]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/traps.c
x86/entry/64: Add entry code for #VC handler
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / traps.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9 /*
10 * Handle hardware traps and faults.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40 #include <linux/hardirq.h>
41 #include <linux/atomic.h>
42
43 #include <asm/stacktrace.h>
44 #include <asm/processor.h>
45 #include <asm/debugreg.h>
46 #include <asm/realmode.h>
47 #include <asm/text-patching.h>
48 #include <asm/ftrace.h>
49 #include <asm/traps.h>
50 #include <asm/desc.h>
51 #include <asm/fpu/internal.h>
52 #include <asm/cpu.h>
53 #include <asm/cpu_entry_area.h>
54 #include <asm/mce.h>
55 #include <asm/fixmap.h>
56 #include <asm/mach_traps.h>
57 #include <asm/alternative.h>
58 #include <asm/fpu/xstate.h>
59 #include <asm/vm86.h>
60 #include <asm/umip.h>
61 #include <asm/insn.h>
62 #include <asm/insn-eval.h>
63
64 #ifdef CONFIG_X86_64
65 #include <asm/x86_init.h>
66 #include <asm/proto.h>
67 #else
68 #include <asm/processor-flags.h>
69 #include <asm/setup.h>
70 #include <asm/proto.h>
71 #endif
72
73 DECLARE_BITMAP(system_vectors, NR_VECTORS);
74
75 static inline void cond_local_irq_enable(struct pt_regs *regs)
76 {
77 if (regs->flags & X86_EFLAGS_IF)
78 local_irq_enable();
79 }
80
81 static inline void cond_local_irq_disable(struct pt_regs *regs)
82 {
83 if (regs->flags & X86_EFLAGS_IF)
84 local_irq_disable();
85 }
86
87 __always_inline int is_valid_bugaddr(unsigned long addr)
88 {
89 if (addr < TASK_SIZE_MAX)
90 return 0;
91
92 /*
93 * We got #UD, if the text isn't readable we'd have gotten
94 * a different exception.
95 */
96 return *(unsigned short *)addr == INSN_UD2;
97 }
98
99 static nokprobe_inline int
100 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
101 struct pt_regs *regs, long error_code)
102 {
103 if (v8086_mode(regs)) {
104 /*
105 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
106 * On nmi (interrupt 2), do_trap should not be called.
107 */
108 if (trapnr < X86_TRAP_UD) {
109 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
110 error_code, trapnr))
111 return 0;
112 }
113 } else if (!user_mode(regs)) {
114 if (fixup_exception(regs, trapnr, error_code, 0))
115 return 0;
116
117 tsk->thread.error_code = error_code;
118 tsk->thread.trap_nr = trapnr;
119 die(str, regs, error_code);
120 }
121
122 /*
123 * We want error_code and trap_nr set for userspace faults and
124 * kernelspace faults which result in die(), but not
125 * kernelspace faults which are fixed up. die() gives the
126 * process no chance to handle the signal and notice the
127 * kernel fault information, so that won't result in polluting
128 * the information about previously queued, but not yet
129 * delivered, faults. See also exc_general_protection below.
130 */
131 tsk->thread.error_code = error_code;
132 tsk->thread.trap_nr = trapnr;
133
134 return -1;
135 }
136
137 static void show_signal(struct task_struct *tsk, int signr,
138 const char *type, const char *desc,
139 struct pt_regs *regs, long error_code)
140 {
141 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
142 printk_ratelimit()) {
143 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
144 tsk->comm, task_pid_nr(tsk), type, desc,
145 regs->ip, regs->sp, error_code);
146 print_vma_addr(KERN_CONT " in ", regs->ip);
147 pr_cont("\n");
148 }
149 }
150
151 static void
152 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
153 long error_code, int sicode, void __user *addr)
154 {
155 struct task_struct *tsk = current;
156
157 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
158 return;
159
160 show_signal(tsk, signr, "trap ", str, regs, error_code);
161
162 if (!sicode)
163 force_sig(signr);
164 else
165 force_sig_fault(signr, sicode, addr);
166 }
167 NOKPROBE_SYMBOL(do_trap);
168
169 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
170 unsigned long trapnr, int signr, int sicode, void __user *addr)
171 {
172 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
173
174 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
175 NOTIFY_STOP) {
176 cond_local_irq_enable(regs);
177 do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
178 cond_local_irq_disable(regs);
179 }
180 }
181
182 /*
183 * Posix requires to provide the address of the faulting instruction for
184 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
185 *
186 * This address is usually regs->ip, but when an uprobe moved the code out
187 * of line then regs->ip points to the XOL code which would confuse
188 * anything which analyzes the fault address vs. the unmodified binary. If
189 * a trap happened in XOL code then uprobe maps regs->ip back to the
190 * original instruction address.
191 */
192 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
193 {
194 return (void __user *)uprobe_get_trap_addr(regs);
195 }
196
197 DEFINE_IDTENTRY(exc_divide_error)
198 {
199 do_error_trap(regs, 0, "divide_error", X86_TRAP_DE, SIGFPE,
200 FPE_INTDIV, error_get_trap_addr(regs));
201 }
202
203 DEFINE_IDTENTRY(exc_overflow)
204 {
205 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
206 }
207
208 #ifdef CONFIG_X86_F00F_BUG
209 void handle_invalid_op(struct pt_regs *regs)
210 #else
211 static inline void handle_invalid_op(struct pt_regs *regs)
212 #endif
213 {
214 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
215 ILL_ILLOPN, error_get_trap_addr(regs));
216 }
217
218 static noinstr bool handle_bug(struct pt_regs *regs)
219 {
220 bool handled = false;
221
222 if (!is_valid_bugaddr(regs->ip))
223 return handled;
224
225 /*
226 * All lies, just get the WARN/BUG out.
227 */
228 instrumentation_begin();
229 /*
230 * Since we're emulating a CALL with exceptions, restore the interrupt
231 * state to what it was at the exception site.
232 */
233 if (regs->flags & X86_EFLAGS_IF)
234 raw_local_irq_enable();
235 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
236 regs->ip += LEN_UD2;
237 handled = true;
238 }
239 if (regs->flags & X86_EFLAGS_IF)
240 raw_local_irq_disable();
241 instrumentation_end();
242
243 return handled;
244 }
245
246 DEFINE_IDTENTRY_RAW(exc_invalid_op)
247 {
248 irqentry_state_t state;
249
250 /*
251 * We use UD2 as a short encoding for 'CALL __WARN', as such
252 * handle it before exception entry to avoid recursive WARN
253 * in case exception entry is the one triggering WARNs.
254 */
255 if (!user_mode(regs) && handle_bug(regs))
256 return;
257
258 state = irqentry_enter(regs);
259 instrumentation_begin();
260 handle_invalid_op(regs);
261 instrumentation_end();
262 irqentry_exit(regs, state);
263 }
264
265 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
266 {
267 do_error_trap(regs, 0, "coprocessor segment overrun",
268 X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
269 }
270
271 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
272 {
273 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
274 0, NULL);
275 }
276
277 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
278 {
279 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
280 SIGBUS, 0, NULL);
281 }
282
283 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
284 {
285 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
286 0, NULL);
287 }
288
289 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
290 {
291 char *str = "alignment check";
292
293 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
294 return;
295
296 if (!user_mode(regs))
297 die("Split lock detected\n", regs, error_code);
298
299 local_irq_enable();
300
301 if (handle_user_split_lock(regs, error_code))
302 return;
303
304 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
305 error_code, BUS_ADRALN, NULL);
306
307 local_irq_disable();
308 }
309
310 #ifdef CONFIG_VMAP_STACK
311 __visible void __noreturn handle_stack_overflow(const char *message,
312 struct pt_regs *regs,
313 unsigned long fault_address)
314 {
315 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
316 (void *)fault_address, current->stack,
317 (char *)current->stack + THREAD_SIZE - 1);
318 die(message, regs, 0);
319
320 /* Be absolutely certain we don't return. */
321 panic("%s", message);
322 }
323 #endif
324
325 /*
326 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
327 *
328 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the
329 * SDM's warnings about double faults being unrecoverable, returning works as
330 * expected. Presumably what the SDM actually means is that the CPU may get
331 * the register state wrong on entry, so returning could be a bad idea.
332 *
333 * Various CPU engineers have promised that double faults due to an IRET fault
334 * while the stack is read-only are, in fact, recoverable.
335 *
336 * On x86_32, this is entered through a task gate, and regs are synthesized
337 * from the TSS. Returning is, in principle, okay, but changes to regs will
338 * be lost. If, for some reason, we need to return to a context with modified
339 * regs, the shim code could be adjusted to synchronize the registers.
340 *
341 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
342 * to be read before doing anything else.
343 */
344 DEFINE_IDTENTRY_DF(exc_double_fault)
345 {
346 static const char str[] = "double fault";
347 struct task_struct *tsk = current;
348
349 #ifdef CONFIG_VMAP_STACK
350 unsigned long address = read_cr2();
351 #endif
352
353 #ifdef CONFIG_X86_ESPFIX64
354 extern unsigned char native_irq_return_iret[];
355
356 /*
357 * If IRET takes a non-IST fault on the espfix64 stack, then we
358 * end up promoting it to a doublefault. In that case, take
359 * advantage of the fact that we're not using the normal (TSS.sp0)
360 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
361 * and then modify our own IRET frame so that, when we return,
362 * we land directly at the #GP(0) vector with the stack already
363 * set up according to its expectations.
364 *
365 * The net result is that our #GP handler will think that we
366 * entered from usermode with the bad user context.
367 *
368 * No need for nmi_enter() here because we don't use RCU.
369 */
370 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
371 regs->cs == __KERNEL_CS &&
372 regs->ip == (unsigned long)native_irq_return_iret)
373 {
374 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
375 unsigned long *p = (unsigned long *)regs->sp;
376
377 /*
378 * regs->sp points to the failing IRET frame on the
379 * ESPFIX64 stack. Copy it to the entry stack. This fills
380 * in gpregs->ss through gpregs->ip.
381 *
382 */
383 gpregs->ip = p[0];
384 gpregs->cs = p[1];
385 gpregs->flags = p[2];
386 gpregs->sp = p[3];
387 gpregs->ss = p[4];
388 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
389
390 /*
391 * Adjust our frame so that we return straight to the #GP
392 * vector with the expected RSP value. This is safe because
393 * we won't enable interupts or schedule before we invoke
394 * general_protection, so nothing will clobber the stack
395 * frame we just set up.
396 *
397 * We will enter general_protection with kernel GSBASE,
398 * which is what the stub expects, given that the faulting
399 * RIP will be the IRET instruction.
400 */
401 regs->ip = (unsigned long)asm_exc_general_protection;
402 regs->sp = (unsigned long)&gpregs->orig_ax;
403
404 return;
405 }
406 #endif
407
408 idtentry_enter_nmi(regs);
409 instrumentation_begin();
410 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
411
412 tsk->thread.error_code = error_code;
413 tsk->thread.trap_nr = X86_TRAP_DF;
414
415 #ifdef CONFIG_VMAP_STACK
416 /*
417 * If we overflow the stack into a guard page, the CPU will fail
418 * to deliver #PF and will send #DF instead. Similarly, if we
419 * take any non-IST exception while too close to the bottom of
420 * the stack, the processor will get a page fault while
421 * delivering the exception and will generate a double fault.
422 *
423 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
424 * Page-Fault Exception (#PF):
425 *
426 * Processors update CR2 whenever a page fault is detected. If a
427 * second page fault occurs while an earlier page fault is being
428 * delivered, the faulting linear address of the second fault will
429 * overwrite the contents of CR2 (replacing the previous
430 * address). These updates to CR2 occur even if the page fault
431 * results in a double fault or occurs during the delivery of a
432 * double fault.
433 *
434 * The logic below has a small possibility of incorrectly diagnosing
435 * some errors as stack overflows. For example, if the IDT or GDT
436 * gets corrupted such that #GP delivery fails due to a bad descriptor
437 * causing #GP and we hit this condition while CR2 coincidentally
438 * points to the stack guard page, we'll think we overflowed the
439 * stack. Given that we're going to panic one way or another
440 * if this happens, this isn't necessarily worth fixing.
441 *
442 * If necessary, we could improve the test by only diagnosing
443 * a stack overflow if the saved RSP points within 47 bytes of
444 * the bottom of the stack: if RSP == tsk_stack + 48 and we
445 * take an exception, the stack is already aligned and there
446 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
447 * possible error code, so a stack overflow would *not* double
448 * fault. With any less space left, exception delivery could
449 * fail, and, as a practical matter, we've overflowed the
450 * stack even if the actual trigger for the double fault was
451 * something else.
452 */
453 if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) {
454 handle_stack_overflow("kernel stack overflow (double-fault)",
455 regs, address);
456 }
457 #endif
458
459 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
460 die("double fault", regs, error_code);
461 panic("Machine halted.");
462 instrumentation_end();
463 }
464
465 DEFINE_IDTENTRY(exc_bounds)
466 {
467 if (notify_die(DIE_TRAP, "bounds", regs, 0,
468 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
469 return;
470 cond_local_irq_enable(regs);
471
472 if (!user_mode(regs))
473 die("bounds", regs, 0);
474
475 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
476
477 cond_local_irq_disable(regs);
478 }
479
480 enum kernel_gp_hint {
481 GP_NO_HINT,
482 GP_NON_CANONICAL,
483 GP_CANONICAL
484 };
485
486 /*
487 * When an uncaught #GP occurs, try to determine the memory address accessed by
488 * the instruction and return that address to the caller. Also, try to figure
489 * out whether any part of the access to that address was non-canonical.
490 */
491 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
492 unsigned long *addr)
493 {
494 u8 insn_buf[MAX_INSN_SIZE];
495 struct insn insn;
496
497 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
498 MAX_INSN_SIZE))
499 return GP_NO_HINT;
500
501 kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE);
502 insn_get_modrm(&insn);
503 insn_get_sib(&insn);
504
505 *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
506 if (*addr == -1UL)
507 return GP_NO_HINT;
508
509 #ifdef CONFIG_X86_64
510 /*
511 * Check that:
512 * - the operand is not in the kernel half
513 * - the last byte of the operand is not in the user canonical half
514 */
515 if (*addr < ~__VIRTUAL_MASK &&
516 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
517 return GP_NON_CANONICAL;
518 #endif
519
520 return GP_CANONICAL;
521 }
522
523 #define GPFSTR "general protection fault"
524
525 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
526 {
527 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
528 enum kernel_gp_hint hint = GP_NO_HINT;
529 struct task_struct *tsk;
530 unsigned long gp_addr;
531 int ret;
532
533 cond_local_irq_enable(regs);
534
535 if (static_cpu_has(X86_FEATURE_UMIP)) {
536 if (user_mode(regs) && fixup_umip_exception(regs))
537 goto exit;
538 }
539
540 if (v8086_mode(regs)) {
541 local_irq_enable();
542 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
543 local_irq_disable();
544 return;
545 }
546
547 tsk = current;
548
549 if (user_mode(regs)) {
550 tsk->thread.error_code = error_code;
551 tsk->thread.trap_nr = X86_TRAP_GP;
552
553 show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
554 force_sig(SIGSEGV);
555 goto exit;
556 }
557
558 if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
559 goto exit;
560
561 tsk->thread.error_code = error_code;
562 tsk->thread.trap_nr = X86_TRAP_GP;
563
564 /*
565 * To be potentially processing a kprobe fault and to trust the result
566 * from kprobe_running(), we have to be non-preemptible.
567 */
568 if (!preemptible() &&
569 kprobe_running() &&
570 kprobe_fault_handler(regs, X86_TRAP_GP))
571 goto exit;
572
573 ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
574 if (ret == NOTIFY_STOP)
575 goto exit;
576
577 if (error_code)
578 snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
579 else
580 hint = get_kernel_gp_address(regs, &gp_addr);
581
582 if (hint != GP_NO_HINT)
583 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
584 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
585 : "maybe for address",
586 gp_addr);
587
588 /*
589 * KASAN is interested only in the non-canonical case, clear it
590 * otherwise.
591 */
592 if (hint != GP_NON_CANONICAL)
593 gp_addr = 0;
594
595 die_addr(desc, regs, error_code, gp_addr);
596
597 exit:
598 cond_local_irq_disable(regs);
599 }
600
601 static bool do_int3(struct pt_regs *regs)
602 {
603 int res;
604
605 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
606 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
607 SIGTRAP) == NOTIFY_STOP)
608 return true;
609 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
610
611 #ifdef CONFIG_KPROBES
612 if (kprobe_int3_handler(regs))
613 return true;
614 #endif
615 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
616
617 return res == NOTIFY_STOP;
618 }
619
620 static void do_int3_user(struct pt_regs *regs)
621 {
622 if (do_int3(regs))
623 return;
624
625 cond_local_irq_enable(regs);
626 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
627 cond_local_irq_disable(regs);
628 }
629
630 DEFINE_IDTENTRY_RAW(exc_int3)
631 {
632 /*
633 * poke_int3_handler() is completely self contained code; it does (and
634 * must) *NOT* call out to anything, lest it hits upon yet another
635 * INT3.
636 */
637 if (poke_int3_handler(regs))
638 return;
639
640 /*
641 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
642 * and therefore can trigger INT3, hence poke_int3_handler() must
643 * be done before. If the entry came from kernel mode, then use
644 * nmi_enter() because the INT3 could have been hit in any context
645 * including NMI.
646 */
647 if (user_mode(regs)) {
648 irqentry_enter_from_user_mode(regs);
649 instrumentation_begin();
650 do_int3_user(regs);
651 instrumentation_end();
652 irqentry_exit_to_user_mode(regs);
653 } else {
654 bool irq_state = idtentry_enter_nmi(regs);
655 instrumentation_begin();
656 if (!do_int3(regs))
657 die("int3", regs, 0);
658 instrumentation_end();
659 idtentry_exit_nmi(regs, irq_state);
660 }
661 }
662
663 #ifdef CONFIG_X86_64
664 /*
665 * Help handler running on a per-cpu (IST or entry trampoline) stack
666 * to switch to the normal thread stack if the interrupted code was in
667 * user mode. The actual stack switch is done in entry_64.S
668 */
669 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
670 {
671 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
672 if (regs != eregs)
673 *regs = *eregs;
674 return regs;
675 }
676
677 #ifdef CONFIG_AMD_MEM_ENCRYPT
678 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
679 {
680 unsigned long sp, *stack;
681 struct stack_info info;
682 struct pt_regs *regs_ret;
683
684 /*
685 * In the SYSCALL entry path the RSP value comes from user-space - don't
686 * trust it and switch to the current kernel stack
687 */
688 if (regs->ip >= (unsigned long)entry_SYSCALL_64 &&
689 regs->ip < (unsigned long)entry_SYSCALL_64_safe_stack) {
690 sp = this_cpu_read(cpu_current_top_of_stack);
691 goto sync;
692 }
693
694 /*
695 * From here on the RSP value is trusted. Now check whether entry
696 * happened from a safe stack. Not safe are the entry or unknown stacks,
697 * use the fall-back stack instead in this case.
698 */
699 sp = regs->sp;
700 stack = (unsigned long *)sp;
701
702 if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
703 info.type >= STACK_TYPE_EXCEPTION_LAST)
704 sp = __this_cpu_ist_top_va(VC2);
705
706 sync:
707 /*
708 * Found a safe stack - switch to it as if the entry didn't happen via
709 * IST stack. The code below only copies pt_regs, the real switch happens
710 * in assembly code.
711 */
712 sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
713
714 regs_ret = (struct pt_regs *)sp;
715 *regs_ret = *regs;
716
717 return regs_ret;
718 }
719 #endif
720
721 struct bad_iret_stack {
722 void *error_entry_ret;
723 struct pt_regs regs;
724 };
725
726 asmlinkage __visible noinstr
727 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
728 {
729 /*
730 * This is called from entry_64.S early in handling a fault
731 * caused by a bad iret to user mode. To handle the fault
732 * correctly, we want to move our stack frame to where it would
733 * be had we entered directly on the entry stack (rather than
734 * just below the IRET frame) and we want to pretend that the
735 * exception came from the IRET target.
736 */
737 struct bad_iret_stack tmp, *new_stack =
738 (struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
739
740 /* Copy the IRET target to the temporary storage. */
741 __memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8);
742
743 /* Copy the remainder of the stack from the current stack. */
744 __memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip));
745
746 /* Update the entry stack */
747 __memcpy(new_stack, &tmp, sizeof(tmp));
748
749 BUG_ON(!user_mode(&new_stack->regs));
750 return new_stack;
751 }
752 #endif
753
754 static bool is_sysenter_singlestep(struct pt_regs *regs)
755 {
756 /*
757 * We don't try for precision here. If we're anywhere in the region of
758 * code that can be single-stepped in the SYSENTER entry path, then
759 * assume that this is a useless single-step trap due to SYSENTER
760 * being invoked with TF set. (We don't know in advance exactly
761 * which instructions will be hit because BTF could plausibly
762 * be set.)
763 */
764 #ifdef CONFIG_X86_32
765 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
766 (unsigned long)__end_SYSENTER_singlestep_region -
767 (unsigned long)__begin_SYSENTER_singlestep_region;
768 #elif defined(CONFIG_IA32_EMULATION)
769 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
770 (unsigned long)__end_entry_SYSENTER_compat -
771 (unsigned long)entry_SYSENTER_compat;
772 #else
773 return false;
774 #endif
775 }
776
777 static __always_inline unsigned long debug_read_clear_dr6(void)
778 {
779 unsigned long dr6;
780
781 /*
782 * The Intel SDM says:
783 *
784 * Certain debug exceptions may clear bits 0-3. The remaining
785 * contents of the DR6 register are never cleared by the
786 * processor. To avoid confusion in identifying debug
787 * exceptions, debug handlers should clear the register before
788 * returning to the interrupted task.
789 *
790 * Keep it simple: clear DR6 immediately.
791 */
792 get_debugreg(dr6, 6);
793 set_debugreg(0, 6);
794 /* Filter out all the reserved bits which are preset to 1 */
795 dr6 &= ~DR6_RESERVED;
796
797 return dr6;
798 }
799
800 /*
801 * Our handling of the processor debug registers is non-trivial.
802 * We do not clear them on entry and exit from the kernel. Therefore
803 * it is possible to get a watchpoint trap here from inside the kernel.
804 * However, the code in ./ptrace.c has ensured that the user can
805 * only set watchpoints on userspace addresses. Therefore the in-kernel
806 * watchpoint trap can only occur in code which is reading/writing
807 * from user space. Such code must not hold kernel locks (since it
808 * can equally take a page fault), therefore it is safe to call
809 * force_sig_info even though that claims and releases locks.
810 *
811 * Code in ./signal.c ensures that the debug control register
812 * is restored before we deliver any signal, and therefore that
813 * user code runs with the correct debug control register even though
814 * we clear it here.
815 *
816 * Being careful here means that we don't have to be as careful in a
817 * lot of more complicated places (task switching can be a bit lazy
818 * about restoring all the debug state, and ptrace doesn't have to
819 * find every occurrence of the TF bit that could be saved away even
820 * by user code)
821 *
822 * May run on IST stack.
823 */
824 static void handle_debug(struct pt_regs *regs, unsigned long dr6, bool user)
825 {
826 struct task_struct *tsk = current;
827 bool user_icebp;
828 int si_code;
829
830 /*
831 * The SDM says "The processor clears the BTF flag when it
832 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
833 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
834 */
835 clear_thread_flag(TIF_BLOCKSTEP);
836
837 /*
838 * If DR6 is zero, no point in trying to handle it. The kernel is
839 * not using INT1.
840 */
841 if (!user && !dr6)
842 return;
843
844 /*
845 * If dr6 has no reason to give us about the origin of this trap,
846 * then it's very likely the result of an icebp/int01 trap.
847 * User wants a sigtrap for that.
848 */
849 user_icebp = user && !dr6;
850
851 /* Store the virtualized DR6 value */
852 tsk->thread.debugreg6 = dr6;
853
854 #ifdef CONFIG_KPROBES
855 if (kprobe_debug_handler(regs)) {
856 return;
857 }
858 #endif
859
860 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, 0,
861 SIGTRAP) == NOTIFY_STOP) {
862 return;
863 }
864
865 /* It's safe to allow irq's after DR6 has been saved */
866 cond_local_irq_enable(regs);
867
868 if (v8086_mode(regs)) {
869 handle_vm86_trap((struct kernel_vm86_regs *) regs, 0,
870 X86_TRAP_DB);
871 goto out;
872 }
873
874 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
875 /*
876 * Historical junk that used to handle SYSENTER single-stepping.
877 * This should be unreachable now. If we survive for a while
878 * without anyone hitting this warning, we'll turn this into
879 * an oops.
880 */
881 tsk->thread.debugreg6 &= ~DR_STEP;
882 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
883 regs->flags &= ~X86_EFLAGS_TF;
884 }
885
886 si_code = get_si_code(tsk->thread.debugreg6);
887 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
888 send_sigtrap(regs, 0, si_code);
889
890 out:
891 cond_local_irq_disable(regs);
892 }
893
894 static __always_inline void exc_debug_kernel(struct pt_regs *regs,
895 unsigned long dr6)
896 {
897 /*
898 * Disable breakpoints during exception handling; recursive exceptions
899 * are exceedingly 'fun'.
900 *
901 * Since this function is NOKPROBE, and that also applies to
902 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
903 * HW_BREAKPOINT_W on our stack)
904 *
905 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
906 * includes the entry stack is excluded for everything.
907 */
908 unsigned long dr7 = local_db_save();
909 bool irq_state = idtentry_enter_nmi(regs);
910 instrumentation_begin();
911
912 /*
913 * If something gets miswired and we end up here for a user mode
914 * #DB, we will malfunction.
915 */
916 WARN_ON_ONCE(user_mode(regs));
917
918 /*
919 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
920 * watchpoint at the same time then that will still be handled.
921 */
922 if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
923 dr6 &= ~DR_STEP;
924
925 handle_debug(regs, dr6, false);
926
927 instrumentation_end();
928 idtentry_exit_nmi(regs, irq_state);
929
930 local_db_restore(dr7);
931 }
932
933 static __always_inline void exc_debug_user(struct pt_regs *regs,
934 unsigned long dr6)
935 {
936 /*
937 * If something gets miswired and we end up here for a kernel mode
938 * #DB, we will malfunction.
939 */
940 WARN_ON_ONCE(!user_mode(regs));
941
942 /*
943 * NB: We can't easily clear DR7 here because
944 * idtentry_exit_to_usermode() can invoke ptrace, schedule, access
945 * user memory, etc. This means that a recursive #DB is possible. If
946 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
947 * Since we're not on the IST stack right now, everything will be
948 * fine.
949 */
950
951 irqentry_enter_from_user_mode(regs);
952 instrumentation_begin();
953
954 handle_debug(regs, dr6, true);
955
956 instrumentation_end();
957 irqentry_exit_to_user_mode(regs);
958 }
959
960 #ifdef CONFIG_X86_64
961 /* IST stack entry */
962 DEFINE_IDTENTRY_DEBUG(exc_debug)
963 {
964 exc_debug_kernel(regs, debug_read_clear_dr6());
965 }
966
967 /* User entry, runs on regular task stack */
968 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
969 {
970 exc_debug_user(regs, debug_read_clear_dr6());
971 }
972 #else
973 /* 32 bit does not have separate entry points. */
974 DEFINE_IDTENTRY_RAW(exc_debug)
975 {
976 unsigned long dr6 = debug_read_clear_dr6();
977
978 if (user_mode(regs))
979 exc_debug_user(regs, dr6);
980 else
981 exc_debug_kernel(regs, dr6);
982 }
983 #endif
984
985 /*
986 * Note that we play around with the 'TS' bit in an attempt to get
987 * the correct behaviour even in the presence of the asynchronous
988 * IRQ13 behaviour
989 */
990 static void math_error(struct pt_regs *regs, int trapnr)
991 {
992 struct task_struct *task = current;
993 struct fpu *fpu = &task->thread.fpu;
994 int si_code;
995 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
996 "simd exception";
997
998 cond_local_irq_enable(regs);
999
1000 if (!user_mode(regs)) {
1001 if (fixup_exception(regs, trapnr, 0, 0))
1002 goto exit;
1003
1004 task->thread.error_code = 0;
1005 task->thread.trap_nr = trapnr;
1006
1007 if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1008 SIGFPE) != NOTIFY_STOP)
1009 die(str, regs, 0);
1010 goto exit;
1011 }
1012
1013 /*
1014 * Save the info for the exception handler and clear the error.
1015 */
1016 fpu__save(fpu);
1017
1018 task->thread.trap_nr = trapnr;
1019 task->thread.error_code = 0;
1020
1021 si_code = fpu__exception_code(fpu, trapnr);
1022 /* Retry when we get spurious exceptions: */
1023 if (!si_code)
1024 goto exit;
1025
1026 force_sig_fault(SIGFPE, si_code,
1027 (void __user *)uprobe_get_trap_addr(regs));
1028 exit:
1029 cond_local_irq_disable(regs);
1030 }
1031
1032 DEFINE_IDTENTRY(exc_coprocessor_error)
1033 {
1034 math_error(regs, X86_TRAP_MF);
1035 }
1036
1037 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1038 {
1039 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1040 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1041 if (!static_cpu_has(X86_FEATURE_XMM)) {
1042 __exc_general_protection(regs, 0);
1043 return;
1044 }
1045 }
1046 math_error(regs, X86_TRAP_XF);
1047 }
1048
1049 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1050 {
1051 /*
1052 * This addresses a Pentium Pro Erratum:
1053 *
1054 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1055 * Virtual Wire mode implemented through the local APIC, an
1056 * interrupt vector of 0Fh (Intel reserved encoding) may be
1057 * generated by the local APIC (Int 15). This vector may be
1058 * generated upon receipt of a spurious interrupt (an interrupt
1059 * which is removed before the system receives the INTA sequence)
1060 * instead of the programmed 8259 spurious interrupt vector.
1061 *
1062 * IMPLICATION: The spurious interrupt vector programmed in the
1063 * 8259 is normally handled by an operating system's spurious
1064 * interrupt handler. However, a vector of 0Fh is unknown to some
1065 * operating systems, which would crash if this erratum occurred.
1066 *
1067 * In theory this could be limited to 32bit, but the handler is not
1068 * hurting and who knows which other CPUs suffer from this.
1069 */
1070 }
1071
1072 DEFINE_IDTENTRY(exc_device_not_available)
1073 {
1074 unsigned long cr0 = read_cr0();
1075
1076 #ifdef CONFIG_MATH_EMULATION
1077 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1078 struct math_emu_info info = { };
1079
1080 cond_local_irq_enable(regs);
1081
1082 info.regs = regs;
1083 math_emulate(&info);
1084
1085 cond_local_irq_disable(regs);
1086 return;
1087 }
1088 #endif
1089
1090 /* This should not happen. */
1091 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1092 /* Try to fix it up and carry on. */
1093 write_cr0(cr0 & ~X86_CR0_TS);
1094 } else {
1095 /*
1096 * Something terrible happened, and we're better off trying
1097 * to kill the task than getting stuck in a never-ending
1098 * loop of #NM faults.
1099 */
1100 die("unexpected #NM exception", regs, 0);
1101 }
1102 }
1103
1104 #ifdef CONFIG_X86_32
1105 DEFINE_IDTENTRY_SW(iret_error)
1106 {
1107 local_irq_enable();
1108 if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1109 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1110 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1111 ILL_BADSTK, (void __user *)NULL);
1112 }
1113 local_irq_disable();
1114 }
1115 #endif
1116
1117 void __init trap_init(void)
1118 {
1119 /* Init cpu_entry_area before IST entries are set up */
1120 setup_cpu_entry_areas();
1121
1122 /* Init GHCB memory pages when running as an SEV-ES guest */
1123 sev_es_init_vc_handling();
1124
1125 idt_setup_traps();
1126
1127 /*
1128 * Should be a barrier for any external CPU state:
1129 */
1130 cpu_init();
1131
1132 idt_setup_ist_traps();
1133 }