode
, void __user
*addr
)
172 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
174 if (notify_die(DIE_TRAP
, str
, regs
, error_code
, trapnr
, signr
) !=
176 cond_local_irq_enable(regs
);
177 do_trap(trapnr
, signr
, str
, regs
, error_code
, sicode
, addr
);
178 cond_local_irq_disable(regs
);
183 * Posix requires to provide the address of the faulting instruction for
184 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
186 * This address is usually regs->ip, but when an uprobe moved the code out
187 * of line then regs->ip points to the XOL code which would confuse
188 * anything which analyzes the fault address vs. the unmodified binary. If
189 * a trap happened in XOL code then uprobe maps regs->ip back to the
190 * original instruction address.
192 static __always_inline
void __user
*error_get_trap_addr(struct pt_regs
*regs
)
194 return (void __user
*)uprobe_get_trap_addr(regs
);
197 DEFINE_IDTENTRY(exc_divide_error
)
199 do_error_trap(regs
, 0, "divide_error", X86_TRAP_DE
, SIGFPE
,
200 FPE_INTDIV
, error_get_trap_addr(regs
));
203 DEFINE_IDTENTRY(exc_overflow
)
205 do_error_trap(regs
, 0, "overflow", X86_TRAP_OF
, SIGSEGV
, 0, NULL
);
208 #ifdef CONFIG_X86_F00F_BUG
209 void handle_invalid_op(struct pt_regs
*regs
)
211 static inline void handle_invalid_op(struct pt_regs
*regs
)
214 do_error_trap(regs
, 0, "invalid opcode", X86_TRAP_UD
, SIGILL
,
215 ILL_ILLOPN
, error_get_trap_addr(regs
));
218 static noinstr
bool handle_bug(struct pt_regs
*regs
)
220 bool handled
= false;
222 if (!is_valid_bugaddr(regs
->ip
))
226 * All lies, just get the WARN/BUG out.
228 instrumentation_begin();
230 * Since we're emulating a CALL with exceptions, restore the interrupt
231 * state to what it was at the exception site.
233 if (regs
->flags
& X86_EFLAGS_IF
)
234 raw_local_irq_enable();
235 if (report_bug(regs
->ip
, regs
) == BUG_TRAP_TYPE_WARN
) {
239 if (regs
->flags
& X86_EFLAGS_IF
)
240 raw_local_irq_disable();
241 instrumentation_end();
246 DEFINE_IDTENTRY_RAW(exc_invalid_op
)
248 irqentry_state_t state
;
251 * We use UD2 as a short encoding for 'CALL __WARN', as such
252 * handle it before exception entry to avoid recursive WARN
253 * in case exception entry is the one triggering WARNs.
255 if (!user_mode(regs
) && handle_bug(regs
))
258 state
= irqentry_enter(regs
);
259 instrumentation_begin();
260 handle_invalid_op(regs
);
261 instrumentation_end();
262 irqentry_exit(regs
, state
);
265 DEFINE_IDTENTRY(exc_coproc_segment_overrun
)
267 do_error_trap(regs
, 0, "coprocessor segment overrun",
268 X86_TRAP_OLD_MF
, SIGFPE
, 0, NULL
);
271 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss
)
273 do_error_trap(regs
, error_code
, "invalid TSS", X86_TRAP_TS
, SIGSEGV
,
277 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present
)
279 do_error_trap(regs
, error_code
, "segment not present", X86_TRAP_NP
,
283 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment
)
285 do_error_trap(regs
, error_code
, "stack segment", X86_TRAP_SS
, SIGBUS
,
289 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check
)
291 char *str
= "alignment check";
293 if (notify_die(DIE_TRAP
, str
, regs
, error_code
, X86_TRAP_AC
, SIGBUS
) == NOTIFY_STOP
)
296 if (!user_mode(regs
))
297 die("Split lock detected\n", regs
, error_code
);
301 if (handle_user_split_lock(regs
, error_code
))
304 do_trap(X86_TRAP_AC
, SIGBUS
, "alignment check", regs
,
305 error_code
, BUS_ADRALN
, NULL
);
310 #ifdef CONFIG_VMAP_STACK
311 __visible
void __noreturn
handle_stack_overflow(const char *message
,
312 struct pt_regs
*regs
,
313 unsigned long fault_address
)
315 printk(KERN_EMERG
"BUG: stack guard page was hit at %p (stack is %p..%p)\n",
316 (void *)fault_address
, current
->stack
,
317 (char *)current
->stack
+ THREAD_SIZE
- 1);
318 die(message
, regs
, 0);
320 /* Be absolutely certain we don't return. */
321 panic("%s", message
);
326 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
328 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the
329 * SDM's warnings about double faults being unrecoverable, returning works as
330 * expected. Presumably what the SDM actually means is that the CPU may get
331 * the register state wrong on entry, so returning could be a bad idea.
333 * Various CPU engineers have promised that double faults due to an IRET fault
334 * while the stack is read-only are, in fact, recoverable.
336 * On x86_32, this is entered through a task gate, and regs are synthesized
337 * from the TSS. Returning is, in principle, okay, but changes to regs will
338 * be lost. If, for some reason, we need to return to a context with modified
339 * regs, the shim code could be adjusted to synchronize the registers.
341 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
342 * to be read before doing anything else.
344 DEFINE_IDTENTRY_DF(exc_double_fault
)
346 static const char str
[] = "double fault";
347 struct task_struct
*tsk
= current
;
349 #ifdef CONFIG_VMAP_STACK
350 unsigned long address
= read_cr2();
353 #ifdef CONFIG_X86_ESPFIX64
354 extern unsigned char native_irq_return_iret
[];
357 * If IRET takes a non-IST fault on the espfix64 stack, then we
358 * end up promoting it to a doublefault. In that case, take
359 * advantage of the fact that we're not using the normal (TSS.sp0)
360 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
361 * and then modify our own IRET frame so that, when we return,
362 * we land directly at the #GP(0) vector with the stack already
363 * set up according to its expectations.
365 * The net result is that our #GP handler will think that we
366 * entered from usermode with the bad user context.
368 * No need for nmi_enter() here because we don't use RCU.
370 if (((long)regs
->sp
>> P4D_SHIFT
) == ESPFIX_PGD_ENTRY
&&
371 regs
->cs
== __KERNEL_CS
&&
372 regs
->ip
== (unsigned long)native_irq_return_iret
)
374 struct pt_regs
*gpregs
= (struct pt_regs
*)this_cpu_read(cpu_tss_rw
.x86_tss
.sp0
) - 1;
375 unsigned long *p
= (unsigned long *)regs
->sp
;
378 * regs->sp points to the failing IRET frame on the
379 * ESPFIX64 stack. Copy it to the entry stack. This fills
380 * in gpregs->ss through gpregs->ip.
385 gpregs
->flags
= p
[2];
388 gpregs
->orig_ax
= 0; /* Missing (lost) #GP error code */
391 * Adjust our frame so that we return straight to the #GP
392 * vector with the expected RSP value. This is safe because
393 * we won't enable interupts or schedule before we invoke
394 * general_protection, so nothing will clobber the stack
395 * frame we just set up.
397 * We will enter general_protection with kernel GSBASE,
398 * which is what the stub expects, given that the faulting
399 * RIP will be the IRET instruction.
401 regs
->ip
= (unsigned long)asm_exc_general_protection
;
402 regs
->sp
= (unsigned long)&gpregs
->orig_ax
;
408 idtentry_enter_nmi(regs
);
409 instrumentation_begin();
410 notify_die(DIE_TRAP
, str
, regs
, error_code
, X86_TRAP_DF
, SIGSEGV
);
412 tsk
->thread
.error_code
= error_code
;
413 tsk
->thread
.trap_nr
= X86_TRAP_DF
;
415 #ifdef CONFIG_VMAP_STACK
417 * If we overflow the stack into a guard page, the CPU will fail
418 * to deliver #PF and will send #DF instead. Similarly, if we
419 * take any non-IST exception while too close to the bottom of
420 * the stack, the processor will get a page fault while
421 * delivering the exception and will generate a double fault.
423 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
424 * Page-Fault Exception (#PF):
426 * Processors update CR2 whenever a page fault is detected. If a
427 * second page fault occurs while an earlier page fault is being
428 * delivered, the faulting linear address of the second fault will
429 * overwrite the contents of CR2 (replacing the previous
430 * address). These updates to CR2 occur even if the page fault
431 * results in a double fault or occurs during the delivery of a
434 * The logic below has a small possibility of incorrectly diagnosing
435 * some errors as stack overflows. For example, if the IDT or GDT
436 * gets corrupted such that #GP delivery fails due to a bad descriptor
437 * causing #GP and we hit this condition while CR2 coincidentally
438 * points to the stack guard page, we'll think we overflowed the
439 * stack. Given that we're going to panic one way or another
440 * if this happens, this isn't necessarily worth fixing.
442 * If necessary, we could improve the test by only diagnosing
443 * a stack overflow if the saved RSP points within 47 bytes of
444 * the bottom of the stack: if RSP == tsk_stack + 48 and we
445 * take an exception, the stack is already aligned and there
446 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
447 * possible error code, so a stack overflow would *not* double
448 * fault. With any less space left, exception delivery could
449 * fail, and, as a practical matter, we've overflowed the
450 * stack even if the actual trigger for the double fault was
453 if ((unsigned long)task_stack_page(tsk
) - 1 - address
< PAGE_SIZE
) {
454 handle_stack_overflow("kernel stack overflow (double-fault)",
459 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code
);
460 die("double fault", regs
, error_code
);
461 panic("Machine halted.");
462 instrumentation_end();
465 DEFINE_IDTENTRY(exc_bounds
)
467 if (notify_die(DIE_TRAP
, "bounds", regs
, 0,
468 X86_TRAP_BR
, SIGSEGV
) == NOTIFY_STOP
)
470 cond_local_irq_enable(regs
);
472 if (!user_mode(regs
))
473 die("bounds", regs
, 0);
475 do_trap(X86_TRAP_BR
, SIGSEGV
, "bounds", regs
, 0, 0, NULL
);
477 cond_local_irq_disable(regs
);
480 enum kernel_gp_hint
{
487 * When an uncaught #GP occurs, try to determine the memory address accessed by
488 * the instruction and return that address to the caller. Also, try to figure
489 * out whether any part of the access to that address was non-canonical.
491 static enum kernel_gp_hint
get_kernel_gp_address(struct pt_regs
*regs
,
494 u8 insn_buf
[MAX_INSN_SIZE
];
497 if (copy_from_kernel_nofault(insn_buf
, (void *)regs
->ip
,
501 kernel_insn_init(&insn
, insn_buf
, MAX_INSN_SIZE
);
502 insn_get_modrm(&insn
);
505 *addr
= (unsigned long)insn_get_addr_ref(&insn
, regs
);
512 * - the operand is not in the kernel half
513 * - the last byte of the operand is not in the user canonical half
515 if (*addr
< ~__VIRTUAL_MASK
&&
516 *addr
+ insn
.opnd_bytes
- 1 > __VIRTUAL_MASK
)
517 return GP_NON_CANONICAL
;
523 #define GPFSTR "general protection fault"
525 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection
)
527 char desc
[sizeof(GPFSTR
) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR
;
528 enum kernel_gp_hint hint
= GP_NO_HINT
;
529 struct task_struct
*tsk
;
530 unsigned long gp_addr
;
533 cond_local_irq_enable(regs
);
535 if (static_cpu_has(X86_FEATURE_UMIP
)) {
536 if (user_mode(regs
) && fixup_umip_exception(regs
))
540 if (v8086_mode(regs
)) {
542 handle_vm86_fault((struct kernel_vm86_regs
*) regs
, error_code
);
549 if (user_mode(regs
)) {
550 tsk
->thread
.error_code
= error_code
;
551 tsk
->thread
.trap_nr
= X86_TRAP_GP
;
553 show_signal(tsk
, SIGSEGV
, "", desc
, regs
, error_code
);
558 if (fixup_exception(regs
, X86_TRAP_GP
, error_code
, 0))
561 tsk
->thread
.error_code
= error_code
;
562 tsk
->thread
.trap_nr
= X86_TRAP_GP
;
565 * To be potentially processing a kprobe fault and to trust the result
566 * from kprobe_running(), we have to be non-preemptible.
568 if (!preemptible() &&
570 kprobe_fault_handler(regs
, X86_TRAP_GP
))
573 ret
= notify_die(DIE_GPF
, desc
, regs
, error_code
, X86_TRAP_GP
, SIGSEGV
);
574 if (ret
== NOTIFY_STOP
)
578 snprintf(desc
, sizeof(desc
), "segment-related " GPFSTR
);
580 hint
= get_kernel_gp_address(regs
, &gp_addr
);
582 if (hint
!= GP_NO_HINT
)
583 snprintf(desc
, sizeof(desc
), GPFSTR
", %s 0x%lx",
584 (hint
== GP_NON_CANONICAL
) ? "probably for non-canonical address"
585 : "maybe for address",
589 * KASAN is interested only in the non-canonical case, clear it
592 if (hint
!= GP_NON_CANONICAL
)
595 die_addr(desc
, regs
, error_code
, gp_addr
);
598 cond_local_irq_disable(regs
);
601 static bool do_int3(struct pt_regs
*regs
)
605 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
606 if (kgdb_ll_trap(DIE_INT3
, "int3", regs
, 0, X86_TRAP_BP
,
607 SIGTRAP
) == NOTIFY_STOP
)
609 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
611 #ifdef CONFIG_KPROBES
612 if (kprobe_int3_handler(regs
))
615 res
= notify_die(DIE_INT3
, "int3", regs
, 0, X86_TRAP_BP
, SIGTRAP
);
617 return res
== NOTIFY_STOP
;
620 static void do_int3_user(struct pt_regs
*regs
)
625 cond_local_irq_enable(regs
);
626 do_trap(X86_TRAP_BP
, SIGTRAP
, "int3", regs
, 0, 0, NULL
);
627 cond_local_irq_disable(regs
);
630 DEFINE_IDTENTRY_RAW(exc_int3
)
633 * poke_int3_handler() is completely self contained code; it does (and
634 * must) *NOT* call out to anything, lest it hits upon yet another
637 if (poke_int3_handler(regs
))
641 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
642 * and therefore can trigger INT3, hence poke_int3_handler() must
643 * be done before. If the entry came from kernel mode, then use
644 * nmi_enter() because the INT3 could have been hit in any context
647 if (user_mode(regs
)) {
648 irqentry_enter_from_user_mode(regs
);
649 instrumentation_begin();
651 instrumentation_end();
652 irqentry_exit_to_user_mode(regs
);
654 bool irq_state
= idtentry_enter_nmi(regs
);
655 instrumentation_begin();
657 die("int3", regs
, 0);
658 instrumentation_end();
659 idtentry_exit_nmi(regs
, irq_state
);
665 * Help handler running on a per-cpu (IST or entry trampoline) stack
666 * to switch to the normal thread stack if the interrupted code was in
667 * user mode. The actual stack switch is done in entry_64.S
669 asmlinkage __visible noinstr
struct pt_regs
*sync_regs(struct pt_regs
*eregs
)
671 struct pt_regs
*regs
= (struct pt_regs
*)this_cpu_read(cpu_current_top_of_stack
) - 1;
677 #ifdef CONFIG_AMD_MEM_ENCRYPT
678 asmlinkage __visible noinstr
struct pt_regs
*vc_switch_off_ist(struct pt_regs
*regs
)
680 unsigned long sp
, *stack
;
681 struct stack_info info
;
682 struct pt_regs
*regs_ret
;
685 * In the SYSCALL entry path the RSP value comes from user-space - don't
686 * trust it and switch to the current kernel stack
688 if (regs
->ip
>= (unsigned long)entry_SYSCALL_64
&&
689 regs
->ip
< (unsigned long)entry_SYSCALL_64_safe_stack
) {
690 sp
= this_cpu_read(cpu_current_top_of_stack
);
695 * From here on the RSP value is trusted. Now check whether entry
696 * happened from a safe stack. Not safe are the entry or unknown stacks,
697 * use the fall-back stack instead in this case.
700 stack
= (unsigned long *)sp
;
702 if (!get_stack_info_noinstr(stack
, current
, &info
) || info
.type
== STACK_TYPE_ENTRY
||
703 info
.type
>= STACK_TYPE_EXCEPTION_LAST
)
704 sp
= __this_cpu_ist_top_va(VC2
);
708 * Found a safe stack - switch to it as if the entry didn't happen via
709 * IST stack. The code below only copies pt_regs, the real switch happens
712 sp
= ALIGN_DOWN(sp
, 8) - sizeof(*regs_ret
);
714 regs_ret
= (struct pt_regs
*)sp
;
721 struct bad_iret_stack
{
722 void *error_entry_ret
;
726 asmlinkage __visible noinstr
727 struct bad_iret_stack
*fixup_bad_iret(struct bad_iret_stack
*s
)
730 * This is called from entry_64.S early in handling a fault
731 * caused by a bad iret to user mode. To handle the fault
732 * correctly, we want to move our stack frame to where it would
733 * be had we entered directly on the entry stack (rather than
734 * just below the IRET frame) and we want to pretend that the
735 * exception came from the IRET target.
737 struct bad_iret_stack tmp
, *new_stack
=
738 (struct bad_iret_stack
*)__this_cpu_read(cpu_tss_rw
.x86_tss
.sp0
) - 1;
740 /* Copy the IRET target to the temporary storage. */
741 __memcpy(&tmp
.regs
.ip
, (void *)s
->regs
.sp
, 5*8);
743 /* Copy the remainder of the stack from the current stack. */
744 __memcpy(&tmp
, s
, offsetof(struct bad_iret_stack
, regs
.ip
));
746 /* Update the entry stack */
747 __memcpy(new_stack
, &tmp
, sizeof(tmp
));
749 BUG_ON(!user_mode(&new_stack
->regs
));
754 static bool is_sysenter_singlestep(struct pt_regs
*regs
)
757 * We don't try for precision here. If we're anywhere in the region of
758 * code that can be single-stepped in the SYSENTER entry path, then
759 * assume that this is a useless single-step trap due to SYSENTER
760 * being invoked with TF set. (We don't know in advance exactly
761 * which instructions will be hit because BTF could plausibly
765 return (regs
->ip
- (unsigned long)__begin_SYSENTER_singlestep_region
) <
766 (unsigned long)__end_SYSENTER_singlestep_region
-
767 (unsigned long)__begin_SYSENTER_singlestep_region
;
768 #elif defined(CONFIG_IA32_EMULATION)
769 return (regs
->ip
- (unsigned long)entry_SYSENTER_compat
) <
770 (unsigned long)__end_entry_SYSENTER_compat
-
771 (unsigned long)entry_SYSENTER_compat
;
777 static __always_inline
unsigned long debug_read_clear_dr6(void)
782 * The Intel SDM says:
784 * Certain debug exceptions may clear bits 0-3. The remaining
785 * contents of the DR6 register are never cleared by the
786 * processor. To avoid confusion in identifying debug
787 * exceptions, debug handlers should clear the register before
788 * returning to the interrupted task.
790 * Keep it simple: clear DR6 immediately.
792 get_debugreg(dr6
, 6);
794 /* Filter out all the reserved bits which are preset to 1 */
795 dr6
&= ~DR6_RESERVED
;
801 * Our handling of the processor debug registers is non-trivial.
802 * We do not clear them on entry and exit from the kernel. Therefore
803 * it is possible to get a watchpoint trap here from inside the kernel.
804 * However, the code in ./ptrace.c has ensured that the user can
805 * only set watchpoints on userspace addresses. Therefore the in-kernel
806 * watchpoint trap can only occur in code which is reading/writing
807 * from user space. Such code must not hold kernel locks (since it
808 * can equally take a page fault), therefore it is safe to call
809 * force_sig_info even though that claims and releases locks.
811 * Code in ./signal.c ensures that the debug control register
812 * is restored before we deliver any signal, and therefore that
813 * user code runs with the correct debug control register even though
816 * Being careful here means that we don't have to be as careful in a
817 * lot of more complicated places (task switching can be a bit lazy
818 * about restoring all the debug state, and ptrace doesn't have to
819 * find every occurrence of the TF bit that could be saved away even
822 * May run on IST stack.
824 static void handle_debug(struct pt_regs
*regs
, unsigned long dr6
, bool user
)
826 struct task_struct
*tsk
= current
;
831 * The SDM says "The processor clears the BTF flag when it
832 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
833 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
835 clear_thread_flag(TIF_BLOCKSTEP
);
838 * If DR6 is zero, no point in trying to handle it. The kernel is
845 * If dr6 has no reason to give us about the origin of this trap,
846 * then it's very likely the result of an icebp/int01 trap.
847 * User wants a sigtrap for that.
849 user_icebp
= user
&& !dr6
;
851 /* Store the virtualized DR6 value */
852 tsk
->thread
.debugreg6
= dr6
;
854 #ifdef CONFIG_KPROBES
855 if (kprobe_debug_handler(regs
)) {
860 if (notify_die(DIE_DEBUG
, "debug", regs
, (long)&dr6
, 0,
861 SIGTRAP
) == NOTIFY_STOP
) {
865 /* It's safe to allow irq's after DR6 has been saved */
866 cond_local_irq_enable(regs
);
868 if (v8086_mode(regs
)) {
869 handle_vm86_trap((struct kernel_vm86_regs
*) regs
, 0,
874 if (WARN_ON_ONCE((dr6
& DR_STEP
) && !user_mode(regs
))) {
876 * Historical junk that used to handle SYSENTER single-stepping.
877 * This should be unreachable now. If we survive for a while
878 * without anyone hitting this warning, we'll turn this into
881 tsk
->thread
.debugreg6
&= ~DR_STEP
;
882 set_tsk_thread_flag(tsk
, TIF_SINGLESTEP
);
883 regs
->flags
&= ~X86_EFLAGS_TF
;
886 si_code
= get_si_code(tsk
->thread
.debugreg6
);
887 if (tsk
->thread
.debugreg6
& (DR_STEP
| DR_TRAP_BITS
) || user_icebp
)
888 send_sigtrap(regs
, 0, si_code
);
891 cond_local_irq_disable(regs
);
894 static __always_inline
void exc_debug_kernel(struct pt_regs
*regs
,
898 * Disable breakpoints during exception handling; recursive exceptions
899 * are exceedingly 'fun'.
901 * Since this function is NOKPROBE, and that also applies to
902 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
903 * HW_BREAKPOINT_W on our stack)
905 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
906 * includes the entry stack is excluded for everything.
908 unsigned long dr7
= local_db_save();
909 bool irq_state
= idtentry_enter_nmi(regs
);
910 instrumentation_begin();
913 * If something gets miswired and we end up here for a user mode
914 * #DB, we will malfunction.
916 WARN_ON_ONCE(user_mode(regs
));
919 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
920 * watchpoint at the same time then that will still be handled.
922 if ((dr6
& DR_STEP
) && is_sysenter_singlestep(regs
))
925 handle_debug(regs
, dr6
, false);
927 instrumentation_end();
928 idtentry_exit_nmi(regs
, irq_state
);
930 local_db_restore(dr7
);
933 static __always_inline
void exc_debug_user(struct pt_regs
*regs
,
937 * If something gets miswired and we end up here for a kernel mode
938 * #DB, we will malfunction.
940 WARN_ON_ONCE(!user_mode(regs
));
943 * NB: We can't easily clear DR7 here because
944 * idtentry_exit_to_usermode() can invoke ptrace, schedule, access
945 * user memory, etc. This means that a recursive #DB is possible. If
946 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
947 * Since we're not on the IST stack right now, everything will be
951 irqentry_enter_from_user_mode(regs
);
952 instrumentation_begin();
954 handle_debug(regs
, dr6
, true);
956 instrumentation_end();
957 irqentry_exit_to_user_mode(regs
);
961 /* IST stack entry */
962 DEFINE_IDTENTRY_DEBUG(exc_debug
)
964 exc_debug_kernel(regs
, debug_read_clear_dr6());
967 /* User entry, runs on regular task stack */
968 DEFINE_IDTENTRY_DEBUG_USER(exc_debug
)
970 exc_debug_user(regs
, debug_read_clear_dr6());
973 /* 32 bit does not have separate entry points. */
974 DEFINE_IDTENTRY_RAW(exc_debug
)
976 unsigned long dr6
= debug_read_clear_dr6();
979 exc_debug_user(regs
, dr6
);
981 exc_debug_kernel(regs
, dr6
);
986 * Note that we play around with the 'TS' bit in an attempt to get
987 * the correct behaviour even in the presence of the asynchronous
990 static void math_error(struct pt_regs
*regs
, int trapnr
)
992 struct task_struct
*task
= current
;
993 struct fpu
*fpu
= &task
->thread
.fpu
;
995 char *str
= (trapnr
== X86_TRAP_MF
) ? "fpu exception" :
998 cond_local_irq_enable(regs
);
1000 if (!user_mode(regs
)) {
1001 if (fixup_exception(regs
, trapnr
, 0, 0))
1004 task
->thread
.error_code
= 0;
1005 task
->thread
.trap_nr
= trapnr
;
1007 if (notify_die(DIE_TRAP
, str
, regs
, 0, trapnr
,
1008 SIGFPE
) != NOTIFY_STOP
)
1014 * Save the info for the exception handler and clear the error.
1018 task
->thread
.trap_nr
= trapnr
;
1019 task
->thread
.error_code
= 0;
1021 si_code
= fpu__exception_code(fpu
, trapnr
);
1022 /* Retry when we get spurious exceptions: */
1026 force_sig_fault(SIGFPE
, si_code
,
1027 (void __user
*)uprobe_get_trap_addr(regs
));
1029 cond_local_irq_disable(regs
);
1032 DEFINE_IDTENTRY(exc_coprocessor_error
)
1034 math_error(regs
, X86_TRAP_MF
);
1037 DEFINE_IDTENTRY(exc_simd_coprocessor_error
)
1039 if (IS_ENABLED(CONFIG_X86_INVD_BUG
)) {
1040 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1041 if (!static_cpu_has(X86_FEATURE_XMM
)) {
1042 __exc_general_protection(regs
, 0);
1046 math_error(regs
, X86_TRAP_XF
);
1049 DEFINE_IDTENTRY(exc_spurious_interrupt_bug
)
1052 * This addresses a Pentium Pro Erratum:
1054 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1055 * Virtual Wire mode implemented through the local APIC, an
1056 * interrupt vector of 0Fh (Intel reserved encoding) may be
1057 * generated by the local APIC (Int 15). This vector may be
1058 * generated upon receipt of a spurious interrupt (an interrupt
1059 * which is removed before the system receives the INTA sequence)
1060 * instead of the programmed 8259 spurious interrupt vector.
1062 * IMPLICATION: The spurious interrupt vector programmed in the
1063 * 8259 is normally handled by an operating system's spurious
1064 * interrupt handler. However, a vector of 0Fh is unknown to some
1065 * operating systems, which would crash if this erratum occurred.
1067 * In theory this could be limited to 32bit, but the handler is not
1068 * hurting and who knows which other CPUs suffer from this.
1072 DEFINE_IDTENTRY(exc_device_not_available
)
1074 unsigned long cr0
= read_cr0();
1076 #ifdef CONFIG_MATH_EMULATION
1077 if (!boot_cpu_has(X86_FEATURE_FPU
) && (cr0
& X86_CR0_EM
)) {
1078 struct math_emu_info info
= { };
1080 cond_local_irq_enable(regs
);
1083 math_emulate(&info
);
1085 cond_local_irq_disable(regs
);
1090 /* This should not happen. */
1091 if (WARN(cr0
& X86_CR0_TS
, "CR0.TS was set")) {
1092 /* Try to fix it up and carry on. */
1093 write_cr0(cr0
& ~X86_CR0_TS
);
1096 * Something terrible happened, and we're better off trying
1097 * to kill the task than getting stuck in a never-ending
1098 * loop of #NM faults.
1100 die("unexpected #NM exception", regs
, 0);
1104 #ifdef CONFIG_X86_32
1105 DEFINE_IDTENTRY_SW(iret_error
)
1108 if (notify_die(DIE_TRAP
, "iret exception", regs
, 0,
1109 X86_TRAP_IRET
, SIGILL
) != NOTIFY_STOP
) {
1110 do_trap(X86_TRAP_IRET
, SIGILL
, "iret exception", regs
, 0,
1111 ILL_BADSTK
, (void __user
*)NULL
);
1113 local_irq_disable();
1117 void __init
trap_init(void)
1119 /* Init cpu_entry_area before IST entries are set up */
1120 setup_cpu_entry_areas();
1122 /* Init GHCB memory pages when running as an SEV-ES guest */
1123 sev_es_init_vc_handling();
1128 * Should be a barrier for any external CPU state:
1132 idt_setup_ist_traps();