]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/traps.c
Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / traps.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9 /*
10 * Handle hardware traps and faults.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/timer.h>
33 #include <linux/init.h>
34 #include <linux/bug.h>
35 #include <linux/nmi.h>
36 #include <linux/mm.h>
37 #include <linux/smp.h>
38 #include <linux/io.h>
39
40 #ifdef CONFIG_EISA
41 #include <linux/ioport.h>
42 #include <linux/eisa.h>
43 #endif
44
45 #if defined(CONFIG_EDAC)
46 #include <linux/edac.h>
47 #endif
48
49 #include <asm/kmemcheck.h>
50 #include <asm/stacktrace.h>
51 #include <asm/processor.h>
52 #include <asm/debugreg.h>
53 #include <linux/atomic.h>
54 #include <asm/ftrace.h>
55 #include <asm/traps.h>
56 #include <asm/desc.h>
57 #include <asm/i387.h>
58 #include <asm/fpu-internal.h>
59 #include <asm/mce.h>
60 #include <asm/fixmap.h>
61 #include <asm/mach_traps.h>
62 #include <asm/alternative.h>
63 #include <asm/mpx.h>
64
65 #ifdef CONFIG_X86_64
66 #include <asm/x86_init.h>
67 #include <asm/pgalloc.h>
68 #include <asm/proto.h>
69
70 /* No need to be aligned, but done to keep all IDTs defined the same way. */
71 gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss;
72 #else
73 #include <asm/processor-flags.h>
74 #include <asm/setup.h>
75
76 asmlinkage int system_call(void);
77 #endif
78
79 /* Must be page-aligned because the real IDT is used in a fixmap. */
80 gate_desc idt_table[NR_VECTORS] __page_aligned_bss;
81
82 DECLARE_BITMAP(used_vectors, NR_VECTORS);
83 EXPORT_SYMBOL_GPL(used_vectors);
84
85 static inline void conditional_sti(struct pt_regs *regs)
86 {
87 if (regs->flags & X86_EFLAGS_IF)
88 local_irq_enable();
89 }
90
91 static inline void preempt_conditional_sti(struct pt_regs *regs)
92 {
93 preempt_count_inc();
94 if (regs->flags & X86_EFLAGS_IF)
95 local_irq_enable();
96 }
97
98 static inline void conditional_cli(struct pt_regs *regs)
99 {
100 if (regs->flags & X86_EFLAGS_IF)
101 local_irq_disable();
102 }
103
104 static inline void preempt_conditional_cli(struct pt_regs *regs)
105 {
106 if (regs->flags & X86_EFLAGS_IF)
107 local_irq_disable();
108 preempt_count_dec();
109 }
110
111 enum ctx_state ist_enter(struct pt_regs *regs)
112 {
113 enum ctx_state prev_state;
114
115 if (user_mode_vm(regs)) {
116 /* Other than that, we're just an exception. */
117 prev_state = exception_enter();
118 } else {
119 /*
120 * We might have interrupted pretty much anything. In
121 * fact, if we're a machine check, we can even interrupt
122 * NMI processing. We don't want in_nmi() to return true,
123 * but we need to notify RCU.
124 */
125 rcu_nmi_enter();
126 prev_state = IN_KERNEL; /* the value is irrelevant. */
127 }
128
129 /*
130 * We are atomic because we're on the IST stack (or we're on x86_32,
131 * in which case we still shouldn't schedule).
132 *
133 * This must be after exception_enter(), because exception_enter()
134 * won't do anything if in_interrupt() returns true.
135 */
136 preempt_count_add(HARDIRQ_OFFSET);
137
138 /* This code is a bit fragile. Test it. */
139 rcu_lockdep_assert(rcu_is_watching(), "ist_enter didn't work");
140
141 return prev_state;
142 }
143
144 void ist_exit(struct pt_regs *regs, enum ctx_state prev_state)
145 {
146 /* Must be before exception_exit. */
147 preempt_count_sub(HARDIRQ_OFFSET);
148
149 if (user_mode_vm(regs))
150 return exception_exit(prev_state);
151 else
152 rcu_nmi_exit();
153 }
154
155 /**
156 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
157 * @regs: regs passed to the IST exception handler
158 *
159 * IST exception handlers normally cannot schedule. As a special
160 * exception, if the exception interrupted userspace code (i.e.
161 * user_mode_vm(regs) would return true) and the exception was not
162 * a double fault, it can be safe to schedule. ist_begin_non_atomic()
163 * begins a non-atomic section within an ist_enter()/ist_exit() region.
164 * Callers are responsible for enabling interrupts themselves inside
165 * the non-atomic section, and callers must call is_end_non_atomic()
166 * before ist_exit().
167 */
168 void ist_begin_non_atomic(struct pt_regs *regs)
169 {
170 BUG_ON(!user_mode_vm(regs));
171
172 /*
173 * Sanity check: we need to be on the normal thread stack. This
174 * will catch asm bugs and any attempt to use ist_preempt_enable
175 * from double_fault.
176 */
177 BUG_ON(((current_stack_pointer() ^ this_cpu_read_stable(kernel_stack))
178 & ~(THREAD_SIZE - 1)) != 0);
179
180 preempt_count_sub(HARDIRQ_OFFSET);
181 }
182
183 /**
184 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
185 *
186 * Ends a non-atomic section started with ist_begin_non_atomic().
187 */
188 void ist_end_non_atomic(void)
189 {
190 preempt_count_add(HARDIRQ_OFFSET);
191 }
192
193 static nokprobe_inline int
194 do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
195 struct pt_regs *regs, long error_code)
196 {
197 #ifdef CONFIG_X86_32
198 if (regs->flags & X86_VM_MASK) {
199 /*
200 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
201 * On nmi (interrupt 2), do_trap should not be called.
202 */
203 if (trapnr < X86_TRAP_UD) {
204 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
205 error_code, trapnr))
206 return 0;
207 }
208 return -1;
209 }
210 #endif
211 if (!user_mode(regs)) {
212 if (!fixup_exception(regs)) {
213 tsk->thread.error_code = error_code;
214 tsk->thread.trap_nr = trapnr;
215 die(str, regs, error_code);
216 }
217 return 0;
218 }
219
220 return -1;
221 }
222
223 static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
224 siginfo_t *info)
225 {
226 unsigned long siaddr;
227 int sicode;
228
229 switch (trapnr) {
230 default:
231 return SEND_SIG_PRIV;
232
233 case X86_TRAP_DE:
234 sicode = FPE_INTDIV;
235 siaddr = uprobe_get_trap_addr(regs);
236 break;
237 case X86_TRAP_UD:
238 sicode = ILL_ILLOPN;
239 siaddr = uprobe_get_trap_addr(regs);
240 break;
241 case X86_TRAP_AC:
242 sicode = BUS_ADRALN;
243 siaddr = 0;
244 break;
245 }
246
247 info->si_signo = signr;
248 info->si_errno = 0;
249 info->si_code = sicode;
250 info->si_addr = (void __user *)siaddr;
251 return info;
252 }
253
254 static void
255 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
256 long error_code, siginfo_t *info)
257 {
258 struct task_struct *tsk = current;
259
260
261 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
262 return;
263 /*
264 * We want error_code and trap_nr set for userspace faults and
265 * kernelspace faults which result in die(), but not
266 * kernelspace faults which are fixed up. die() gives the
267 * process no chance to handle the signal and notice the
268 * kernel fault information, so that won't result in polluting
269 * the information about previously queued, but not yet
270 * delivered, faults. See also do_general_protection below.
271 */
272 tsk->thread.error_code = error_code;
273 tsk->thread.trap_nr = trapnr;
274
275 #ifdef CONFIG_X86_64
276 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
277 printk_ratelimit()) {
278 pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
279 tsk->comm, tsk->pid, str,
280 regs->ip, regs->sp, error_code);
281 print_vma_addr(" in ", regs->ip);
282 pr_cont("\n");
283 }
284 #endif
285
286 force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
287 }
288 NOKPROBE_SYMBOL(do_trap);
289
290 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
291 unsigned long trapnr, int signr)
292 {
293 enum ctx_state prev_state = exception_enter();
294 siginfo_t info;
295
296 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
297 NOTIFY_STOP) {
298 conditional_sti(regs);
299 do_trap(trapnr, signr, str, regs, error_code,
300 fill_trap_info(regs, signr, trapnr, &info));
301 }
302
303 exception_exit(prev_state);
304 }
305
306 #define DO_ERROR(trapnr, signr, str, name) \
307 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
308 { \
309 do_error_trap(regs, error_code, str, trapnr, signr); \
310 }
311
312 DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error)
313 DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow)
314 DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op)
315 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun)
316 DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
317 DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present)
318 DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment)
319 DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check)
320
321 #ifdef CONFIG_X86_64
322 /* Runs on IST stack */
323 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
324 {
325 static const char str[] = "double fault";
326 struct task_struct *tsk = current;
327
328 #ifdef CONFIG_X86_ESPFIX64
329 extern unsigned char native_irq_return_iret[];
330
331 /*
332 * If IRET takes a non-IST fault on the espfix64 stack, then we
333 * end up promoting it to a doublefault. In that case, modify
334 * the stack to make it look like we just entered the #GP
335 * handler from user space, similar to bad_iret.
336 *
337 * No need for ist_enter here because we don't use RCU.
338 */
339 if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY &&
340 regs->cs == __KERNEL_CS &&
341 regs->ip == (unsigned long)native_irq_return_iret)
342 {
343 struct pt_regs *normal_regs = task_pt_regs(current);
344
345 /* Fake a #GP(0) from userspace. */
346 memmove(&normal_regs->ip, (void *)regs->sp, 5*8);
347 normal_regs->orig_ax = 0; /* Missing (lost) #GP error code */
348 regs->ip = (unsigned long)general_protection;
349 regs->sp = (unsigned long)&normal_regs->orig_ax;
350
351 return;
352 }
353 #endif
354
355 ist_enter(regs); /* Discard prev_state because we won't return. */
356 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
357
358 tsk->thread.error_code = error_code;
359 tsk->thread.trap_nr = X86_TRAP_DF;
360
361 #ifdef CONFIG_DOUBLEFAULT
362 df_debug(regs, error_code);
363 #endif
364 /*
365 * This is always a kernel trap and never fixable (and thus must
366 * never return).
367 */
368 for (;;)
369 die(str, regs, error_code);
370 }
371 #endif
372
373 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
374 {
375 struct task_struct *tsk = current;
376 struct xsave_struct *xsave_buf;
377 enum ctx_state prev_state;
378 struct bndcsr *bndcsr;
379 siginfo_t *info;
380
381 prev_state = exception_enter();
382 if (notify_die(DIE_TRAP, "bounds", regs, error_code,
383 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
384 goto exit;
385 conditional_sti(regs);
386
387 if (!user_mode(regs))
388 die("bounds", regs, error_code);
389
390 if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
391 /* The exception is not from Intel MPX */
392 goto exit_trap;
393 }
394
395 /*
396 * We need to look at BNDSTATUS to resolve this exception.
397 * It is not directly accessible, though, so we need to
398 * do an xsave and then pull it out of the xsave buffer.
399 */
400 fpu_save_init(&tsk->thread.fpu);
401 xsave_buf = &(tsk->thread.fpu.state->xsave);
402 bndcsr = get_xsave_addr(xsave_buf, XSTATE_BNDCSR);
403 if (!bndcsr)
404 goto exit_trap;
405
406 /*
407 * The error code field of the BNDSTATUS register communicates status
408 * information of a bound range exception #BR or operation involving
409 * bound directory.
410 */
411 switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
412 case 2: /* Bound directory has invalid entry. */
413 if (mpx_handle_bd_fault(xsave_buf))
414 goto exit_trap;
415 break; /* Success, it was handled */
416 case 1: /* Bound violation. */
417 info = mpx_generate_siginfo(regs, xsave_buf);
418 if (IS_ERR(info)) {
419 /*
420 * We failed to decode the MPX instruction. Act as if
421 * the exception was not caused by MPX.
422 */
423 goto exit_trap;
424 }
425 /*
426 * Success, we decoded the instruction and retrieved
427 * an 'info' containing the address being accessed
428 * which caused the exception. This information
429 * allows and application to possibly handle the
430 * #BR exception itself.
431 */
432 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
433 kfree(info);
434 break;
435 case 0: /* No exception caused by Intel MPX operations. */
436 goto exit_trap;
437 default:
438 die("bounds", regs, error_code);
439 }
440
441 exit:
442 exception_exit(prev_state);
443 return;
444 exit_trap:
445 /*
446 * This path out is for all the cases where we could not
447 * handle the exception in some way (like allocating a
448 * table or telling userspace about it. We will also end
449 * up here if the kernel has MPX turned off at compile
450 * time..
451 */
452 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
453 exception_exit(prev_state);
454 }
455
456 dotraplinkage void
457 do_general_protection(struct pt_regs *regs, long error_code)
458 {
459 struct task_struct *tsk;
460 enum ctx_state prev_state;
461
462 prev_state = exception_enter();
463 conditional_sti(regs);
464
465 #ifdef CONFIG_X86_32
466 if (regs->flags & X86_VM_MASK) {
467 local_irq_enable();
468 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
469 goto exit;
470 }
471 #endif
472
473 tsk = current;
474 if (!user_mode(regs)) {
475 if (fixup_exception(regs))
476 goto exit;
477
478 tsk->thread.error_code = error_code;
479 tsk->thread.trap_nr = X86_TRAP_GP;
480 if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
481 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
482 die("general protection fault", regs, error_code);
483 goto exit;
484 }
485
486 tsk->thread.error_code = error_code;
487 tsk->thread.trap_nr = X86_TRAP_GP;
488
489 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
490 printk_ratelimit()) {
491 pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
492 tsk->comm, task_pid_nr(tsk),
493 regs->ip, regs->sp, error_code);
494 print_vma_addr(" in ", regs->ip);
495 pr_cont("\n");
496 }
497
498 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
499 exit:
500 exception_exit(prev_state);
501 }
502 NOKPROBE_SYMBOL(do_general_protection);
503
504 /* May run on IST stack. */
505 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
506 {
507 enum ctx_state prev_state;
508
509 #ifdef CONFIG_DYNAMIC_FTRACE
510 /*
511 * ftrace must be first, everything else may cause a recursive crash.
512 * See note by declaration of modifying_ftrace_code in ftrace.c
513 */
514 if (unlikely(atomic_read(&modifying_ftrace_code)) &&
515 ftrace_int3_handler(regs))
516 return;
517 #endif
518 if (poke_int3_handler(regs))
519 return;
520
521 prev_state = ist_enter(regs);
522 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
523 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
524 SIGTRAP) == NOTIFY_STOP)
525 goto exit;
526 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
527
528 #ifdef CONFIG_KPROBES
529 if (kprobe_int3_handler(regs))
530 goto exit;
531 #endif
532
533 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
534 SIGTRAP) == NOTIFY_STOP)
535 goto exit;
536
537 /*
538 * Let others (NMI) know that the debug stack is in use
539 * as we may switch to the interrupt stack.
540 */
541 debug_stack_usage_inc();
542 preempt_conditional_sti(regs);
543 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
544 preempt_conditional_cli(regs);
545 debug_stack_usage_dec();
546 exit:
547 ist_exit(regs, prev_state);
548 }
549 NOKPROBE_SYMBOL(do_int3);
550
551 #ifdef CONFIG_X86_64
552 /*
553 * Help handler running on IST stack to switch off the IST stack if the
554 * interrupted code was in user mode. The actual stack switch is done in
555 * entry_64.S
556 */
557 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
558 {
559 struct pt_regs *regs = task_pt_regs(current);
560 *regs = *eregs;
561 return regs;
562 }
563 NOKPROBE_SYMBOL(sync_regs);
564
565 struct bad_iret_stack {
566 void *error_entry_ret;
567 struct pt_regs regs;
568 };
569
570 asmlinkage __visible notrace
571 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
572 {
573 /*
574 * This is called from entry_64.S early in handling a fault
575 * caused by a bad iret to user mode. To handle the fault
576 * correctly, we want move our stack frame to task_pt_regs
577 * and we want to pretend that the exception came from the
578 * iret target.
579 */
580 struct bad_iret_stack *new_stack =
581 container_of(task_pt_regs(current),
582 struct bad_iret_stack, regs);
583
584 /* Copy the IRET target to the new stack. */
585 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
586
587 /* Copy the remainder of the stack from the current stack. */
588 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
589
590 BUG_ON(!user_mode_vm(&new_stack->regs));
591 return new_stack;
592 }
593 NOKPROBE_SYMBOL(fixup_bad_iret);
594 #endif
595
596 /*
597 * Our handling of the processor debug registers is non-trivial.
598 * We do not clear them on entry and exit from the kernel. Therefore
599 * it is possible to get a watchpoint trap here from inside the kernel.
600 * However, the code in ./ptrace.c has ensured that the user can
601 * only set watchpoints on userspace addresses. Therefore the in-kernel
602 * watchpoint trap can only occur in code which is reading/writing
603 * from user space. Such code must not hold kernel locks (since it
604 * can equally take a page fault), therefore it is safe to call
605 * force_sig_info even though that claims and releases locks.
606 *
607 * Code in ./signal.c ensures that the debug control register
608 * is restored before we deliver any signal, and therefore that
609 * user code runs with the correct debug control register even though
610 * we clear it here.
611 *
612 * Being careful here means that we don't have to be as careful in a
613 * lot of more complicated places (task switching can be a bit lazy
614 * about restoring all the debug state, and ptrace doesn't have to
615 * find every occurrence of the TF bit that could be saved away even
616 * by user code)
617 *
618 * May run on IST stack.
619 */
620 dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
621 {
622 struct task_struct *tsk = current;
623 enum ctx_state prev_state;
624 int user_icebp = 0;
625 unsigned long dr6;
626 int si_code;
627
628 prev_state = ist_enter(regs);
629
630 get_debugreg(dr6, 6);
631
632 /* Filter out all the reserved bits which are preset to 1 */
633 dr6 &= ~DR6_RESERVED;
634
635 /*
636 * If dr6 has no reason to give us about the origin of this trap,
637 * then it's very likely the result of an icebp/int01 trap.
638 * User wants a sigtrap for that.
639 */
640 if (!dr6 && user_mode(regs))
641 user_icebp = 1;
642
643 /* Catch kmemcheck conditions first of all! */
644 if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
645 goto exit;
646
647 /* DR6 may or may not be cleared by the CPU */
648 set_debugreg(0, 6);
649
650 /*
651 * The processor cleared BTF, so don't mark that we need it set.
652 */
653 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
654
655 /* Store the virtualized DR6 value */
656 tsk->thread.debugreg6 = dr6;
657
658 #ifdef CONFIG_KPROBES
659 if (kprobe_debug_handler(regs))
660 goto exit;
661 #endif
662
663 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
664 SIGTRAP) == NOTIFY_STOP)
665 goto exit;
666
667 /*
668 * Let others (NMI) know that the debug stack is in use
669 * as we may switch to the interrupt stack.
670 */
671 debug_stack_usage_inc();
672
673 /* It's safe to allow irq's after DR6 has been saved */
674 preempt_conditional_sti(regs);
675
676 if (regs->flags & X86_VM_MASK) {
677 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
678 X86_TRAP_DB);
679 preempt_conditional_cli(regs);
680 debug_stack_usage_dec();
681 goto exit;
682 }
683
684 /*
685 * Single-stepping through system calls: ignore any exceptions in
686 * kernel space, but re-enable TF when returning to user mode.
687 *
688 * We already checked v86 mode above, so we can check for kernel mode
689 * by just checking the CPL of CS.
690 */
691 if ((dr6 & DR_STEP) && !user_mode(regs)) {
692 tsk->thread.debugreg6 &= ~DR_STEP;
693 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
694 regs->flags &= ~X86_EFLAGS_TF;
695 }
696 si_code = get_si_code(tsk->thread.debugreg6);
697 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
698 send_sigtrap(tsk, regs, error_code, si_code);
699 preempt_conditional_cli(regs);
700 debug_stack_usage_dec();
701
702 exit:
703 ist_exit(regs, prev_state);
704 }
705 NOKPROBE_SYMBOL(do_debug);
706
707 /*
708 * Note that we play around with the 'TS' bit in an attempt to get
709 * the correct behaviour even in the presence of the asynchronous
710 * IRQ13 behaviour
711 */
712 static void math_error(struct pt_regs *regs, int error_code, int trapnr)
713 {
714 struct task_struct *task = current;
715 siginfo_t info;
716 unsigned short err;
717 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
718 "simd exception";
719
720 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
721 return;
722 conditional_sti(regs);
723
724 if (!user_mode_vm(regs))
725 {
726 if (!fixup_exception(regs)) {
727 task->thread.error_code = error_code;
728 task->thread.trap_nr = trapnr;
729 die(str, regs, error_code);
730 }
731 return;
732 }
733
734 /*
735 * Save the info for the exception handler and clear the error.
736 */
737 save_init_fpu(task);
738 task->thread.trap_nr = trapnr;
739 task->thread.error_code = error_code;
740 info.si_signo = SIGFPE;
741 info.si_errno = 0;
742 info.si_addr = (void __user *)uprobe_get_trap_addr(regs);
743 if (trapnr == X86_TRAP_MF) {
744 unsigned short cwd, swd;
745 /*
746 * (~cwd & swd) will mask out exceptions that are not set to unmasked
747 * status. 0x3f is the exception bits in these regs, 0x200 is the
748 * C1 reg you need in case of a stack fault, 0x040 is the stack
749 * fault bit. We should only be taking one exception at a time,
750 * so if this combination doesn't produce any single exception,
751 * then we have a bad program that isn't synchronizing its FPU usage
752 * and it will suffer the consequences since we won't be able to
753 * fully reproduce the context of the exception
754 */
755 cwd = get_fpu_cwd(task);
756 swd = get_fpu_swd(task);
757
758 err = swd & ~cwd;
759 } else {
760 /*
761 * The SIMD FPU exceptions are handled a little differently, as there
762 * is only a single status/control register. Thus, to determine which
763 * unmasked exception was caught we must mask the exception mask bits
764 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
765 */
766 unsigned short mxcsr = get_fpu_mxcsr(task);
767 err = ~(mxcsr >> 7) & mxcsr;
768 }
769
770 if (err & 0x001) { /* Invalid op */
771 /*
772 * swd & 0x240 == 0x040: Stack Underflow
773 * swd & 0x240 == 0x240: Stack Overflow
774 * User must clear the SF bit (0x40) if set
775 */
776 info.si_code = FPE_FLTINV;
777 } else if (err & 0x004) { /* Divide by Zero */
778 info.si_code = FPE_FLTDIV;
779 } else if (err & 0x008) { /* Overflow */
780 info.si_code = FPE_FLTOVF;
781 } else if (err & 0x012) { /* Denormal, Underflow */
782 info.si_code = FPE_FLTUND;
783 } else if (err & 0x020) { /* Precision */
784 info.si_code = FPE_FLTRES;
785 } else {
786 /*
787 * If we're using IRQ 13, or supposedly even some trap
788 * X86_TRAP_MF implementations, it's possible
789 * we get a spurious trap, which is not an error.
790 */
791 return;
792 }
793 force_sig_info(SIGFPE, &info, task);
794 }
795
796 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
797 {
798 enum ctx_state prev_state;
799
800 prev_state = exception_enter();
801 math_error(regs, error_code, X86_TRAP_MF);
802 exception_exit(prev_state);
803 }
804
805 dotraplinkage void
806 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
807 {
808 enum ctx_state prev_state;
809
810 prev_state = exception_enter();
811 math_error(regs, error_code, X86_TRAP_XF);
812 exception_exit(prev_state);
813 }
814
815 dotraplinkage void
816 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
817 {
818 conditional_sti(regs);
819 #if 0
820 /* No need to warn about this any longer. */
821 pr_info("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
822 #endif
823 }
824
825 asmlinkage __visible void __attribute__((weak)) smp_thermal_interrupt(void)
826 {
827 }
828
829 asmlinkage __visible void __attribute__((weak)) smp_threshold_interrupt(void)
830 {
831 }
832
833 /*
834 * 'math_state_restore()' saves the current math information in the
835 * old math state array, and gets the new ones from the current task
836 *
837 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
838 * Don't touch unless you *really* know how it works.
839 *
840 * Must be called with kernel preemption disabled (eg with local
841 * local interrupts as in the case of do_device_not_available).
842 */
843 void math_state_restore(void)
844 {
845 struct task_struct *tsk = current;
846
847 if (!tsk_used_math(tsk)) {
848 local_irq_enable();
849 /*
850 * does a slab alloc which can sleep
851 */
852 if (init_fpu(tsk)) {
853 /*
854 * ran out of memory!
855 */
856 do_group_exit(SIGKILL);
857 return;
858 }
859 local_irq_disable();
860 }
861
862 /* Avoid __kernel_fpu_begin() right after __thread_fpu_begin() */
863 kernel_fpu_disable();
864 __thread_fpu_begin(tsk);
865 if (unlikely(restore_fpu_checking(tsk))) {
866 drop_init_fpu(tsk);
867 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
868 } else {
869 tsk->thread.fpu_counter++;
870 }
871 kernel_fpu_enable();
872 }
873 EXPORT_SYMBOL_GPL(math_state_restore);
874
875 dotraplinkage void
876 do_device_not_available(struct pt_regs *regs, long error_code)
877 {
878 enum ctx_state prev_state;
879
880 prev_state = exception_enter();
881 BUG_ON(use_eager_fpu());
882
883 #ifdef CONFIG_MATH_EMULATION
884 if (read_cr0() & X86_CR0_EM) {
885 struct math_emu_info info = { };
886
887 conditional_sti(regs);
888
889 info.regs = regs;
890 math_emulate(&info);
891 exception_exit(prev_state);
892 return;
893 }
894 #endif
895 math_state_restore(); /* interrupts still off */
896 #ifdef CONFIG_X86_32
897 conditional_sti(regs);
898 #endif
899 exception_exit(prev_state);
900 }
901 NOKPROBE_SYMBOL(do_device_not_available);
902
903 #ifdef CONFIG_X86_32
904 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
905 {
906 siginfo_t info;
907 enum ctx_state prev_state;
908
909 prev_state = exception_enter();
910 local_irq_enable();
911
912 info.si_signo = SIGILL;
913 info.si_errno = 0;
914 info.si_code = ILL_BADSTK;
915 info.si_addr = NULL;
916 if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
917 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
918 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
919 &info);
920 }
921 exception_exit(prev_state);
922 }
923 #endif
924
925 /* Set of traps needed for early debugging. */
926 void __init early_trap_init(void)
927 {
928 set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
929 /* int3 can be called from all */
930 set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
931 #ifdef CONFIG_X86_32
932 set_intr_gate(X86_TRAP_PF, page_fault);
933 #endif
934 load_idt(&idt_descr);
935 }
936
937 void __init early_trap_pf_init(void)
938 {
939 #ifdef CONFIG_X86_64
940 set_intr_gate(X86_TRAP_PF, page_fault);
941 #endif
942 }
943
944 void __init trap_init(void)
945 {
946 int i;
947
948 #ifdef CONFIG_EISA
949 void __iomem *p = early_ioremap(0x0FFFD9, 4);
950
951 if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
952 EISA_bus = 1;
953 early_iounmap(p, 4);
954 #endif
955
956 set_intr_gate(X86_TRAP_DE, divide_error);
957 set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
958 /* int4 can be called from all */
959 set_system_intr_gate(X86_TRAP_OF, &overflow);
960 set_intr_gate(X86_TRAP_BR, bounds);
961 set_intr_gate(X86_TRAP_UD, invalid_op);
962 set_intr_gate(X86_TRAP_NM, device_not_available);
963 #ifdef CONFIG_X86_32
964 set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
965 #else
966 set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
967 #endif
968 set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun);
969 set_intr_gate(X86_TRAP_TS, invalid_TSS);
970 set_intr_gate(X86_TRAP_NP, segment_not_present);
971 set_intr_gate(X86_TRAP_SS, stack_segment);
972 set_intr_gate(X86_TRAP_GP, general_protection);
973 set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug);
974 set_intr_gate(X86_TRAP_MF, coprocessor_error);
975 set_intr_gate(X86_TRAP_AC, alignment_check);
976 #ifdef CONFIG_X86_MCE
977 set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
978 #endif
979 set_intr_gate(X86_TRAP_XF, simd_coprocessor_error);
980
981 /* Reserve all the builtin and the syscall vector: */
982 for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
983 set_bit(i, used_vectors);
984
985 #ifdef CONFIG_IA32_EMULATION
986 set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
987 set_bit(IA32_SYSCALL_VECTOR, used_vectors);
988 #endif
989
990 #ifdef CONFIG_X86_32
991 set_system_trap_gate(SYSCALL_VECTOR, &system_call);
992 set_bit(SYSCALL_VECTOR, used_vectors);
993 #endif
994
995 /*
996 * Set the IDT descriptor to a fixed read-only location, so that the
997 * "sidt" instruction will not leak the location of the kernel, and
998 * to defend the IDT against arbitrary memory write vulnerabilities.
999 * It will be reloaded in cpu_init() */
1000 __set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
1001 idt_descr.address = fix_to_virt(FIX_RO_IDT);
1002
1003 /*
1004 * Should be a barrier for any external CPU state:
1005 */
1006 cpu_init();
1007
1008 x86_init.irqs.trap_init();
1009
1010 #ifdef CONFIG_X86_64
1011 memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16);
1012 set_nmi_gate(X86_TRAP_DB, &debug);
1013 set_nmi_gate(X86_TRAP_BP, &int3);
1014 #endif
1015 }