]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/kernel/tsc.c
Merge tag 'powerpc-5.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kernel / tsc.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/timer.h>
9 #include <linux/acpi_pmtmr.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/clocksource.h>
13 #include <linux/percpu.h>
14 #include <linux/timex.h>
15 #include <linux/static_key.h>
16
17 #include <asm/hpet.h>
18 #include <asm/timer.h>
19 #include <asm/vgtod.h>
20 #include <asm/time.h>
21 #include <asm/delay.h>
22 #include <asm/hypervisor.h>
23 #include <asm/nmi.h>
24 #include <asm/x86_init.h>
25 #include <asm/geode.h>
26 #include <asm/apic.h>
27 #include <asm/intel-family.h>
28 #include <asm/i8259.h>
29 #include <asm/uv/uv.h>
30
31 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
32 EXPORT_SYMBOL(cpu_khz);
33
34 unsigned int __read_mostly tsc_khz;
35 EXPORT_SYMBOL(tsc_khz);
36
37 #define KHZ 1000
38
39 /*
40 * TSC can be unstable due to cpufreq or due to unsynced TSCs
41 */
42 static int __read_mostly tsc_unstable;
43
44 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
45
46 int tsc_clocksource_reliable;
47
48 static u32 art_to_tsc_numerator;
49 static u32 art_to_tsc_denominator;
50 static u64 art_to_tsc_offset;
51 struct clocksource *art_related_clocksource;
52
53 struct cyc2ns {
54 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
55 seqcount_t seq; /* 32 + 4 = 36 */
56
57 }; /* fits one cacheline */
58
59 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
60
61 void __always_inline cyc2ns_read_begin(struct cyc2ns_data *data)
62 {
63 int seq, idx;
64
65 preempt_disable_notrace();
66
67 do {
68 seq = this_cpu_read(cyc2ns.seq.sequence);
69 idx = seq & 1;
70
71 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
72 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
73 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
74
75 } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
76 }
77
78 void __always_inline cyc2ns_read_end(void)
79 {
80 preempt_enable_notrace();
81 }
82
83 /*
84 * Accelerators for sched_clock()
85 * convert from cycles(64bits) => nanoseconds (64bits)
86 * basic equation:
87 * ns = cycles / (freq / ns_per_sec)
88 * ns = cycles * (ns_per_sec / freq)
89 * ns = cycles * (10^9 / (cpu_khz * 10^3))
90 * ns = cycles * (10^6 / cpu_khz)
91 *
92 * Then we use scaling math (suggested by george@mvista.com) to get:
93 * ns = cycles * (10^6 * SC / cpu_khz) / SC
94 * ns = cycles * cyc2ns_scale / SC
95 *
96 * And since SC is a constant power of two, we can convert the div
97 * into a shift. The larger SC is, the more accurate the conversion, but
98 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
99 * (64-bit result) can be used.
100 *
101 * We can use khz divisor instead of mhz to keep a better precision.
102 * (mathieu.desnoyers@polymtl.ca)
103 *
104 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
105 */
106
107 static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
108 {
109 struct cyc2ns_data data;
110 unsigned long long ns;
111
112 cyc2ns_read_begin(&data);
113
114 ns = data.cyc2ns_offset;
115 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
116
117 cyc2ns_read_end();
118
119 return ns;
120 }
121
122 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
123 {
124 unsigned long long ns_now;
125 struct cyc2ns_data data;
126 struct cyc2ns *c2n;
127
128 ns_now = cycles_2_ns(tsc_now);
129
130 /*
131 * Compute a new multiplier as per the above comment and ensure our
132 * time function is continuous; see the comment near struct
133 * cyc2ns_data.
134 */
135 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
136 NSEC_PER_MSEC, 0);
137
138 /*
139 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
140 * not expected to be greater than 31 due to the original published
141 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
142 * value) - refer perf_event_mmap_page documentation in perf_event.h.
143 */
144 if (data.cyc2ns_shift == 32) {
145 data.cyc2ns_shift = 31;
146 data.cyc2ns_mul >>= 1;
147 }
148
149 data.cyc2ns_offset = ns_now -
150 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
151
152 c2n = per_cpu_ptr(&cyc2ns, cpu);
153
154 raw_write_seqcount_latch(&c2n->seq);
155 c2n->data[0] = data;
156 raw_write_seqcount_latch(&c2n->seq);
157 c2n->data[1] = data;
158 }
159
160 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
161 {
162 unsigned long flags;
163
164 local_irq_save(flags);
165 sched_clock_idle_sleep_event();
166
167 if (khz)
168 __set_cyc2ns_scale(khz, cpu, tsc_now);
169
170 sched_clock_idle_wakeup_event();
171 local_irq_restore(flags);
172 }
173
174 /*
175 * Initialize cyc2ns for boot cpu
176 */
177 static void __init cyc2ns_init_boot_cpu(void)
178 {
179 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
180
181 seqcount_init(&c2n->seq);
182 __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
183 }
184
185 /*
186 * Secondary CPUs do not run through tsc_init(), so set up
187 * all the scale factors for all CPUs, assuming the same
188 * speed as the bootup CPU.
189 */
190 static void __init cyc2ns_init_secondary_cpus(void)
191 {
192 unsigned int cpu, this_cpu = smp_processor_id();
193 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
194 struct cyc2ns_data *data = c2n->data;
195
196 for_each_possible_cpu(cpu) {
197 if (cpu != this_cpu) {
198 seqcount_init(&c2n->seq);
199 c2n = per_cpu_ptr(&cyc2ns, cpu);
200 c2n->data[0] = data[0];
201 c2n->data[1] = data[1];
202 }
203 }
204 }
205
206 /*
207 * Scheduler clock - returns current time in nanosec units.
208 */
209 u64 native_sched_clock(void)
210 {
211 if (static_branch_likely(&__use_tsc)) {
212 u64 tsc_now = rdtsc();
213
214 /* return the value in ns */
215 return cycles_2_ns(tsc_now);
216 }
217
218 /*
219 * Fall back to jiffies if there's no TSC available:
220 * ( But note that we still use it if the TSC is marked
221 * unstable. We do this because unlike Time Of Day,
222 * the scheduler clock tolerates small errors and it's
223 * very important for it to be as fast as the platform
224 * can achieve it. )
225 */
226
227 /* No locking but a rare wrong value is not a big deal: */
228 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
229 }
230
231 /*
232 * Generate a sched_clock if you already have a TSC value.
233 */
234 u64 native_sched_clock_from_tsc(u64 tsc)
235 {
236 return cycles_2_ns(tsc);
237 }
238
239 /* We need to define a real function for sched_clock, to override the
240 weak default version */
241 #ifdef CONFIG_PARAVIRT
242 unsigned long long sched_clock(void)
243 {
244 return paravirt_sched_clock();
245 }
246
247 bool using_native_sched_clock(void)
248 {
249 return pv_ops.time.sched_clock == native_sched_clock;
250 }
251 #else
252 unsigned long long
253 sched_clock(void) __attribute__((alias("native_sched_clock")));
254
255 bool using_native_sched_clock(void) { return true; }
256 #endif
257
258 int check_tsc_unstable(void)
259 {
260 return tsc_unstable;
261 }
262 EXPORT_SYMBOL_GPL(check_tsc_unstable);
263
264 #ifdef CONFIG_X86_TSC
265 int __init notsc_setup(char *str)
266 {
267 mark_tsc_unstable("boot parameter notsc");
268 return 1;
269 }
270 #else
271 /*
272 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
273 * in cpu/common.c
274 */
275 int __init notsc_setup(char *str)
276 {
277 setup_clear_cpu_cap(X86_FEATURE_TSC);
278 return 1;
279 }
280 #endif
281
282 __setup("notsc", notsc_setup);
283
284 static int no_sched_irq_time;
285 static int no_tsc_watchdog;
286
287 static int __init tsc_setup(char *str)
288 {
289 if (!strcmp(str, "reliable"))
290 tsc_clocksource_reliable = 1;
291 if (!strncmp(str, "noirqtime", 9))
292 no_sched_irq_time = 1;
293 if (!strcmp(str, "unstable"))
294 mark_tsc_unstable("boot parameter");
295 if (!strcmp(str, "nowatchdog"))
296 no_tsc_watchdog = 1;
297 return 1;
298 }
299
300 __setup("tsc=", tsc_setup);
301
302 #define MAX_RETRIES 5
303 #define TSC_DEFAULT_THRESHOLD 0x20000
304
305 /*
306 * Read TSC and the reference counters. Take care of any disturbances
307 */
308 static u64 tsc_read_refs(u64 *p, int hpet)
309 {
310 u64 t1, t2;
311 u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
312 int i;
313
314 for (i = 0; i < MAX_RETRIES; i++) {
315 t1 = get_cycles();
316 if (hpet)
317 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
318 else
319 *p = acpi_pm_read_early();
320 t2 = get_cycles();
321 if ((t2 - t1) < thresh)
322 return t2;
323 }
324 return ULLONG_MAX;
325 }
326
327 /*
328 * Calculate the TSC frequency from HPET reference
329 */
330 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
331 {
332 u64 tmp;
333
334 if (hpet2 < hpet1)
335 hpet2 += 0x100000000ULL;
336 hpet2 -= hpet1;
337 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
338 do_div(tmp, 1000000);
339 deltatsc = div64_u64(deltatsc, tmp);
340
341 return (unsigned long) deltatsc;
342 }
343
344 /*
345 * Calculate the TSC frequency from PMTimer reference
346 */
347 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
348 {
349 u64 tmp;
350
351 if (!pm1 && !pm2)
352 return ULONG_MAX;
353
354 if (pm2 < pm1)
355 pm2 += (u64)ACPI_PM_OVRRUN;
356 pm2 -= pm1;
357 tmp = pm2 * 1000000000LL;
358 do_div(tmp, PMTMR_TICKS_PER_SEC);
359 do_div(deltatsc, tmp);
360
361 return (unsigned long) deltatsc;
362 }
363
364 #define CAL_MS 10
365 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
366 #define CAL_PIT_LOOPS 1000
367
368 #define CAL2_MS 50
369 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
370 #define CAL2_PIT_LOOPS 5000
371
372
373 /*
374 * Try to calibrate the TSC against the Programmable
375 * Interrupt Timer and return the frequency of the TSC
376 * in kHz.
377 *
378 * Return ULONG_MAX on failure to calibrate.
379 */
380 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
381 {
382 u64 tsc, t1, t2, delta;
383 unsigned long tscmin, tscmax;
384 int pitcnt;
385
386 if (!has_legacy_pic()) {
387 /*
388 * Relies on tsc_early_delay_calibrate() to have given us semi
389 * usable udelay(), wait for the same 50ms we would have with
390 * the PIT loop below.
391 */
392 udelay(10 * USEC_PER_MSEC);
393 udelay(10 * USEC_PER_MSEC);
394 udelay(10 * USEC_PER_MSEC);
395 udelay(10 * USEC_PER_MSEC);
396 udelay(10 * USEC_PER_MSEC);
397 return ULONG_MAX;
398 }
399
400 /* Set the Gate high, disable speaker */
401 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
402
403 /*
404 * Setup CTC channel 2* for mode 0, (interrupt on terminal
405 * count mode), binary count. Set the latch register to 50ms
406 * (LSB then MSB) to begin countdown.
407 */
408 outb(0xb0, 0x43);
409 outb(latch & 0xff, 0x42);
410 outb(latch >> 8, 0x42);
411
412 tsc = t1 = t2 = get_cycles();
413
414 pitcnt = 0;
415 tscmax = 0;
416 tscmin = ULONG_MAX;
417 while ((inb(0x61) & 0x20) == 0) {
418 t2 = get_cycles();
419 delta = t2 - tsc;
420 tsc = t2;
421 if ((unsigned long) delta < tscmin)
422 tscmin = (unsigned int) delta;
423 if ((unsigned long) delta > tscmax)
424 tscmax = (unsigned int) delta;
425 pitcnt++;
426 }
427
428 /*
429 * Sanity checks:
430 *
431 * If we were not able to read the PIT more than loopmin
432 * times, then we have been hit by a massive SMI
433 *
434 * If the maximum is 10 times larger than the minimum,
435 * then we got hit by an SMI as well.
436 */
437 if (pitcnt < loopmin || tscmax > 10 * tscmin)
438 return ULONG_MAX;
439
440 /* Calculate the PIT value */
441 delta = t2 - t1;
442 do_div(delta, ms);
443 return delta;
444 }
445
446 /*
447 * This reads the current MSB of the PIT counter, and
448 * checks if we are running on sufficiently fast and
449 * non-virtualized hardware.
450 *
451 * Our expectations are:
452 *
453 * - the PIT is running at roughly 1.19MHz
454 *
455 * - each IO is going to take about 1us on real hardware,
456 * but we allow it to be much faster (by a factor of 10) or
457 * _slightly_ slower (ie we allow up to a 2us read+counter
458 * update - anything else implies a unacceptably slow CPU
459 * or PIT for the fast calibration to work.
460 *
461 * - with 256 PIT ticks to read the value, we have 214us to
462 * see the same MSB (and overhead like doing a single TSC
463 * read per MSB value etc).
464 *
465 * - We're doing 2 reads per loop (LSB, MSB), and we expect
466 * them each to take about a microsecond on real hardware.
467 * So we expect a count value of around 100. But we'll be
468 * generous, and accept anything over 50.
469 *
470 * - if the PIT is stuck, and we see *many* more reads, we
471 * return early (and the next caller of pit_expect_msb()
472 * then consider it a failure when they don't see the
473 * next expected value).
474 *
475 * These expectations mean that we know that we have seen the
476 * transition from one expected value to another with a fairly
477 * high accuracy, and we didn't miss any events. We can thus
478 * use the TSC value at the transitions to calculate a pretty
479 * good value for the TSC frequencty.
480 */
481 static inline int pit_verify_msb(unsigned char val)
482 {
483 /* Ignore LSB */
484 inb(0x42);
485 return inb(0x42) == val;
486 }
487
488 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
489 {
490 int count;
491 u64 tsc = 0, prev_tsc = 0;
492
493 for (count = 0; count < 50000; count++) {
494 if (!pit_verify_msb(val))
495 break;
496 prev_tsc = tsc;
497 tsc = get_cycles();
498 }
499 *deltap = get_cycles() - prev_tsc;
500 *tscp = tsc;
501
502 /*
503 * We require _some_ success, but the quality control
504 * will be based on the error terms on the TSC values.
505 */
506 return count > 5;
507 }
508
509 /*
510 * How many MSB values do we want to see? We aim for
511 * a maximum error rate of 500ppm (in practice the
512 * real error is much smaller), but refuse to spend
513 * more than 50ms on it.
514 */
515 #define MAX_QUICK_PIT_MS 50
516 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
517
518 static unsigned long quick_pit_calibrate(void)
519 {
520 int i;
521 u64 tsc, delta;
522 unsigned long d1, d2;
523
524 if (!has_legacy_pic())
525 return 0;
526
527 /* Set the Gate high, disable speaker */
528 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
529
530 /*
531 * Counter 2, mode 0 (one-shot), binary count
532 *
533 * NOTE! Mode 2 decrements by two (and then the
534 * output is flipped each time, giving the same
535 * final output frequency as a decrement-by-one),
536 * so mode 0 is much better when looking at the
537 * individual counts.
538 */
539 outb(0xb0, 0x43);
540
541 /* Start at 0xffff */
542 outb(0xff, 0x42);
543 outb(0xff, 0x42);
544
545 /*
546 * The PIT starts counting at the next edge, so we
547 * need to delay for a microsecond. The easiest way
548 * to do that is to just read back the 16-bit counter
549 * once from the PIT.
550 */
551 pit_verify_msb(0);
552
553 if (pit_expect_msb(0xff, &tsc, &d1)) {
554 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
555 if (!pit_expect_msb(0xff-i, &delta, &d2))
556 break;
557
558 delta -= tsc;
559
560 /*
561 * Extrapolate the error and fail fast if the error will
562 * never be below 500 ppm.
563 */
564 if (i == 1 &&
565 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
566 return 0;
567
568 /*
569 * Iterate until the error is less than 500 ppm
570 */
571 if (d1+d2 >= delta >> 11)
572 continue;
573
574 /*
575 * Check the PIT one more time to verify that
576 * all TSC reads were stable wrt the PIT.
577 *
578 * This also guarantees serialization of the
579 * last cycle read ('d2') in pit_expect_msb.
580 */
581 if (!pit_verify_msb(0xfe - i))
582 break;
583 goto success;
584 }
585 }
586 pr_info("Fast TSC calibration failed\n");
587 return 0;
588
589 success:
590 /*
591 * Ok, if we get here, then we've seen the
592 * MSB of the PIT decrement 'i' times, and the
593 * error has shrunk to less than 500 ppm.
594 *
595 * As a result, we can depend on there not being
596 * any odd delays anywhere, and the TSC reads are
597 * reliable (within the error).
598 *
599 * kHz = ticks / time-in-seconds / 1000;
600 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
601 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
602 */
603 delta *= PIT_TICK_RATE;
604 do_div(delta, i*256*1000);
605 pr_info("Fast TSC calibration using PIT\n");
606 return delta;
607 }
608
609 /**
610 * native_calibrate_tsc
611 * Determine TSC frequency via CPUID, else return 0.
612 */
613 unsigned long native_calibrate_tsc(void)
614 {
615 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
616 unsigned int crystal_khz;
617
618 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
619 return 0;
620
621 if (boot_cpu_data.cpuid_level < 0x15)
622 return 0;
623
624 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
625
626 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
627 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
628
629 if (ebx_numerator == 0 || eax_denominator == 0)
630 return 0;
631
632 crystal_khz = ecx_hz / 1000;
633
634 if (crystal_khz == 0) {
635 switch (boot_cpu_data.x86_model) {
636 case INTEL_FAM6_SKYLAKE_MOBILE:
637 case INTEL_FAM6_SKYLAKE_DESKTOP:
638 case INTEL_FAM6_KABYLAKE_MOBILE:
639 case INTEL_FAM6_KABYLAKE_DESKTOP:
640 crystal_khz = 24000; /* 24.0 MHz */
641 break;
642 case INTEL_FAM6_ATOM_GOLDMONT_X:
643 crystal_khz = 25000; /* 25.0 MHz */
644 break;
645 case INTEL_FAM6_ATOM_GOLDMONT:
646 crystal_khz = 19200; /* 19.2 MHz */
647 break;
648 }
649 }
650
651 if (crystal_khz == 0)
652 return 0;
653 /*
654 * TSC frequency determined by CPUID is a "hardware reported"
655 * frequency and is the most accurate one so far we have. This
656 * is considered a known frequency.
657 */
658 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
659
660 /*
661 * For Atom SoCs TSC is the only reliable clocksource.
662 * Mark TSC reliable so no watchdog on it.
663 */
664 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
665 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
666
667 return crystal_khz * ebx_numerator / eax_denominator;
668 }
669
670 static unsigned long cpu_khz_from_cpuid(void)
671 {
672 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
673
674 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
675 return 0;
676
677 if (boot_cpu_data.cpuid_level < 0x16)
678 return 0;
679
680 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
681
682 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
683
684 return eax_base_mhz * 1000;
685 }
686
687 /*
688 * calibrate cpu using pit, hpet, and ptimer methods. They are available
689 * later in boot after acpi is initialized.
690 */
691 static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
692 {
693 u64 tsc1, tsc2, delta, ref1, ref2;
694 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
695 unsigned long flags, latch, ms;
696 int hpet = is_hpet_enabled(), i, loopmin;
697
698 /*
699 * Run 5 calibration loops to get the lowest frequency value
700 * (the best estimate). We use two different calibration modes
701 * here:
702 *
703 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
704 * load a timeout of 50ms. We read the time right after we
705 * started the timer and wait until the PIT count down reaches
706 * zero. In each wait loop iteration we read the TSC and check
707 * the delta to the previous read. We keep track of the min
708 * and max values of that delta. The delta is mostly defined
709 * by the IO time of the PIT access, so we can detect when
710 * any disturbance happened between the two reads. If the
711 * maximum time is significantly larger than the minimum time,
712 * then we discard the result and have another try.
713 *
714 * 2) Reference counter. If available we use the HPET or the
715 * PMTIMER as a reference to check the sanity of that value.
716 * We use separate TSC readouts and check inside of the
717 * reference read for any possible disturbance. We dicard
718 * disturbed values here as well. We do that around the PIT
719 * calibration delay loop as we have to wait for a certain
720 * amount of time anyway.
721 */
722
723 /* Preset PIT loop values */
724 latch = CAL_LATCH;
725 ms = CAL_MS;
726 loopmin = CAL_PIT_LOOPS;
727
728 for (i = 0; i < 3; i++) {
729 unsigned long tsc_pit_khz;
730
731 /*
732 * Read the start value and the reference count of
733 * hpet/pmtimer when available. Then do the PIT
734 * calibration, which will take at least 50ms, and
735 * read the end value.
736 */
737 local_irq_save(flags);
738 tsc1 = tsc_read_refs(&ref1, hpet);
739 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
740 tsc2 = tsc_read_refs(&ref2, hpet);
741 local_irq_restore(flags);
742
743 /* Pick the lowest PIT TSC calibration so far */
744 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
745
746 /* hpet or pmtimer available ? */
747 if (ref1 == ref2)
748 continue;
749
750 /* Check, whether the sampling was disturbed */
751 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
752 continue;
753
754 tsc2 = (tsc2 - tsc1) * 1000000LL;
755 if (hpet)
756 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
757 else
758 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
759
760 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
761
762 /* Check the reference deviation */
763 delta = ((u64) tsc_pit_min) * 100;
764 do_div(delta, tsc_ref_min);
765
766 /*
767 * If both calibration results are inside a 10% window
768 * then we can be sure, that the calibration
769 * succeeded. We break out of the loop right away. We
770 * use the reference value, as it is more precise.
771 */
772 if (delta >= 90 && delta <= 110) {
773 pr_info("PIT calibration matches %s. %d loops\n",
774 hpet ? "HPET" : "PMTIMER", i + 1);
775 return tsc_ref_min;
776 }
777
778 /*
779 * Check whether PIT failed more than once. This
780 * happens in virtualized environments. We need to
781 * give the virtual PC a slightly longer timeframe for
782 * the HPET/PMTIMER to make the result precise.
783 */
784 if (i == 1 && tsc_pit_min == ULONG_MAX) {
785 latch = CAL2_LATCH;
786 ms = CAL2_MS;
787 loopmin = CAL2_PIT_LOOPS;
788 }
789 }
790
791 /*
792 * Now check the results.
793 */
794 if (tsc_pit_min == ULONG_MAX) {
795 /* PIT gave no useful value */
796 pr_warn("Unable to calibrate against PIT\n");
797
798 /* We don't have an alternative source, disable TSC */
799 if (!hpet && !ref1 && !ref2) {
800 pr_notice("No reference (HPET/PMTIMER) available\n");
801 return 0;
802 }
803
804 /* The alternative source failed as well, disable TSC */
805 if (tsc_ref_min == ULONG_MAX) {
806 pr_warn("HPET/PMTIMER calibration failed\n");
807 return 0;
808 }
809
810 /* Use the alternative source */
811 pr_info("using %s reference calibration\n",
812 hpet ? "HPET" : "PMTIMER");
813
814 return tsc_ref_min;
815 }
816
817 /* We don't have an alternative source, use the PIT calibration value */
818 if (!hpet && !ref1 && !ref2) {
819 pr_info("Using PIT calibration value\n");
820 return tsc_pit_min;
821 }
822
823 /* The alternative source failed, use the PIT calibration value */
824 if (tsc_ref_min == ULONG_MAX) {
825 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
826 return tsc_pit_min;
827 }
828
829 /*
830 * The calibration values differ too much. In doubt, we use
831 * the PIT value as we know that there are PMTIMERs around
832 * running at double speed. At least we let the user know:
833 */
834 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
835 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
836 pr_info("Using PIT calibration value\n");
837 return tsc_pit_min;
838 }
839
840 /**
841 * native_calibrate_cpu_early - can calibrate the cpu early in boot
842 */
843 unsigned long native_calibrate_cpu_early(void)
844 {
845 unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
846
847 if (!fast_calibrate)
848 fast_calibrate = cpu_khz_from_msr();
849 if (!fast_calibrate) {
850 local_irq_save(flags);
851 fast_calibrate = quick_pit_calibrate();
852 local_irq_restore(flags);
853 }
854 return fast_calibrate;
855 }
856
857
858 /**
859 * native_calibrate_cpu - calibrate the cpu
860 */
861 static unsigned long native_calibrate_cpu(void)
862 {
863 unsigned long tsc_freq = native_calibrate_cpu_early();
864
865 if (!tsc_freq)
866 tsc_freq = pit_hpet_ptimer_calibrate_cpu();
867
868 return tsc_freq;
869 }
870
871 void recalibrate_cpu_khz(void)
872 {
873 #ifndef CONFIG_SMP
874 unsigned long cpu_khz_old = cpu_khz;
875
876 if (!boot_cpu_has(X86_FEATURE_TSC))
877 return;
878
879 cpu_khz = x86_platform.calibrate_cpu();
880 tsc_khz = x86_platform.calibrate_tsc();
881 if (tsc_khz == 0)
882 tsc_khz = cpu_khz;
883 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
884 cpu_khz = tsc_khz;
885 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
886 cpu_khz_old, cpu_khz);
887 #endif
888 }
889
890 EXPORT_SYMBOL(recalibrate_cpu_khz);
891
892
893 static unsigned long long cyc2ns_suspend;
894
895 void tsc_save_sched_clock_state(void)
896 {
897 if (!sched_clock_stable())
898 return;
899
900 cyc2ns_suspend = sched_clock();
901 }
902
903 /*
904 * Even on processors with invariant TSC, TSC gets reset in some the
905 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
906 * arbitrary value (still sync'd across cpu's) during resume from such sleep
907 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
908 * that sched_clock() continues from the point where it was left off during
909 * suspend.
910 */
911 void tsc_restore_sched_clock_state(void)
912 {
913 unsigned long long offset;
914 unsigned long flags;
915 int cpu;
916
917 if (!sched_clock_stable())
918 return;
919
920 local_irq_save(flags);
921
922 /*
923 * We're coming out of suspend, there's no concurrency yet; don't
924 * bother being nice about the RCU stuff, just write to both
925 * data fields.
926 */
927
928 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
929 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
930
931 offset = cyc2ns_suspend - sched_clock();
932
933 for_each_possible_cpu(cpu) {
934 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
935 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
936 }
937
938 local_irq_restore(flags);
939 }
940
941 #ifdef CONFIG_CPU_FREQ
942 /*
943 * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
944 * changes.
945 *
946 * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
947 * as unstable and give up in those cases.
948 *
949 * Should fix up last_tsc too. Currently gettimeofday in the
950 * first tick after the change will be slightly wrong.
951 */
952
953 static unsigned int ref_freq;
954 static unsigned long loops_per_jiffy_ref;
955 static unsigned long tsc_khz_ref;
956
957 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
958 void *data)
959 {
960 struct cpufreq_freqs *freq = data;
961
962 if (num_online_cpus() > 1) {
963 mark_tsc_unstable("cpufreq changes on SMP");
964 return 0;
965 }
966
967 if (!ref_freq) {
968 ref_freq = freq->old;
969 loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
970 tsc_khz_ref = tsc_khz;
971 }
972
973 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
974 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
975 boot_cpu_data.loops_per_jiffy =
976 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
977
978 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
979 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
980 mark_tsc_unstable("cpufreq changes");
981
982 set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
983 }
984
985 return 0;
986 }
987
988 static struct notifier_block time_cpufreq_notifier_block = {
989 .notifier_call = time_cpufreq_notifier
990 };
991
992 static int __init cpufreq_register_tsc_scaling(void)
993 {
994 if (!boot_cpu_has(X86_FEATURE_TSC))
995 return 0;
996 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
997 return 0;
998 cpufreq_register_notifier(&time_cpufreq_notifier_block,
999 CPUFREQ_TRANSITION_NOTIFIER);
1000 return 0;
1001 }
1002
1003 core_initcall(cpufreq_register_tsc_scaling);
1004
1005 #endif /* CONFIG_CPU_FREQ */
1006
1007 #define ART_CPUID_LEAF (0x15)
1008 #define ART_MIN_DENOMINATOR (1)
1009
1010
1011 /*
1012 * If ART is present detect the numerator:denominator to convert to TSC
1013 */
1014 static void __init detect_art(void)
1015 {
1016 unsigned int unused[2];
1017
1018 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1019 return;
1020
1021 /*
1022 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1023 * and the TSC counter resets must not occur asynchronously.
1024 */
1025 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1026 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1027 !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1028 tsc_async_resets)
1029 return;
1030
1031 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1032 &art_to_tsc_numerator, unused, unused+1);
1033
1034 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1035 return;
1036
1037 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1038
1039 /* Make this sticky over multiple CPU init calls */
1040 setup_force_cpu_cap(X86_FEATURE_ART);
1041 }
1042
1043
1044 /* clocksource code */
1045
1046 static void tsc_resume(struct clocksource *cs)
1047 {
1048 tsc_verify_tsc_adjust(true);
1049 }
1050
1051 /*
1052 * We used to compare the TSC to the cycle_last value in the clocksource
1053 * structure to avoid a nasty time-warp. This can be observed in a
1054 * very small window right after one CPU updated cycle_last under
1055 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1056 * is smaller than the cycle_last reference value due to a TSC which
1057 * is slighty behind. This delta is nowhere else observable, but in
1058 * that case it results in a forward time jump in the range of hours
1059 * due to the unsigned delta calculation of the time keeping core
1060 * code, which is necessary to support wrapping clocksources like pm
1061 * timer.
1062 *
1063 * This sanity check is now done in the core timekeeping code.
1064 * checking the result of read_tsc() - cycle_last for being negative.
1065 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1066 */
1067 static u64 read_tsc(struct clocksource *cs)
1068 {
1069 return (u64)rdtsc_ordered();
1070 }
1071
1072 static void tsc_cs_mark_unstable(struct clocksource *cs)
1073 {
1074 if (tsc_unstable)
1075 return;
1076
1077 tsc_unstable = 1;
1078 if (using_native_sched_clock())
1079 clear_sched_clock_stable();
1080 disable_sched_clock_irqtime();
1081 pr_info("Marking TSC unstable due to clocksource watchdog\n");
1082 }
1083
1084 static void tsc_cs_tick_stable(struct clocksource *cs)
1085 {
1086 if (tsc_unstable)
1087 return;
1088
1089 if (using_native_sched_clock())
1090 sched_clock_tick_stable();
1091 }
1092
1093 /*
1094 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1095 */
1096 static struct clocksource clocksource_tsc_early = {
1097 .name = "tsc-early",
1098 .rating = 299,
1099 .read = read_tsc,
1100 .mask = CLOCKSOURCE_MASK(64),
1101 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1102 CLOCK_SOURCE_MUST_VERIFY,
1103 .archdata = { .vclock_mode = VCLOCK_TSC },
1104 .resume = tsc_resume,
1105 .mark_unstable = tsc_cs_mark_unstable,
1106 .tick_stable = tsc_cs_tick_stable,
1107 .list = LIST_HEAD_INIT(clocksource_tsc_early.list),
1108 };
1109
1110 /*
1111 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1112 * this one will immediately take over. We will only register if TSC has
1113 * been found good.
1114 */
1115 static struct clocksource clocksource_tsc = {
1116 .name = "tsc",
1117 .rating = 300,
1118 .read = read_tsc,
1119 .mask = CLOCKSOURCE_MASK(64),
1120 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1121 CLOCK_SOURCE_VALID_FOR_HRES |
1122 CLOCK_SOURCE_MUST_VERIFY,
1123 .archdata = { .vclock_mode = VCLOCK_TSC },
1124 .resume = tsc_resume,
1125 .mark_unstable = tsc_cs_mark_unstable,
1126 .tick_stable = tsc_cs_tick_stable,
1127 .list = LIST_HEAD_INIT(clocksource_tsc.list),
1128 };
1129
1130 void mark_tsc_unstable(char *reason)
1131 {
1132 if (tsc_unstable)
1133 return;
1134
1135 tsc_unstable = 1;
1136 if (using_native_sched_clock())
1137 clear_sched_clock_stable();
1138 disable_sched_clock_irqtime();
1139 pr_info("Marking TSC unstable due to %s\n", reason);
1140
1141 clocksource_mark_unstable(&clocksource_tsc_early);
1142 clocksource_mark_unstable(&clocksource_tsc);
1143 }
1144
1145 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1146
1147 static void __init check_system_tsc_reliable(void)
1148 {
1149 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1150 if (is_geode_lx()) {
1151 /* RTSC counts during suspend */
1152 #define RTSC_SUSP 0x100
1153 unsigned long res_low, res_high;
1154
1155 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1156 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1157 if (res_low & RTSC_SUSP)
1158 tsc_clocksource_reliable = 1;
1159 }
1160 #endif
1161 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1162 tsc_clocksource_reliable = 1;
1163 }
1164
1165 /*
1166 * Make an educated guess if the TSC is trustworthy and synchronized
1167 * over all CPUs.
1168 */
1169 int unsynchronized_tsc(void)
1170 {
1171 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1172 return 1;
1173
1174 #ifdef CONFIG_SMP
1175 if (apic_is_clustered_box())
1176 return 1;
1177 #endif
1178
1179 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1180 return 0;
1181
1182 if (tsc_clocksource_reliable)
1183 return 0;
1184 /*
1185 * Intel systems are normally all synchronized.
1186 * Exceptions must mark TSC as unstable:
1187 */
1188 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1189 /* assume multi socket systems are not synchronized: */
1190 if (num_possible_cpus() > 1)
1191 return 1;
1192 }
1193
1194 return 0;
1195 }
1196
1197 /*
1198 * Convert ART to TSC given numerator/denominator found in detect_art()
1199 */
1200 struct system_counterval_t convert_art_to_tsc(u64 art)
1201 {
1202 u64 tmp, res, rem;
1203
1204 rem = do_div(art, art_to_tsc_denominator);
1205
1206 res = art * art_to_tsc_numerator;
1207 tmp = rem * art_to_tsc_numerator;
1208
1209 do_div(tmp, art_to_tsc_denominator);
1210 res += tmp + art_to_tsc_offset;
1211
1212 return (struct system_counterval_t) {.cs = art_related_clocksource,
1213 .cycles = res};
1214 }
1215 EXPORT_SYMBOL(convert_art_to_tsc);
1216
1217 /**
1218 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1219 * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1220 *
1221 * PTM requires all timestamps to be in units of nanoseconds. When user
1222 * software requests a cross-timestamp, this function converts system timestamp
1223 * to TSC.
1224 *
1225 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1226 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1227 * that this flag is set before conversion to TSC is attempted.
1228 *
1229 * Return:
1230 * struct system_counterval_t - system counter value with the pointer to the
1231 * corresponding clocksource
1232 * @cycles: System counter value
1233 * @cs: Clocksource corresponding to system counter value. Used
1234 * by timekeeping code to verify comparibility of two cycle
1235 * values.
1236 */
1237
1238 struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1239 {
1240 u64 tmp, res, rem;
1241
1242 rem = do_div(art_ns, USEC_PER_SEC);
1243
1244 res = art_ns * tsc_khz;
1245 tmp = rem * tsc_khz;
1246
1247 do_div(tmp, USEC_PER_SEC);
1248 res += tmp;
1249
1250 return (struct system_counterval_t) { .cs = art_related_clocksource,
1251 .cycles = res};
1252 }
1253 EXPORT_SYMBOL(convert_art_ns_to_tsc);
1254
1255
1256 static void tsc_refine_calibration_work(struct work_struct *work);
1257 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1258 /**
1259 * tsc_refine_calibration_work - Further refine tsc freq calibration
1260 * @work - ignored.
1261 *
1262 * This functions uses delayed work over a period of a
1263 * second to further refine the TSC freq value. Since this is
1264 * timer based, instead of loop based, we don't block the boot
1265 * process while this longer calibration is done.
1266 *
1267 * If there are any calibration anomalies (too many SMIs, etc),
1268 * or the refined calibration is off by 1% of the fast early
1269 * calibration, we throw out the new calibration and use the
1270 * early calibration.
1271 */
1272 static void tsc_refine_calibration_work(struct work_struct *work)
1273 {
1274 static u64 tsc_start = ULLONG_MAX, ref_start;
1275 static int hpet;
1276 u64 tsc_stop, ref_stop, delta;
1277 unsigned long freq;
1278 int cpu;
1279
1280 /* Don't bother refining TSC on unstable systems */
1281 if (tsc_unstable)
1282 goto unreg;
1283
1284 /*
1285 * Since the work is started early in boot, we may be
1286 * delayed the first time we expire. So set the workqueue
1287 * again once we know timers are working.
1288 */
1289 if (tsc_start == ULLONG_MAX) {
1290 restart:
1291 /*
1292 * Only set hpet once, to avoid mixing hardware
1293 * if the hpet becomes enabled later.
1294 */
1295 hpet = is_hpet_enabled();
1296 tsc_start = tsc_read_refs(&ref_start, hpet);
1297 schedule_delayed_work(&tsc_irqwork, HZ);
1298 return;
1299 }
1300
1301 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1302
1303 /* hpet or pmtimer available ? */
1304 if (ref_start == ref_stop)
1305 goto out;
1306
1307 /* Check, whether the sampling was disturbed */
1308 if (tsc_stop == ULLONG_MAX)
1309 goto restart;
1310
1311 delta = tsc_stop - tsc_start;
1312 delta *= 1000000LL;
1313 if (hpet)
1314 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1315 else
1316 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1317
1318 /* Make sure we're within 1% */
1319 if (abs(tsc_khz - freq) > tsc_khz/100)
1320 goto out;
1321
1322 tsc_khz = freq;
1323 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1324 (unsigned long)tsc_khz / 1000,
1325 (unsigned long)tsc_khz % 1000);
1326
1327 /* Inform the TSC deadline clockevent devices about the recalibration */
1328 lapic_update_tsc_freq();
1329
1330 /* Update the sched_clock() rate to match the clocksource one */
1331 for_each_possible_cpu(cpu)
1332 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1333
1334 out:
1335 if (tsc_unstable)
1336 goto unreg;
1337
1338 if (boot_cpu_has(X86_FEATURE_ART))
1339 art_related_clocksource = &clocksource_tsc;
1340 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1341 unreg:
1342 clocksource_unregister(&clocksource_tsc_early);
1343 }
1344
1345
1346 static int __init init_tsc_clocksource(void)
1347 {
1348 if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1349 return 0;
1350
1351 if (tsc_unstable)
1352 goto unreg;
1353
1354 if (tsc_clocksource_reliable || no_tsc_watchdog)
1355 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1356
1357 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1358 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1359
1360 /*
1361 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1362 * the refined calibration and directly register it as a clocksource.
1363 */
1364 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1365 if (boot_cpu_has(X86_FEATURE_ART))
1366 art_related_clocksource = &clocksource_tsc;
1367 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1368 unreg:
1369 clocksource_unregister(&clocksource_tsc_early);
1370 return 0;
1371 }
1372
1373 schedule_delayed_work(&tsc_irqwork, 0);
1374 return 0;
1375 }
1376 /*
1377 * We use device_initcall here, to ensure we run after the hpet
1378 * is fully initialized, which may occur at fs_initcall time.
1379 */
1380 device_initcall(init_tsc_clocksource);
1381
1382 static bool __init determine_cpu_tsc_frequencies(bool early)
1383 {
1384 /* Make sure that cpu and tsc are not already calibrated */
1385 WARN_ON(cpu_khz || tsc_khz);
1386
1387 if (early) {
1388 cpu_khz = x86_platform.calibrate_cpu();
1389 tsc_khz = x86_platform.calibrate_tsc();
1390 } else {
1391 /* We should not be here with non-native cpu calibration */
1392 WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1393 cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1394 }
1395
1396 /*
1397 * Trust non-zero tsc_khz as authoritative,
1398 * and use it to sanity check cpu_khz,
1399 * which will be off if system timer is off.
1400 */
1401 if (tsc_khz == 0)
1402 tsc_khz = cpu_khz;
1403 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1404 cpu_khz = tsc_khz;
1405
1406 if (tsc_khz == 0)
1407 return false;
1408
1409 pr_info("Detected %lu.%03lu MHz processor\n",
1410 (unsigned long)cpu_khz / KHZ,
1411 (unsigned long)cpu_khz % KHZ);
1412
1413 if (cpu_khz != tsc_khz) {
1414 pr_info("Detected %lu.%03lu MHz TSC",
1415 (unsigned long)tsc_khz / KHZ,
1416 (unsigned long)tsc_khz % KHZ);
1417 }
1418 return true;
1419 }
1420
1421 static unsigned long __init get_loops_per_jiffy(void)
1422 {
1423 u64 lpj = (u64)tsc_khz * KHZ;
1424
1425 do_div(lpj, HZ);
1426 return lpj;
1427 }
1428
1429 static void __init tsc_enable_sched_clock(void)
1430 {
1431 /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1432 tsc_store_and_check_tsc_adjust(true);
1433 cyc2ns_init_boot_cpu();
1434 static_branch_enable(&__use_tsc);
1435 }
1436
1437 void __init tsc_early_init(void)
1438 {
1439 if (!boot_cpu_has(X86_FEATURE_TSC))
1440 return;
1441 /* Don't change UV TSC multi-chassis synchronization */
1442 if (is_early_uv_system())
1443 return;
1444 if (!determine_cpu_tsc_frequencies(true))
1445 return;
1446 loops_per_jiffy = get_loops_per_jiffy();
1447
1448 tsc_enable_sched_clock();
1449 }
1450
1451 void __init tsc_init(void)
1452 {
1453 /*
1454 * native_calibrate_cpu_early can only calibrate using methods that are
1455 * available early in boot.
1456 */
1457 if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1458 x86_platform.calibrate_cpu = native_calibrate_cpu;
1459
1460 if (!boot_cpu_has(X86_FEATURE_TSC)) {
1461 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1462 return;
1463 }
1464
1465 if (!tsc_khz) {
1466 /* We failed to determine frequencies earlier, try again */
1467 if (!determine_cpu_tsc_frequencies(false)) {
1468 mark_tsc_unstable("could not calculate TSC khz");
1469 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1470 return;
1471 }
1472 tsc_enable_sched_clock();
1473 }
1474
1475 cyc2ns_init_secondary_cpus();
1476
1477 if (!no_sched_irq_time)
1478 enable_sched_clock_irqtime();
1479
1480 lpj_fine = get_loops_per_jiffy();
1481 use_tsc_delay();
1482
1483 check_system_tsc_reliable();
1484
1485 if (unsynchronized_tsc()) {
1486 mark_tsc_unstable("TSCs unsynchronized");
1487 return;
1488 }
1489
1490 clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1491 detect_art();
1492 }
1493
1494 #ifdef CONFIG_SMP
1495 /*
1496 * If we have a constant TSC and are using the TSC for the delay loop,
1497 * we can skip clock calibration if another cpu in the same socket has already
1498 * been calibrated. This assumes that CONSTANT_TSC applies to all
1499 * cpus in the socket - this should be a safe assumption.
1500 */
1501 unsigned long calibrate_delay_is_known(void)
1502 {
1503 int sibling, cpu = smp_processor_id();
1504 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1505 const struct cpumask *mask = topology_core_cpumask(cpu);
1506
1507 if (!constant_tsc || !mask)
1508 return 0;
1509
1510 sibling = cpumask_any_but(mask, cpu);
1511 if (sibling < nr_cpu_ids)
1512 return cpu_data(sibling).loops_per_jiffy;
1513 return 0;
1514 }
1515 #endif