]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - arch/x86/kernel/traps_64.c
Linux 2.6.24-rc1
[mirror_ubuntu-kernels.git] / arch / x86 / kernel / traps_64.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9 /*
10 * 'Traps.c' handles hardware traps and faults after we have saved some
11 * state in 'entry.S'.
12 */
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/string.h>
16 #include <linux/errno.h>
17 #include <linux/ptrace.h>
18 #include <linux/timer.h>
19 #include <linux/mm.h>
20 #include <linux/init.h>
21 #include <linux/delay.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/kallsyms.h>
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/nmi.h>
28 #include <linux/kprobes.h>
29 #include <linux/kexec.h>
30 #include <linux/unwind.h>
31 #include <linux/uaccess.h>
32 #include <linux/bug.h>
33 #include <linux/kdebug.h>
34
35 #if defined(CONFIG_EDAC)
36 #include <linux/edac.h>
37 #endif
38
39 #include <asm/system.h>
40 #include <asm/io.h>
41 #include <asm/atomic.h>
42 #include <asm/debugreg.h>
43 #include <asm/desc.h>
44 #include <asm/i387.h>
45 #include <asm/processor.h>
46 #include <asm/unwind.h>
47 #include <asm/smp.h>
48 #include <asm/pgalloc.h>
49 #include <asm/pda.h>
50 #include <asm/proto.h>
51 #include <asm/nmi.h>
52 #include <asm/stacktrace.h>
53
54 asmlinkage void divide_error(void);
55 asmlinkage void debug(void);
56 asmlinkage void nmi(void);
57 asmlinkage void int3(void);
58 asmlinkage void overflow(void);
59 asmlinkage void bounds(void);
60 asmlinkage void invalid_op(void);
61 asmlinkage void device_not_available(void);
62 asmlinkage void double_fault(void);
63 asmlinkage void coprocessor_segment_overrun(void);
64 asmlinkage void invalid_TSS(void);
65 asmlinkage void segment_not_present(void);
66 asmlinkage void stack_segment(void);
67 asmlinkage void general_protection(void);
68 asmlinkage void page_fault(void);
69 asmlinkage void coprocessor_error(void);
70 asmlinkage void simd_coprocessor_error(void);
71 asmlinkage void reserved(void);
72 asmlinkage void alignment_check(void);
73 asmlinkage void machine_check(void);
74 asmlinkage void spurious_interrupt_bug(void);
75
76 static inline void conditional_sti(struct pt_regs *regs)
77 {
78 if (regs->eflags & X86_EFLAGS_IF)
79 local_irq_enable();
80 }
81
82 static inline void preempt_conditional_sti(struct pt_regs *regs)
83 {
84 preempt_disable();
85 if (regs->eflags & X86_EFLAGS_IF)
86 local_irq_enable();
87 }
88
89 static inline void preempt_conditional_cli(struct pt_regs *regs)
90 {
91 if (regs->eflags & X86_EFLAGS_IF)
92 local_irq_disable();
93 /* Make sure to not schedule here because we could be running
94 on an exception stack. */
95 preempt_enable_no_resched();
96 }
97
98 int kstack_depth_to_print = 12;
99
100 #ifdef CONFIG_KALLSYMS
101 void printk_address(unsigned long address)
102 {
103 unsigned long offset = 0, symsize;
104 const char *symname;
105 char *modname;
106 char *delim = ":";
107 char namebuf[128];
108
109 symname = kallsyms_lookup(address, &symsize, &offset,
110 &modname, namebuf);
111 if (!symname) {
112 printk(" [<%016lx>]\n", address);
113 return;
114 }
115 if (!modname)
116 modname = delim = "";
117 printk(" [<%016lx>] %s%s%s%s+0x%lx/0x%lx\n",
118 address, delim, modname, delim, symname, offset, symsize);
119 }
120 #else
121 void printk_address(unsigned long address)
122 {
123 printk(" [<%016lx>]\n", address);
124 }
125 #endif
126
127 static unsigned long *in_exception_stack(unsigned cpu, unsigned long stack,
128 unsigned *usedp, char **idp)
129 {
130 static char ids[][8] = {
131 [DEBUG_STACK - 1] = "#DB",
132 [NMI_STACK - 1] = "NMI",
133 [DOUBLEFAULT_STACK - 1] = "#DF",
134 [STACKFAULT_STACK - 1] = "#SS",
135 [MCE_STACK - 1] = "#MC",
136 #if DEBUG_STKSZ > EXCEPTION_STKSZ
137 [N_EXCEPTION_STACKS ... N_EXCEPTION_STACKS + DEBUG_STKSZ / EXCEPTION_STKSZ - 2] = "#DB[?]"
138 #endif
139 };
140 unsigned k;
141
142 /*
143 * Iterate over all exception stacks, and figure out whether
144 * 'stack' is in one of them:
145 */
146 for (k = 0; k < N_EXCEPTION_STACKS; k++) {
147 unsigned long end = per_cpu(orig_ist, cpu).ist[k];
148 /*
149 * Is 'stack' above this exception frame's end?
150 * If yes then skip to the next frame.
151 */
152 if (stack >= end)
153 continue;
154 /*
155 * Is 'stack' above this exception frame's start address?
156 * If yes then we found the right frame.
157 */
158 if (stack >= end - EXCEPTION_STKSZ) {
159 /*
160 * Make sure we only iterate through an exception
161 * stack once. If it comes up for the second time
162 * then there's something wrong going on - just
163 * break out and return NULL:
164 */
165 if (*usedp & (1U << k))
166 break;
167 *usedp |= 1U << k;
168 *idp = ids[k];
169 return (unsigned long *)end;
170 }
171 /*
172 * If this is a debug stack, and if it has a larger size than
173 * the usual exception stacks, then 'stack' might still
174 * be within the lower portion of the debug stack:
175 */
176 #if DEBUG_STKSZ > EXCEPTION_STKSZ
177 if (k == DEBUG_STACK - 1 && stack >= end - DEBUG_STKSZ) {
178 unsigned j = N_EXCEPTION_STACKS - 1;
179
180 /*
181 * Black magic. A large debug stack is composed of
182 * multiple exception stack entries, which we
183 * iterate through now. Dont look:
184 */
185 do {
186 ++j;
187 end -= EXCEPTION_STKSZ;
188 ids[j][4] = '1' + (j - N_EXCEPTION_STACKS);
189 } while (stack < end - EXCEPTION_STKSZ);
190 if (*usedp & (1U << j))
191 break;
192 *usedp |= 1U << j;
193 *idp = ids[j];
194 return (unsigned long *)end;
195 }
196 #endif
197 }
198 return NULL;
199 }
200
201 #define MSG(txt) ops->warning(data, txt)
202
203 /*
204 * x86-64 can have up to three kernel stacks:
205 * process stack
206 * interrupt stack
207 * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
208 */
209
210 static inline int valid_stack_ptr(struct thread_info *tinfo, void *p)
211 {
212 void *t = (void *)tinfo;
213 return p > t && p < t + THREAD_SIZE - 3;
214 }
215
216 void dump_trace(struct task_struct *tsk, struct pt_regs *regs,
217 unsigned long *stack,
218 const struct stacktrace_ops *ops, void *data)
219 {
220 const unsigned cpu = get_cpu();
221 unsigned long *irqstack_end = (unsigned long*)cpu_pda(cpu)->irqstackptr;
222 unsigned used = 0;
223 struct thread_info *tinfo;
224
225 if (!tsk)
226 tsk = current;
227
228 if (!stack) {
229 unsigned long dummy;
230 stack = &dummy;
231 if (tsk && tsk != current)
232 stack = (unsigned long *)tsk->thread.rsp;
233 }
234
235 /*
236 * Print function call entries within a stack. 'cond' is the
237 * "end of stackframe" condition, that the 'stack++'
238 * iteration will eventually trigger.
239 */
240 #define HANDLE_STACK(cond) \
241 do while (cond) { \
242 unsigned long addr = *stack++; \
243 /* Use unlocked access here because except for NMIs \
244 we should be already protected against module unloads */ \
245 if (__kernel_text_address(addr)) { \
246 /* \
247 * If the address is either in the text segment of the \
248 * kernel, or in the region which contains vmalloc'ed \
249 * memory, it *may* be the address of a calling \
250 * routine; if so, print it so that someone tracing \
251 * down the cause of the crash will be able to figure \
252 * out the call path that was taken. \
253 */ \
254 ops->address(data, addr); \
255 } \
256 } while (0)
257
258 /*
259 * Print function call entries in all stacks, starting at the
260 * current stack address. If the stacks consist of nested
261 * exceptions
262 */
263 for (;;) {
264 char *id;
265 unsigned long *estack_end;
266 estack_end = in_exception_stack(cpu, (unsigned long)stack,
267 &used, &id);
268
269 if (estack_end) {
270 if (ops->stack(data, id) < 0)
271 break;
272 HANDLE_STACK (stack < estack_end);
273 ops->stack(data, "<EOE>");
274 /*
275 * We link to the next stack via the
276 * second-to-last pointer (index -2 to end) in the
277 * exception stack:
278 */
279 stack = (unsigned long *) estack_end[-2];
280 continue;
281 }
282 if (irqstack_end) {
283 unsigned long *irqstack;
284 irqstack = irqstack_end -
285 (IRQSTACKSIZE - 64) / sizeof(*irqstack);
286
287 if (stack >= irqstack && stack < irqstack_end) {
288 if (ops->stack(data, "IRQ") < 0)
289 break;
290 HANDLE_STACK (stack < irqstack_end);
291 /*
292 * We link to the next stack (which would be
293 * the process stack normally) the last
294 * pointer (index -1 to end) in the IRQ stack:
295 */
296 stack = (unsigned long *) (irqstack_end[-1]);
297 irqstack_end = NULL;
298 ops->stack(data, "EOI");
299 continue;
300 }
301 }
302 break;
303 }
304
305 /*
306 * This handles the process stack:
307 */
308 tinfo = task_thread_info(tsk);
309 HANDLE_STACK (valid_stack_ptr(tinfo, stack));
310 #undef HANDLE_STACK
311 put_cpu();
312 }
313 EXPORT_SYMBOL(dump_trace);
314
315 static void
316 print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
317 {
318 print_symbol(msg, symbol);
319 printk("\n");
320 }
321
322 static void print_trace_warning(void *data, char *msg)
323 {
324 printk("%s\n", msg);
325 }
326
327 static int print_trace_stack(void *data, char *name)
328 {
329 printk(" <%s> ", name);
330 return 0;
331 }
332
333 static void print_trace_address(void *data, unsigned long addr)
334 {
335 touch_nmi_watchdog();
336 printk_address(addr);
337 }
338
339 static const struct stacktrace_ops print_trace_ops = {
340 .warning = print_trace_warning,
341 .warning_symbol = print_trace_warning_symbol,
342 .stack = print_trace_stack,
343 .address = print_trace_address,
344 };
345
346 void
347 show_trace(struct task_struct *tsk, struct pt_regs *regs, unsigned long *stack)
348 {
349 printk("\nCall Trace:\n");
350 dump_trace(tsk, regs, stack, &print_trace_ops, NULL);
351 printk("\n");
352 }
353
354 static void
355 _show_stack(struct task_struct *tsk, struct pt_regs *regs, unsigned long *rsp)
356 {
357 unsigned long *stack;
358 int i;
359 const int cpu = smp_processor_id();
360 unsigned long *irqstack_end = (unsigned long *) (cpu_pda(cpu)->irqstackptr);
361 unsigned long *irqstack = (unsigned long *) (cpu_pda(cpu)->irqstackptr - IRQSTACKSIZE);
362
363 // debugging aid: "show_stack(NULL, NULL);" prints the
364 // back trace for this cpu.
365
366 if (rsp == NULL) {
367 if (tsk)
368 rsp = (unsigned long *)tsk->thread.rsp;
369 else
370 rsp = (unsigned long *)&rsp;
371 }
372
373 stack = rsp;
374 for(i=0; i < kstack_depth_to_print; i++) {
375 if (stack >= irqstack && stack <= irqstack_end) {
376 if (stack == irqstack_end) {
377 stack = (unsigned long *) (irqstack_end[-1]);
378 printk(" <EOI> ");
379 }
380 } else {
381 if (((long) stack & (THREAD_SIZE-1)) == 0)
382 break;
383 }
384 if (i && ((i % 4) == 0))
385 printk("\n");
386 printk(" %016lx", *stack++);
387 touch_nmi_watchdog();
388 }
389 show_trace(tsk, regs, rsp);
390 }
391
392 void show_stack(struct task_struct *tsk, unsigned long * rsp)
393 {
394 _show_stack(tsk, NULL, rsp);
395 }
396
397 /*
398 * The architecture-independent dump_stack generator
399 */
400 void dump_stack(void)
401 {
402 unsigned long dummy;
403 show_trace(NULL, NULL, &dummy);
404 }
405
406 EXPORT_SYMBOL(dump_stack);
407
408 void show_registers(struct pt_regs *regs)
409 {
410 int i;
411 int in_kernel = !user_mode(regs);
412 unsigned long rsp;
413 const int cpu = smp_processor_id();
414 struct task_struct *cur = cpu_pda(cpu)->pcurrent;
415
416 rsp = regs->rsp;
417 printk("CPU %d ", cpu);
418 __show_regs(regs);
419 printk("Process %s (pid: %d, threadinfo %p, task %p)\n",
420 cur->comm, cur->pid, task_thread_info(cur), cur);
421
422 /*
423 * When in-kernel, we also print out the stack and code at the
424 * time of the fault..
425 */
426 if (in_kernel) {
427 printk("Stack: ");
428 _show_stack(NULL, regs, (unsigned long*)rsp);
429
430 printk("\nCode: ");
431 if (regs->rip < PAGE_OFFSET)
432 goto bad;
433
434 for (i=0; i<20; i++) {
435 unsigned char c;
436 if (__get_user(c, &((unsigned char*)regs->rip)[i])) {
437 bad:
438 printk(" Bad RIP value.");
439 break;
440 }
441 printk("%02x ", c);
442 }
443 }
444 printk("\n");
445 }
446
447 int is_valid_bugaddr(unsigned long rip)
448 {
449 unsigned short ud2;
450
451 if (__copy_from_user(&ud2, (const void __user *) rip, sizeof(ud2)))
452 return 0;
453
454 return ud2 == 0x0b0f;
455 }
456
457 #ifdef CONFIG_BUG
458 void out_of_line_bug(void)
459 {
460 BUG();
461 }
462 EXPORT_SYMBOL(out_of_line_bug);
463 #endif
464
465 static raw_spinlock_t die_lock = __RAW_SPIN_LOCK_UNLOCKED;
466 static int die_owner = -1;
467 static unsigned int die_nest_count;
468
469 unsigned __kprobes long oops_begin(void)
470 {
471 int cpu;
472 unsigned long flags;
473
474 oops_enter();
475
476 /* racy, but better than risking deadlock. */
477 raw_local_irq_save(flags);
478 cpu = smp_processor_id();
479 if (!__raw_spin_trylock(&die_lock)) {
480 if (cpu == die_owner)
481 /* nested oops. should stop eventually */;
482 else
483 __raw_spin_lock(&die_lock);
484 }
485 die_nest_count++;
486 die_owner = cpu;
487 console_verbose();
488 bust_spinlocks(1);
489 return flags;
490 }
491
492 void __kprobes oops_end(unsigned long flags)
493 {
494 die_owner = -1;
495 bust_spinlocks(0);
496 die_nest_count--;
497 if (!die_nest_count)
498 /* Nest count reaches zero, release the lock. */
499 __raw_spin_unlock(&die_lock);
500 raw_local_irq_restore(flags);
501 if (panic_on_oops)
502 panic("Fatal exception");
503 oops_exit();
504 }
505
506 void __kprobes __die(const char * str, struct pt_regs * regs, long err)
507 {
508 static int die_counter;
509 printk(KERN_EMERG "%s: %04lx [%u] ", str, err & 0xffff,++die_counter);
510 #ifdef CONFIG_PREEMPT
511 printk("PREEMPT ");
512 #endif
513 #ifdef CONFIG_SMP
514 printk("SMP ");
515 #endif
516 #ifdef CONFIG_DEBUG_PAGEALLOC
517 printk("DEBUG_PAGEALLOC");
518 #endif
519 printk("\n");
520 notify_die(DIE_OOPS, str, regs, err, current->thread.trap_no, SIGSEGV);
521 show_registers(regs);
522 add_taint(TAINT_DIE);
523 /* Executive summary in case the oops scrolled away */
524 printk(KERN_ALERT "RIP ");
525 printk_address(regs->rip);
526 printk(" RSP <%016lx>\n", regs->rsp);
527 if (kexec_should_crash(current))
528 crash_kexec(regs);
529 }
530
531 void die(const char * str, struct pt_regs * regs, long err)
532 {
533 unsigned long flags = oops_begin();
534
535 if (!user_mode(regs))
536 report_bug(regs->rip, regs);
537
538 __die(str, regs, err);
539 oops_end(flags);
540 do_exit(SIGSEGV);
541 }
542
543 void __kprobes die_nmi(char *str, struct pt_regs *regs, int do_panic)
544 {
545 unsigned long flags = oops_begin();
546
547 /*
548 * We are in trouble anyway, lets at least try
549 * to get a message out.
550 */
551 printk(str, smp_processor_id());
552 show_registers(regs);
553 if (kexec_should_crash(current))
554 crash_kexec(regs);
555 if (do_panic || panic_on_oops)
556 panic("Non maskable interrupt");
557 oops_end(flags);
558 nmi_exit();
559 local_irq_enable();
560 do_exit(SIGSEGV);
561 }
562
563 static void __kprobes do_trap(int trapnr, int signr, char *str,
564 struct pt_regs * regs, long error_code,
565 siginfo_t *info)
566 {
567 struct task_struct *tsk = current;
568
569 if (user_mode(regs)) {
570 /*
571 * We want error_code and trap_no set for userspace
572 * faults and kernelspace faults which result in
573 * die(), but not kernelspace faults which are fixed
574 * up. die() gives the process no chance to handle
575 * the signal and notice the kernel fault information,
576 * so that won't result in polluting the information
577 * about previously queued, but not yet delivered,
578 * faults. See also do_general_protection below.
579 */
580 tsk->thread.error_code = error_code;
581 tsk->thread.trap_no = trapnr;
582
583 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
584 printk_ratelimit())
585 printk(KERN_INFO
586 "%s[%d] trap %s rip:%lx rsp:%lx error:%lx\n",
587 tsk->comm, tsk->pid, str,
588 regs->rip, regs->rsp, error_code);
589
590 if (info)
591 force_sig_info(signr, info, tsk);
592 else
593 force_sig(signr, tsk);
594 return;
595 }
596
597
598 /* kernel trap */
599 {
600 const struct exception_table_entry *fixup;
601 fixup = search_exception_tables(regs->rip);
602 if (fixup)
603 regs->rip = fixup->fixup;
604 else {
605 tsk->thread.error_code = error_code;
606 tsk->thread.trap_no = trapnr;
607 die(str, regs, error_code);
608 }
609 return;
610 }
611 }
612
613 #define DO_ERROR(trapnr, signr, str, name) \
614 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
615 { \
616 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
617 == NOTIFY_STOP) \
618 return; \
619 conditional_sti(regs); \
620 do_trap(trapnr, signr, str, regs, error_code, NULL); \
621 }
622
623 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
624 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
625 { \
626 siginfo_t info; \
627 info.si_signo = signr; \
628 info.si_errno = 0; \
629 info.si_code = sicode; \
630 info.si_addr = (void __user *)siaddr; \
631 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
632 == NOTIFY_STOP) \
633 return; \
634 conditional_sti(regs); \
635 do_trap(trapnr, signr, str, regs, error_code, &info); \
636 }
637
638 DO_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->rip)
639 DO_ERROR( 4, SIGSEGV, "overflow", overflow)
640 DO_ERROR( 5, SIGSEGV, "bounds", bounds)
641 DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->rip)
642 DO_ERROR( 7, SIGSEGV, "device not available", device_not_available)
643 DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
644 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
645 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
646 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
647 DO_ERROR(18, SIGSEGV, "reserved", reserved)
648
649 /* Runs on IST stack */
650 asmlinkage void do_stack_segment(struct pt_regs *regs, long error_code)
651 {
652 if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
653 12, SIGBUS) == NOTIFY_STOP)
654 return;
655 preempt_conditional_sti(regs);
656 do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL);
657 preempt_conditional_cli(regs);
658 }
659
660 asmlinkage void do_double_fault(struct pt_regs * regs, long error_code)
661 {
662 static const char str[] = "double fault";
663 struct task_struct *tsk = current;
664
665 /* Return not checked because double check cannot be ignored */
666 notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV);
667
668 tsk->thread.error_code = error_code;
669 tsk->thread.trap_no = 8;
670
671 /* This is always a kernel trap and never fixable (and thus must
672 never return). */
673 for (;;)
674 die(str, regs, error_code);
675 }
676
677 asmlinkage void __kprobes do_general_protection(struct pt_regs * regs,
678 long error_code)
679 {
680 struct task_struct *tsk = current;
681
682 conditional_sti(regs);
683
684 if (user_mode(regs)) {
685 tsk->thread.error_code = error_code;
686 tsk->thread.trap_no = 13;
687
688 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
689 printk_ratelimit())
690 printk(KERN_INFO
691 "%s[%d] general protection rip:%lx rsp:%lx error:%lx\n",
692 tsk->comm, tsk->pid,
693 regs->rip, regs->rsp, error_code);
694
695 force_sig(SIGSEGV, tsk);
696 return;
697 }
698
699 /* kernel gp */
700 {
701 const struct exception_table_entry *fixup;
702 fixup = search_exception_tables(regs->rip);
703 if (fixup) {
704 regs->rip = fixup->fixup;
705 return;
706 }
707
708 tsk->thread.error_code = error_code;
709 tsk->thread.trap_no = 13;
710 if (notify_die(DIE_GPF, "general protection fault", regs,
711 error_code, 13, SIGSEGV) == NOTIFY_STOP)
712 return;
713 die("general protection fault", regs, error_code);
714 }
715 }
716
717 static __kprobes void
718 mem_parity_error(unsigned char reason, struct pt_regs * regs)
719 {
720 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
721 reason);
722 printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n");
723
724 #if defined(CONFIG_EDAC)
725 if(edac_handler_set()) {
726 edac_atomic_assert_error();
727 return;
728 }
729 #endif
730
731 if (panic_on_unrecovered_nmi)
732 panic("NMI: Not continuing");
733
734 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
735
736 /* Clear and disable the memory parity error line. */
737 reason = (reason & 0xf) | 4;
738 outb(reason, 0x61);
739 }
740
741 static __kprobes void
742 io_check_error(unsigned char reason, struct pt_regs * regs)
743 {
744 printk("NMI: IOCK error (debug interrupt?)\n");
745 show_registers(regs);
746
747 /* Re-enable the IOCK line, wait for a few seconds */
748 reason = (reason & 0xf) | 8;
749 outb(reason, 0x61);
750 mdelay(2000);
751 reason &= ~8;
752 outb(reason, 0x61);
753 }
754
755 static __kprobes void
756 unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
757 {
758 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
759 reason);
760 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
761
762 if (panic_on_unrecovered_nmi)
763 panic("NMI: Not continuing");
764
765 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
766 }
767
768 /* Runs on IST stack. This code must keep interrupts off all the time.
769 Nested NMIs are prevented by the CPU. */
770 asmlinkage __kprobes void default_do_nmi(struct pt_regs *regs)
771 {
772 unsigned char reason = 0;
773 int cpu;
774
775 cpu = smp_processor_id();
776
777 /* Only the BSP gets external NMIs from the system. */
778 if (!cpu)
779 reason = get_nmi_reason();
780
781 if (!(reason & 0xc0)) {
782 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
783 == NOTIFY_STOP)
784 return;
785 /*
786 * Ok, so this is none of the documented NMI sources,
787 * so it must be the NMI watchdog.
788 */
789 if (nmi_watchdog_tick(regs,reason))
790 return;
791 if (!do_nmi_callback(regs,cpu))
792 unknown_nmi_error(reason, regs);
793
794 return;
795 }
796 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
797 return;
798
799 /* AK: following checks seem to be broken on modern chipsets. FIXME */
800
801 if (reason & 0x80)
802 mem_parity_error(reason, regs);
803 if (reason & 0x40)
804 io_check_error(reason, regs);
805 }
806
807 /* runs on IST stack. */
808 asmlinkage void __kprobes do_int3(struct pt_regs * regs, long error_code)
809 {
810 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) == NOTIFY_STOP) {
811 return;
812 }
813 preempt_conditional_sti(regs);
814 do_trap(3, SIGTRAP, "int3", regs, error_code, NULL);
815 preempt_conditional_cli(regs);
816 }
817
818 /* Help handler running on IST stack to switch back to user stack
819 for scheduling or signal handling. The actual stack switch is done in
820 entry.S */
821 asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
822 {
823 struct pt_regs *regs = eregs;
824 /* Did already sync */
825 if (eregs == (struct pt_regs *)eregs->rsp)
826 ;
827 /* Exception from user space */
828 else if (user_mode(eregs))
829 regs = task_pt_regs(current);
830 /* Exception from kernel and interrupts are enabled. Move to
831 kernel process stack. */
832 else if (eregs->eflags & X86_EFLAGS_IF)
833 regs = (struct pt_regs *)(eregs->rsp -= sizeof(struct pt_regs));
834 if (eregs != regs)
835 *regs = *eregs;
836 return regs;
837 }
838
839 /* runs on IST stack. */
840 asmlinkage void __kprobes do_debug(struct pt_regs * regs,
841 unsigned long error_code)
842 {
843 unsigned long condition;
844 struct task_struct *tsk = current;
845 siginfo_t info;
846
847 get_debugreg(condition, 6);
848
849 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
850 SIGTRAP) == NOTIFY_STOP)
851 return;
852
853 preempt_conditional_sti(regs);
854
855 /* Mask out spurious debug traps due to lazy DR7 setting */
856 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
857 if (!tsk->thread.debugreg7) {
858 goto clear_dr7;
859 }
860 }
861
862 tsk->thread.debugreg6 = condition;
863
864 /* Mask out spurious TF errors due to lazy TF clearing */
865 if (condition & DR_STEP) {
866 /*
867 * The TF error should be masked out only if the current
868 * process is not traced and if the TRAP flag has been set
869 * previously by a tracing process (condition detected by
870 * the PT_DTRACE flag); remember that the i386 TRAP flag
871 * can be modified by the process itself in user mode,
872 * allowing programs to debug themselves without the ptrace()
873 * interface.
874 */
875 if (!user_mode(regs))
876 goto clear_TF_reenable;
877 /*
878 * Was the TF flag set by a debugger? If so, clear it now,
879 * so that register information is correct.
880 */
881 if (tsk->ptrace & PT_DTRACE) {
882 regs->eflags &= ~TF_MASK;
883 tsk->ptrace &= ~PT_DTRACE;
884 }
885 }
886
887 /* Ok, finally something we can handle */
888 tsk->thread.trap_no = 1;
889 tsk->thread.error_code = error_code;
890 info.si_signo = SIGTRAP;
891 info.si_errno = 0;
892 info.si_code = TRAP_BRKPT;
893 info.si_addr = user_mode(regs) ? (void __user *)regs->rip : NULL;
894 force_sig_info(SIGTRAP, &info, tsk);
895
896 clear_dr7:
897 set_debugreg(0UL, 7);
898 preempt_conditional_cli(regs);
899 return;
900
901 clear_TF_reenable:
902 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
903 regs->eflags &= ~TF_MASK;
904 preempt_conditional_cli(regs);
905 }
906
907 static int kernel_math_error(struct pt_regs *regs, const char *str, int trapnr)
908 {
909 const struct exception_table_entry *fixup;
910 fixup = search_exception_tables(regs->rip);
911 if (fixup) {
912 regs->rip = fixup->fixup;
913 return 1;
914 }
915 notify_die(DIE_GPF, str, regs, 0, trapnr, SIGFPE);
916 /* Illegal floating point operation in the kernel */
917 current->thread.trap_no = trapnr;
918 die(str, regs, 0);
919 return 0;
920 }
921
922 /*
923 * Note that we play around with the 'TS' bit in an attempt to get
924 * the correct behaviour even in the presence of the asynchronous
925 * IRQ13 behaviour
926 */
927 asmlinkage void do_coprocessor_error(struct pt_regs *regs)
928 {
929 void __user *rip = (void __user *)(regs->rip);
930 struct task_struct * task;
931 siginfo_t info;
932 unsigned short cwd, swd;
933
934 conditional_sti(regs);
935 if (!user_mode(regs) &&
936 kernel_math_error(regs, "kernel x87 math error", 16))
937 return;
938
939 /*
940 * Save the info for the exception handler and clear the error.
941 */
942 task = current;
943 save_init_fpu(task);
944 task->thread.trap_no = 16;
945 task->thread.error_code = 0;
946 info.si_signo = SIGFPE;
947 info.si_errno = 0;
948 info.si_code = __SI_FAULT;
949 info.si_addr = rip;
950 /*
951 * (~cwd & swd) will mask out exceptions that are not set to unmasked
952 * status. 0x3f is the exception bits in these regs, 0x200 is the
953 * C1 reg you need in case of a stack fault, 0x040 is the stack
954 * fault bit. We should only be taking one exception at a time,
955 * so if this combination doesn't produce any single exception,
956 * then we have a bad program that isn't synchronizing its FPU usage
957 * and it will suffer the consequences since we won't be able to
958 * fully reproduce the context of the exception
959 */
960 cwd = get_fpu_cwd(task);
961 swd = get_fpu_swd(task);
962 switch (swd & ~cwd & 0x3f) {
963 case 0x000:
964 default:
965 break;
966 case 0x001: /* Invalid Op */
967 /*
968 * swd & 0x240 == 0x040: Stack Underflow
969 * swd & 0x240 == 0x240: Stack Overflow
970 * User must clear the SF bit (0x40) if set
971 */
972 info.si_code = FPE_FLTINV;
973 break;
974 case 0x002: /* Denormalize */
975 case 0x010: /* Underflow */
976 info.si_code = FPE_FLTUND;
977 break;
978 case 0x004: /* Zero Divide */
979 info.si_code = FPE_FLTDIV;
980 break;
981 case 0x008: /* Overflow */
982 info.si_code = FPE_FLTOVF;
983 break;
984 case 0x020: /* Precision */
985 info.si_code = FPE_FLTRES;
986 break;
987 }
988 force_sig_info(SIGFPE, &info, task);
989 }
990
991 asmlinkage void bad_intr(void)
992 {
993 printk("bad interrupt");
994 }
995
996 asmlinkage void do_simd_coprocessor_error(struct pt_regs *regs)
997 {
998 void __user *rip = (void __user *)(regs->rip);
999 struct task_struct * task;
1000 siginfo_t info;
1001 unsigned short mxcsr;
1002
1003 conditional_sti(regs);
1004 if (!user_mode(regs) &&
1005 kernel_math_error(regs, "kernel simd math error", 19))
1006 return;
1007
1008 /*
1009 * Save the info for the exception handler and clear the error.
1010 */
1011 task = current;
1012 save_init_fpu(task);
1013 task->thread.trap_no = 19;
1014 task->thread.error_code = 0;
1015 info.si_signo = SIGFPE;
1016 info.si_errno = 0;
1017 info.si_code = __SI_FAULT;
1018 info.si_addr = rip;
1019 /*
1020 * The SIMD FPU exceptions are handled a little differently, as there
1021 * is only a single status/control register. Thus, to determine which
1022 * unmasked exception was caught we must mask the exception mask bits
1023 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
1024 */
1025 mxcsr = get_fpu_mxcsr(task);
1026 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
1027 case 0x000:
1028 default:
1029 break;
1030 case 0x001: /* Invalid Op */
1031 info.si_code = FPE_FLTINV;
1032 break;
1033 case 0x002: /* Denormalize */
1034 case 0x010: /* Underflow */
1035 info.si_code = FPE_FLTUND;
1036 break;
1037 case 0x004: /* Zero Divide */
1038 info.si_code = FPE_FLTDIV;
1039 break;
1040 case 0x008: /* Overflow */
1041 info.si_code = FPE_FLTOVF;
1042 break;
1043 case 0x020: /* Precision */
1044 info.si_code = FPE_FLTRES;
1045 break;
1046 }
1047 force_sig_info(SIGFPE, &info, task);
1048 }
1049
1050 asmlinkage void do_spurious_interrupt_bug(struct pt_regs * regs)
1051 {
1052 }
1053
1054 asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
1055 {
1056 }
1057
1058 asmlinkage void __attribute__((weak)) mce_threshold_interrupt(void)
1059 {
1060 }
1061
1062 /*
1063 * 'math_state_restore()' saves the current math information in the
1064 * old math state array, and gets the new ones from the current task
1065 *
1066 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1067 * Don't touch unless you *really* know how it works.
1068 */
1069 asmlinkage void math_state_restore(void)
1070 {
1071 struct task_struct *me = current;
1072 clts(); /* Allow maths ops (or we recurse) */
1073
1074 if (!used_math())
1075 init_fpu(me);
1076 restore_fpu_checking(&me->thread.i387.fxsave);
1077 task_thread_info(me)->status |= TS_USEDFPU;
1078 me->fpu_counter++;
1079 }
1080
1081 void __init trap_init(void)
1082 {
1083 set_intr_gate(0,&divide_error);
1084 set_intr_gate_ist(1,&debug,DEBUG_STACK);
1085 set_intr_gate_ist(2,&nmi,NMI_STACK);
1086 set_system_gate_ist(3,&int3,DEBUG_STACK); /* int3 can be called from all */
1087 set_system_gate(4,&overflow); /* int4 can be called from all */
1088 set_intr_gate(5,&bounds);
1089 set_intr_gate(6,&invalid_op);
1090 set_intr_gate(7,&device_not_available);
1091 set_intr_gate_ist(8,&double_fault, DOUBLEFAULT_STACK);
1092 set_intr_gate(9,&coprocessor_segment_overrun);
1093 set_intr_gate(10,&invalid_TSS);
1094 set_intr_gate(11,&segment_not_present);
1095 set_intr_gate_ist(12,&stack_segment,STACKFAULT_STACK);
1096 set_intr_gate(13,&general_protection);
1097 set_intr_gate(14,&page_fault);
1098 set_intr_gate(15,&spurious_interrupt_bug);
1099 set_intr_gate(16,&coprocessor_error);
1100 set_intr_gate(17,&alignment_check);
1101 #ifdef CONFIG_X86_MCE
1102 set_intr_gate_ist(18,&machine_check, MCE_STACK);
1103 #endif
1104 set_intr_gate(19,&simd_coprocessor_error);
1105
1106 #ifdef CONFIG_IA32_EMULATION
1107 set_system_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
1108 #endif
1109
1110 /*
1111 * Should be a barrier for any external CPU state.
1112 */
1113 cpu_init();
1114 }
1115
1116
1117 static int __init oops_setup(char *s)
1118 {
1119 if (!s)
1120 return -EINVAL;
1121 if (!strcmp(s, "panic"))
1122 panic_on_oops = 1;
1123 return 0;
1124 }
1125 early_param("oops", oops_setup);
1126
1127 static int __init kstack_setup(char *s)
1128 {
1129 if (!s)
1130 return -EINVAL;
1131 kstack_depth_to_print = simple_strtoul(s,NULL,0);
1132 return 0;
1133 }
1134 early_param("kstack", kstack_setup);