]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/traps.c
Merge tag 'upstream-4.13-rc1' of git://git.infradead.org/linux-ubifs
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / traps.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9 /*
10 * Handle hardware traps and faults.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40
41 #ifdef CONFIG_EISA
42 #include <linux/ioport.h>
43 #include <linux/eisa.h>
44 #endif
45
46 #if defined(CONFIG_EDAC)
47 #include <linux/edac.h>
48 #endif
49
50 #include <asm/kmemcheck.h>
51 #include <asm/stacktrace.h>
52 #include <asm/processor.h>
53 #include <asm/debugreg.h>
54 #include <linux/atomic.h>
55 #include <asm/text-patching.h>
56 #include <asm/ftrace.h>
57 #include <asm/traps.h>
58 #include <asm/desc.h>
59 #include <asm/fpu/internal.h>
60 #include <asm/mce.h>
61 #include <asm/fixmap.h>
62 #include <asm/mach_traps.h>
63 #include <asm/alternative.h>
64 #include <asm/fpu/xstate.h>
65 #include <asm/trace/mpx.h>
66 #include <asm/mpx.h>
67 #include <asm/vm86.h>
68
69 #ifdef CONFIG_X86_64
70 #include <asm/x86_init.h>
71 #include <asm/pgalloc.h>
72 #include <asm/proto.h>
73
74 /* No need to be aligned, but done to keep all IDTs defined the same way. */
75 gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss;
76 #else
77 #include <asm/processor-flags.h>
78 #include <asm/setup.h>
79 #include <asm/proto.h>
80 #endif
81
82 /* Must be page-aligned because the real IDT is used in a fixmap. */
83 gate_desc idt_table[NR_VECTORS] __page_aligned_bss;
84
85 DECLARE_BITMAP(used_vectors, NR_VECTORS);
86 EXPORT_SYMBOL_GPL(used_vectors);
87
88 static inline void cond_local_irq_enable(struct pt_regs *regs)
89 {
90 if (regs->flags & X86_EFLAGS_IF)
91 local_irq_enable();
92 }
93
94 static inline void cond_local_irq_disable(struct pt_regs *regs)
95 {
96 if (regs->flags & X86_EFLAGS_IF)
97 local_irq_disable();
98 }
99
100 /*
101 * In IST context, we explicitly disable preemption. This serves two
102 * purposes: it makes it much less likely that we would accidentally
103 * schedule in IST context and it will force a warning if we somehow
104 * manage to schedule by accident.
105 */
106 void ist_enter(struct pt_regs *regs)
107 {
108 if (user_mode(regs)) {
109 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
110 } else {
111 /*
112 * We might have interrupted pretty much anything. In
113 * fact, if we're a machine check, we can even interrupt
114 * NMI processing. We don't want in_nmi() to return true,
115 * but we need to notify RCU.
116 */
117 rcu_nmi_enter();
118 }
119
120 preempt_disable();
121
122 /* This code is a bit fragile. Test it. */
123 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
124 }
125
126 void ist_exit(struct pt_regs *regs)
127 {
128 preempt_enable_no_resched();
129
130 if (!user_mode(regs))
131 rcu_nmi_exit();
132 }
133
134 /**
135 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
136 * @regs: regs passed to the IST exception handler
137 *
138 * IST exception handlers normally cannot schedule. As a special
139 * exception, if the exception interrupted userspace code (i.e.
140 * user_mode(regs) would return true) and the exception was not
141 * a double fault, it can be safe to schedule. ist_begin_non_atomic()
142 * begins a non-atomic section within an ist_enter()/ist_exit() region.
143 * Callers are responsible for enabling interrupts themselves inside
144 * the non-atomic section, and callers must call ist_end_non_atomic()
145 * before ist_exit().
146 */
147 void ist_begin_non_atomic(struct pt_regs *regs)
148 {
149 BUG_ON(!user_mode(regs));
150
151 /*
152 * Sanity check: we need to be on the normal thread stack. This
153 * will catch asm bugs and any attempt to use ist_preempt_enable
154 * from double_fault.
155 */
156 BUG_ON((unsigned long)(current_top_of_stack() -
157 current_stack_pointer()) >= THREAD_SIZE);
158
159 preempt_enable_no_resched();
160 }
161
162 /**
163 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
164 *
165 * Ends a non-atomic section started with ist_begin_non_atomic().
166 */
167 void ist_end_non_atomic(void)
168 {
169 preempt_disable();
170 }
171
172 int is_valid_bugaddr(unsigned long addr)
173 {
174 unsigned short ud;
175
176 if (addr < TASK_SIZE_MAX)
177 return 0;
178
179 if (probe_kernel_address((unsigned short *)addr, ud))
180 return 0;
181
182 return ud == INSN_UD0 || ud == INSN_UD2;
183 }
184
185 int fixup_bug(struct pt_regs *regs, int trapnr)
186 {
187 if (trapnr != X86_TRAP_UD)
188 return 0;
189
190 switch (report_bug(regs->ip, regs)) {
191 case BUG_TRAP_TYPE_NONE:
192 case BUG_TRAP_TYPE_BUG:
193 break;
194
195 case BUG_TRAP_TYPE_WARN:
196 regs->ip += LEN_UD0;
197 return 1;
198 }
199
200 return 0;
201 }
202
203 static nokprobe_inline int
204 do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
205 struct pt_regs *regs, long error_code)
206 {
207 if (v8086_mode(regs)) {
208 /*
209 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
210 * On nmi (interrupt 2), do_trap should not be called.
211 */
212 if (trapnr < X86_TRAP_UD) {
213 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
214 error_code, trapnr))
215 return 0;
216 }
217 return -1;
218 }
219
220 if (!user_mode(regs)) {
221 if (fixup_exception(regs, trapnr))
222 return 0;
223
224 if (fixup_bug(regs, trapnr))
225 return 0;
226
227 tsk->thread.error_code = error_code;
228 tsk->thread.trap_nr = trapnr;
229 die(str, regs, error_code);
230 }
231
232 return -1;
233 }
234
235 static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
236 siginfo_t *info)
237 {
238 unsigned long siaddr;
239 int sicode;
240
241 switch (trapnr) {
242 default:
243 return SEND_SIG_PRIV;
244
245 case X86_TRAP_DE:
246 sicode = FPE_INTDIV;
247 siaddr = uprobe_get_trap_addr(regs);
248 break;
249 case X86_TRAP_UD:
250 sicode = ILL_ILLOPN;
251 siaddr = uprobe_get_trap_addr(regs);
252 break;
253 case X86_TRAP_AC:
254 sicode = BUS_ADRALN;
255 siaddr = 0;
256 break;
257 }
258
259 info->si_signo = signr;
260 info->si_errno = 0;
261 info->si_code = sicode;
262 info->si_addr = (void __user *)siaddr;
263 return info;
264 }
265
266 static void
267 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
268 long error_code, siginfo_t *info)
269 {
270 struct task_struct *tsk = current;
271
272
273 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
274 return;
275 /*
276 * We want error_code and trap_nr set for userspace faults and
277 * kernelspace faults which result in die(), but not
278 * kernelspace faults which are fixed up. die() gives the
279 * process no chance to handle the signal and notice the
280 * kernel fault information, so that won't result in polluting
281 * the information about previously queued, but not yet
282 * delivered, faults. See also do_general_protection below.
283 */
284 tsk->thread.error_code = error_code;
285 tsk->thread.trap_nr = trapnr;
286
287 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
288 printk_ratelimit()) {
289 pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
290 tsk->comm, tsk->pid, str,
291 regs->ip, regs->sp, error_code);
292 print_vma_addr(KERN_CONT " in ", regs->ip);
293 pr_cont("\n");
294 }
295
296 force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
297 }
298 NOKPROBE_SYMBOL(do_trap);
299
300 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
301 unsigned long trapnr, int signr)
302 {
303 siginfo_t info;
304
305 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
306
307 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
308 NOTIFY_STOP) {
309 cond_local_irq_enable(regs);
310 do_trap(trapnr, signr, str, regs, error_code,
311 fill_trap_info(regs, signr, trapnr, &info));
312 }
313 }
314
315 #define DO_ERROR(trapnr, signr, str, name) \
316 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
317 { \
318 do_error_trap(regs, error_code, str, trapnr, signr); \
319 }
320
321 DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error)
322 DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow)
323 DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op)
324 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun)
325 DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
326 DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present)
327 DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment)
328 DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check)
329
330 #ifdef CONFIG_VMAP_STACK
331 __visible void __noreturn handle_stack_overflow(const char *message,
332 struct pt_regs *regs,
333 unsigned long fault_address)
334 {
335 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
336 (void *)fault_address, current->stack,
337 (char *)current->stack + THREAD_SIZE - 1);
338 die(message, regs, 0);
339
340 /* Be absolutely certain we don't return. */
341 panic(message);
342 }
343 #endif
344
345 #ifdef CONFIG_X86_64
346 /* Runs on IST stack */
347 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
348 {
349 static const char str[] = "double fault";
350 struct task_struct *tsk = current;
351 #ifdef CONFIG_VMAP_STACK
352 unsigned long cr2;
353 #endif
354
355 #ifdef CONFIG_X86_ESPFIX64
356 extern unsigned char native_irq_return_iret[];
357
358 /*
359 * If IRET takes a non-IST fault on the espfix64 stack, then we
360 * end up promoting it to a doublefault. In that case, modify
361 * the stack to make it look like we just entered the #GP
362 * handler from user space, similar to bad_iret.
363 *
364 * No need for ist_enter here because we don't use RCU.
365 */
366 if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY &&
367 regs->cs == __KERNEL_CS &&
368 regs->ip == (unsigned long)native_irq_return_iret)
369 {
370 struct pt_regs *normal_regs = task_pt_regs(current);
371
372 /* Fake a #GP(0) from userspace. */
373 memmove(&normal_regs->ip, (void *)regs->sp, 5*8);
374 normal_regs->orig_ax = 0; /* Missing (lost) #GP error code */
375 regs->ip = (unsigned long)general_protection;
376 regs->sp = (unsigned long)&normal_regs->orig_ax;
377
378 return;
379 }
380 #endif
381
382 ist_enter(regs);
383 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
384
385 tsk->thread.error_code = error_code;
386 tsk->thread.trap_nr = X86_TRAP_DF;
387
388 #ifdef CONFIG_VMAP_STACK
389 /*
390 * If we overflow the stack into a guard page, the CPU will fail
391 * to deliver #PF and will send #DF instead. Similarly, if we
392 * take any non-IST exception while too close to the bottom of
393 * the stack, the processor will get a page fault while
394 * delivering the exception and will generate a double fault.
395 *
396 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
397 * Page-Fault Exception (#PF):
398 *
399 * Processors update CR2 whenever a page fault is detected. If a
400 * second page fault occurs while an earlier page fault is being
401 * deliv- ered, the faulting linear address of the second fault will
402 * overwrite the contents of CR2 (replacing the previous
403 * address). These updates to CR2 occur even if the page fault
404 * results in a double fault or occurs during the delivery of a
405 * double fault.
406 *
407 * The logic below has a small possibility of incorrectly diagnosing
408 * some errors as stack overflows. For example, if the IDT or GDT
409 * gets corrupted such that #GP delivery fails due to a bad descriptor
410 * causing #GP and we hit this condition while CR2 coincidentally
411 * points to the stack guard page, we'll think we overflowed the
412 * stack. Given that we're going to panic one way or another
413 * if this happens, this isn't necessarily worth fixing.
414 *
415 * If necessary, we could improve the test by only diagnosing
416 * a stack overflow if the saved RSP points within 47 bytes of
417 * the bottom of the stack: if RSP == tsk_stack + 48 and we
418 * take an exception, the stack is already aligned and there
419 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
420 * possible error code, so a stack overflow would *not* double
421 * fault. With any less space left, exception delivery could
422 * fail, and, as a practical matter, we've overflowed the
423 * stack even if the actual trigger for the double fault was
424 * something else.
425 */
426 cr2 = read_cr2();
427 if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
428 handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
429 #endif
430
431 #ifdef CONFIG_DOUBLEFAULT
432 df_debug(regs, error_code);
433 #endif
434 /*
435 * This is always a kernel trap and never fixable (and thus must
436 * never return).
437 */
438 for (;;)
439 die(str, regs, error_code);
440 }
441 #endif
442
443 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
444 {
445 const struct mpx_bndcsr *bndcsr;
446 siginfo_t *info;
447
448 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
449 if (notify_die(DIE_TRAP, "bounds", regs, error_code,
450 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
451 return;
452 cond_local_irq_enable(regs);
453
454 if (!user_mode(regs))
455 die("bounds", regs, error_code);
456
457 if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
458 /* The exception is not from Intel MPX */
459 goto exit_trap;
460 }
461
462 /*
463 * We need to look at BNDSTATUS to resolve this exception.
464 * A NULL here might mean that it is in its 'init state',
465 * which is all zeros which indicates MPX was not
466 * responsible for the exception.
467 */
468 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
469 if (!bndcsr)
470 goto exit_trap;
471
472 trace_bounds_exception_mpx(bndcsr);
473 /*
474 * The error code field of the BNDSTATUS register communicates status
475 * information of a bound range exception #BR or operation involving
476 * bound directory.
477 */
478 switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
479 case 2: /* Bound directory has invalid entry. */
480 if (mpx_handle_bd_fault())
481 goto exit_trap;
482 break; /* Success, it was handled */
483 case 1: /* Bound violation. */
484 info = mpx_generate_siginfo(regs);
485 if (IS_ERR(info)) {
486 /*
487 * We failed to decode the MPX instruction. Act as if
488 * the exception was not caused by MPX.
489 */
490 goto exit_trap;
491 }
492 /*
493 * Success, we decoded the instruction and retrieved
494 * an 'info' containing the address being accessed
495 * which caused the exception. This information
496 * allows and application to possibly handle the
497 * #BR exception itself.
498 */
499 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
500 kfree(info);
501 break;
502 case 0: /* No exception caused by Intel MPX operations. */
503 goto exit_trap;
504 default:
505 die("bounds", regs, error_code);
506 }
507
508 return;
509
510 exit_trap:
511 /*
512 * This path out is for all the cases where we could not
513 * handle the exception in some way (like allocating a
514 * table or telling userspace about it. We will also end
515 * up here if the kernel has MPX turned off at compile
516 * time..
517 */
518 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
519 }
520
521 dotraplinkage void
522 do_general_protection(struct pt_regs *regs, long error_code)
523 {
524 struct task_struct *tsk;
525
526 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
527 cond_local_irq_enable(regs);
528
529 if (v8086_mode(regs)) {
530 local_irq_enable();
531 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
532 return;
533 }
534
535 tsk = current;
536 if (!user_mode(regs)) {
537 if (fixup_exception(regs, X86_TRAP_GP))
538 return;
539
540 tsk->thread.error_code = error_code;
541 tsk->thread.trap_nr = X86_TRAP_GP;
542 if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
543 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
544 die("general protection fault", regs, error_code);
545 return;
546 }
547
548 tsk->thread.error_code = error_code;
549 tsk->thread.trap_nr = X86_TRAP_GP;
550
551 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
552 printk_ratelimit()) {
553 pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
554 tsk->comm, task_pid_nr(tsk),
555 regs->ip, regs->sp, error_code);
556 print_vma_addr(KERN_CONT " in ", regs->ip);
557 pr_cont("\n");
558 }
559
560 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
561 }
562 NOKPROBE_SYMBOL(do_general_protection);
563
564 /* May run on IST stack. */
565 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
566 {
567 #ifdef CONFIG_DYNAMIC_FTRACE
568 /*
569 * ftrace must be first, everything else may cause a recursive crash.
570 * See note by declaration of modifying_ftrace_code in ftrace.c
571 */
572 if (unlikely(atomic_read(&modifying_ftrace_code)) &&
573 ftrace_int3_handler(regs))
574 return;
575 #endif
576 if (poke_int3_handler(regs))
577 return;
578
579 ist_enter(regs);
580 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
581 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
582 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
583 SIGTRAP) == NOTIFY_STOP)
584 goto exit;
585 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
586
587 #ifdef CONFIG_KPROBES
588 if (kprobe_int3_handler(regs))
589 goto exit;
590 #endif
591
592 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
593 SIGTRAP) == NOTIFY_STOP)
594 goto exit;
595
596 /*
597 * Let others (NMI) know that the debug stack is in use
598 * as we may switch to the interrupt stack.
599 */
600 debug_stack_usage_inc();
601 cond_local_irq_enable(regs);
602 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
603 cond_local_irq_disable(regs);
604 debug_stack_usage_dec();
605 exit:
606 ist_exit(regs);
607 }
608 NOKPROBE_SYMBOL(do_int3);
609
610 #ifdef CONFIG_X86_64
611 /*
612 * Help handler running on IST stack to switch off the IST stack if the
613 * interrupted code was in user mode. The actual stack switch is done in
614 * entry_64.S
615 */
616 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
617 {
618 struct pt_regs *regs = task_pt_regs(current);
619 *regs = *eregs;
620 return regs;
621 }
622 NOKPROBE_SYMBOL(sync_regs);
623
624 struct bad_iret_stack {
625 void *error_entry_ret;
626 struct pt_regs regs;
627 };
628
629 asmlinkage __visible notrace
630 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
631 {
632 /*
633 * This is called from entry_64.S early in handling a fault
634 * caused by a bad iret to user mode. To handle the fault
635 * correctly, we want move our stack frame to task_pt_regs
636 * and we want to pretend that the exception came from the
637 * iret target.
638 */
639 struct bad_iret_stack *new_stack =
640 container_of(task_pt_regs(current),
641 struct bad_iret_stack, regs);
642
643 /* Copy the IRET target to the new stack. */
644 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
645
646 /* Copy the remainder of the stack from the current stack. */
647 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
648
649 BUG_ON(!user_mode(&new_stack->regs));
650 return new_stack;
651 }
652 NOKPROBE_SYMBOL(fixup_bad_iret);
653 #endif
654
655 static bool is_sysenter_singlestep(struct pt_regs *regs)
656 {
657 /*
658 * We don't try for precision here. If we're anywhere in the region of
659 * code that can be single-stepped in the SYSENTER entry path, then
660 * assume that this is a useless single-step trap due to SYSENTER
661 * being invoked with TF set. (We don't know in advance exactly
662 * which instructions will be hit because BTF could plausibly
663 * be set.)
664 */
665 #ifdef CONFIG_X86_32
666 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
667 (unsigned long)__end_SYSENTER_singlestep_region -
668 (unsigned long)__begin_SYSENTER_singlestep_region;
669 #elif defined(CONFIG_IA32_EMULATION)
670 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
671 (unsigned long)__end_entry_SYSENTER_compat -
672 (unsigned long)entry_SYSENTER_compat;
673 #else
674 return false;
675 #endif
676 }
677
678 /*
679 * Our handling of the processor debug registers is non-trivial.
680 * We do not clear them on entry and exit from the kernel. Therefore
681 * it is possible to get a watchpoint trap here from inside the kernel.
682 * However, the code in ./ptrace.c has ensured that the user can
683 * only set watchpoints on userspace addresses. Therefore the in-kernel
684 * watchpoint trap can only occur in code which is reading/writing
685 * from user space. Such code must not hold kernel locks (since it
686 * can equally take a page fault), therefore it is safe to call
687 * force_sig_info even though that claims and releases locks.
688 *
689 * Code in ./signal.c ensures that the debug control register
690 * is restored before we deliver any signal, and therefore that
691 * user code runs with the correct debug control register even though
692 * we clear it here.
693 *
694 * Being careful here means that we don't have to be as careful in a
695 * lot of more complicated places (task switching can be a bit lazy
696 * about restoring all the debug state, and ptrace doesn't have to
697 * find every occurrence of the TF bit that could be saved away even
698 * by user code)
699 *
700 * May run on IST stack.
701 */
702 dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
703 {
704 struct task_struct *tsk = current;
705 int user_icebp = 0;
706 unsigned long dr6;
707 int si_code;
708
709 ist_enter(regs);
710
711 get_debugreg(dr6, 6);
712 /*
713 * The Intel SDM says:
714 *
715 * Certain debug exceptions may clear bits 0-3. The remaining
716 * contents of the DR6 register are never cleared by the
717 * processor. To avoid confusion in identifying debug
718 * exceptions, debug handlers should clear the register before
719 * returning to the interrupted task.
720 *
721 * Keep it simple: clear DR6 immediately.
722 */
723 set_debugreg(0, 6);
724
725 /* Filter out all the reserved bits which are preset to 1 */
726 dr6 &= ~DR6_RESERVED;
727
728 /*
729 * The SDM says "The processor clears the BTF flag when it
730 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
731 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
732 */
733 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
734
735 if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
736 is_sysenter_singlestep(regs))) {
737 dr6 &= ~DR_STEP;
738 if (!dr6)
739 goto exit;
740 /*
741 * else we might have gotten a single-step trap and hit a
742 * watchpoint at the same time, in which case we should fall
743 * through and handle the watchpoint.
744 */
745 }
746
747 /*
748 * If dr6 has no reason to give us about the origin of this trap,
749 * then it's very likely the result of an icebp/int01 trap.
750 * User wants a sigtrap for that.
751 */
752 if (!dr6 && user_mode(regs))
753 user_icebp = 1;
754
755 /* Catch kmemcheck conditions! */
756 if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
757 goto exit;
758
759 /* Store the virtualized DR6 value */
760 tsk->thread.debugreg6 = dr6;
761
762 #ifdef CONFIG_KPROBES
763 if (kprobe_debug_handler(regs))
764 goto exit;
765 #endif
766
767 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
768 SIGTRAP) == NOTIFY_STOP)
769 goto exit;
770
771 /*
772 * Let others (NMI) know that the debug stack is in use
773 * as we may switch to the interrupt stack.
774 */
775 debug_stack_usage_inc();
776
777 /* It's safe to allow irq's after DR6 has been saved */
778 cond_local_irq_enable(regs);
779
780 if (v8086_mode(regs)) {
781 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
782 X86_TRAP_DB);
783 cond_local_irq_disable(regs);
784 debug_stack_usage_dec();
785 goto exit;
786 }
787
788 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
789 /*
790 * Historical junk that used to handle SYSENTER single-stepping.
791 * This should be unreachable now. If we survive for a while
792 * without anyone hitting this warning, we'll turn this into
793 * an oops.
794 */
795 tsk->thread.debugreg6 &= ~DR_STEP;
796 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
797 regs->flags &= ~X86_EFLAGS_TF;
798 }
799 si_code = get_si_code(tsk->thread.debugreg6);
800 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
801 send_sigtrap(tsk, regs, error_code, si_code);
802 cond_local_irq_disable(regs);
803 debug_stack_usage_dec();
804
805 exit:
806 #if defined(CONFIG_X86_32)
807 /*
808 * This is the most likely code path that involves non-trivial use
809 * of the SYSENTER stack. Check that we haven't overrun it.
810 */
811 WARN(this_cpu_read(cpu_tss.SYSENTER_stack_canary) != STACK_END_MAGIC,
812 "Overran or corrupted SYSENTER stack\n");
813 #endif
814 ist_exit(regs);
815 }
816 NOKPROBE_SYMBOL(do_debug);
817
818 /*
819 * Note that we play around with the 'TS' bit in an attempt to get
820 * the correct behaviour even in the presence of the asynchronous
821 * IRQ13 behaviour
822 */
823 static void math_error(struct pt_regs *regs, int error_code, int trapnr)
824 {
825 struct task_struct *task = current;
826 struct fpu *fpu = &task->thread.fpu;
827 siginfo_t info;
828 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
829 "simd exception";
830
831 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
832 return;
833 cond_local_irq_enable(regs);
834
835 if (!user_mode(regs)) {
836 if (!fixup_exception(regs, trapnr)) {
837 task->thread.error_code = error_code;
838 task->thread.trap_nr = trapnr;
839 die(str, regs, error_code);
840 }
841 return;
842 }
843
844 /*
845 * Save the info for the exception handler and clear the error.
846 */
847 fpu__save(fpu);
848
849 task->thread.trap_nr = trapnr;
850 task->thread.error_code = error_code;
851 info.si_signo = SIGFPE;
852 info.si_errno = 0;
853 info.si_addr = (void __user *)uprobe_get_trap_addr(regs);
854
855 info.si_code = fpu__exception_code(fpu, trapnr);
856
857 /* Retry when we get spurious exceptions: */
858 if (!info.si_code)
859 return;
860
861 force_sig_info(SIGFPE, &info, task);
862 }
863
864 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
865 {
866 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
867 math_error(regs, error_code, X86_TRAP_MF);
868 }
869
870 dotraplinkage void
871 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
872 {
873 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
874 math_error(regs, error_code, X86_TRAP_XF);
875 }
876
877 dotraplinkage void
878 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
879 {
880 cond_local_irq_enable(regs);
881 }
882
883 dotraplinkage void
884 do_device_not_available(struct pt_regs *regs, long error_code)
885 {
886 unsigned long cr0;
887
888 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
889
890 #ifdef CONFIG_MATH_EMULATION
891 if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
892 struct math_emu_info info = { };
893
894 cond_local_irq_enable(regs);
895
896 info.regs = regs;
897 math_emulate(&info);
898 return;
899 }
900 #endif
901
902 /* This should not happen. */
903 cr0 = read_cr0();
904 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
905 /* Try to fix it up and carry on. */
906 write_cr0(cr0 & ~X86_CR0_TS);
907 } else {
908 /*
909 * Something terrible happened, and we're better off trying
910 * to kill the task than getting stuck in a never-ending
911 * loop of #NM faults.
912 */
913 die("unexpected #NM exception", regs, error_code);
914 }
915 }
916 NOKPROBE_SYMBOL(do_device_not_available);
917
918 #ifdef CONFIG_X86_32
919 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
920 {
921 siginfo_t info;
922
923 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
924 local_irq_enable();
925
926 info.si_signo = SIGILL;
927 info.si_errno = 0;
928 info.si_code = ILL_BADSTK;
929 info.si_addr = NULL;
930 if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
931 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
932 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
933 &info);
934 }
935 }
936 #endif
937
938 /* Set of traps needed for early debugging. */
939 void __init early_trap_init(void)
940 {
941 /*
942 * Don't use IST to set DEBUG_STACK as it doesn't work until TSS
943 * is ready in cpu_init() <-- trap_init(). Before trap_init(),
944 * CPU runs at ring 0 so it is impossible to hit an invalid
945 * stack. Using the original stack works well enough at this
946 * early stage. DEBUG_STACK will be equipped after cpu_init() in
947 * trap_init().
948 *
949 * We don't need to set trace_idt_table like set_intr_gate(),
950 * since we don't have trace_debug and it will be reset to
951 * 'debug' in trap_init() by set_intr_gate_ist().
952 */
953 set_intr_gate_notrace(X86_TRAP_DB, debug);
954 /* int3 can be called from all */
955 set_system_intr_gate(X86_TRAP_BP, &int3);
956 #ifdef CONFIG_X86_32
957 set_intr_gate(X86_TRAP_PF, page_fault);
958 #endif
959 load_idt(&idt_descr);
960 }
961
962 void __init early_trap_pf_init(void)
963 {
964 #ifdef CONFIG_X86_64
965 set_intr_gate(X86_TRAP_PF, page_fault);
966 #endif
967 }
968
969 void __init trap_init(void)
970 {
971 int i;
972
973 #ifdef CONFIG_EISA
974 void __iomem *p = early_ioremap(0x0FFFD9, 4);
975
976 if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
977 EISA_bus = 1;
978 early_iounmap(p, 4);
979 #endif
980
981 set_intr_gate(X86_TRAP_DE, divide_error);
982 set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
983 /* int4 can be called from all */
984 set_system_intr_gate(X86_TRAP_OF, &overflow);
985 set_intr_gate(X86_TRAP_BR, bounds);
986 set_intr_gate(X86_TRAP_UD, invalid_op);
987 set_intr_gate(X86_TRAP_NM, device_not_available);
988 #ifdef CONFIG_X86_32
989 set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
990 #else
991 set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
992 #endif
993 set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun);
994 set_intr_gate(X86_TRAP_TS, invalid_TSS);
995 set_intr_gate(X86_TRAP_NP, segment_not_present);
996 set_intr_gate(X86_TRAP_SS, stack_segment);
997 set_intr_gate(X86_TRAP_GP, general_protection);
998 set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug);
999 set_intr_gate(X86_TRAP_MF, coprocessor_error);
1000 set_intr_gate(X86_TRAP_AC, alignment_check);
1001 #ifdef CONFIG_X86_MCE
1002 set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
1003 #endif
1004 set_intr_gate(X86_TRAP_XF, simd_coprocessor_error);
1005
1006 /* Reserve all the builtin and the syscall vector: */
1007 for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
1008 set_bit(i, used_vectors);
1009
1010 #ifdef CONFIG_IA32_EMULATION
1011 set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_compat);
1012 set_bit(IA32_SYSCALL_VECTOR, used_vectors);
1013 #endif
1014
1015 #ifdef CONFIG_X86_32
1016 set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_32);
1017 set_bit(IA32_SYSCALL_VECTOR, used_vectors);
1018 #endif
1019
1020 /*
1021 * Set the IDT descriptor to a fixed read-only location, so that the
1022 * "sidt" instruction will not leak the location of the kernel, and
1023 * to defend the IDT against arbitrary memory write vulnerabilities.
1024 * It will be reloaded in cpu_init() */
1025 __set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
1026 idt_descr.address = fix_to_virt(FIX_RO_IDT);
1027
1028 /*
1029 * Should be a barrier for any external CPU state:
1030 */
1031 cpu_init();
1032
1033 /*
1034 * X86_TRAP_DB and X86_TRAP_BP have been set
1035 * in early_trap_init(). However, ITS works only after
1036 * cpu_init() loads TSS. See comments in early_trap_init().
1037 */
1038 set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
1039 /* int3 can be called from all */
1040 set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
1041
1042 x86_init.irqs.trap_init();
1043
1044 #ifdef CONFIG_X86_64
1045 memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16);
1046 set_nmi_gate(X86_TRAP_DB, &debug);
1047 set_nmi_gate(X86_TRAP_BP, &int3);
1048 #endif
1049 }