]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/tsc.c
x86/kernel: Audit and remove any unnecessary uses of module.h
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / tsc.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/init.h>
6 #include <linux/export.h>
7 #include <linux/timer.h>
8 #include <linux/acpi_pmtmr.h>
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/clocksource.h>
12 #include <linux/percpu.h>
13 #include <linux/timex.h>
14 #include <linux/static_key.h>
15
16 #include <asm/hpet.h>
17 #include <asm/timer.h>
18 #include <asm/vgtod.h>
19 #include <asm/time.h>
20 #include <asm/delay.h>
21 #include <asm/hypervisor.h>
22 #include <asm/nmi.h>
23 #include <asm/x86_init.h>
24 #include <asm/geode.h>
25
26 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
27 EXPORT_SYMBOL(cpu_khz);
28
29 unsigned int __read_mostly tsc_khz;
30 EXPORT_SYMBOL(tsc_khz);
31
32 /*
33 * TSC can be unstable due to cpufreq or due to unsynced TSCs
34 */
35 static int __read_mostly tsc_unstable;
36
37 /* native_sched_clock() is called before tsc_init(), so
38 we must start with the TSC soft disabled to prevent
39 erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
40 static int __read_mostly tsc_disabled = -1;
41
42 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
43
44 int tsc_clocksource_reliable;
45
46 static u32 art_to_tsc_numerator;
47 static u32 art_to_tsc_denominator;
48 static u64 art_to_tsc_offset;
49 struct clocksource *art_related_clocksource;
50
51 /*
52 * Use a ring-buffer like data structure, where a writer advances the head by
53 * writing a new data entry and a reader advances the tail when it observes a
54 * new entry.
55 *
56 * Writers are made to wait on readers until there's space to write a new
57 * entry.
58 *
59 * This means that we can always use an {offset, mul} pair to compute a ns
60 * value that is 'roughly' in the right direction, even if we're writing a new
61 * {offset, mul} pair during the clock read.
62 *
63 * The down-side is that we can no longer guarantee strict monotonicity anymore
64 * (assuming the TSC was that to begin with), because while we compute the
65 * intersection point of the two clock slopes and make sure the time is
66 * continuous at the point of switching; we can no longer guarantee a reader is
67 * strictly before or after the switch point.
68 *
69 * It does mean a reader no longer needs to disable IRQs in order to avoid
70 * CPU-Freq updates messing with his times, and similarly an NMI reader will
71 * no longer run the risk of hitting half-written state.
72 */
73
74 struct cyc2ns {
75 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
76 struct cyc2ns_data *head; /* 48 + 8 = 56 */
77 struct cyc2ns_data *tail; /* 56 + 8 = 64 */
78 }; /* exactly fits one cacheline */
79
80 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
81
82 struct cyc2ns_data *cyc2ns_read_begin(void)
83 {
84 struct cyc2ns_data *head;
85
86 preempt_disable();
87
88 head = this_cpu_read(cyc2ns.head);
89 /*
90 * Ensure we observe the entry when we observe the pointer to it.
91 * matches the wmb from cyc2ns_write_end().
92 */
93 smp_read_barrier_depends();
94 head->__count++;
95 barrier();
96
97 return head;
98 }
99
100 void cyc2ns_read_end(struct cyc2ns_data *head)
101 {
102 barrier();
103 /*
104 * If we're the outer most nested read; update the tail pointer
105 * when we're done. This notifies possible pending writers
106 * that we've observed the head pointer and that the other
107 * entry is now free.
108 */
109 if (!--head->__count) {
110 /*
111 * x86-TSO does not reorder writes with older reads;
112 * therefore once this write becomes visible to another
113 * cpu, we must be finished reading the cyc2ns_data.
114 *
115 * matches with cyc2ns_write_begin().
116 */
117 this_cpu_write(cyc2ns.tail, head);
118 }
119 preempt_enable();
120 }
121
122 /*
123 * Begin writing a new @data entry for @cpu.
124 *
125 * Assumes some sort of write side lock; currently 'provided' by the assumption
126 * that cpufreq will call its notifiers sequentially.
127 */
128 static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
129 {
130 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
131 struct cyc2ns_data *data = c2n->data;
132
133 if (data == c2n->head)
134 data++;
135
136 /* XXX send an IPI to @cpu in order to guarantee a read? */
137
138 /*
139 * When we observe the tail write from cyc2ns_read_end(),
140 * the cpu must be done with that entry and its safe
141 * to start writing to it.
142 */
143 while (c2n->tail == data)
144 cpu_relax();
145
146 return data;
147 }
148
149 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
150 {
151 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
152
153 /*
154 * Ensure the @data writes are visible before we publish the
155 * entry. Matches the data-depencency in cyc2ns_read_begin().
156 */
157 smp_wmb();
158
159 ACCESS_ONCE(c2n->head) = data;
160 }
161
162 /*
163 * Accelerators for sched_clock()
164 * convert from cycles(64bits) => nanoseconds (64bits)
165 * basic equation:
166 * ns = cycles / (freq / ns_per_sec)
167 * ns = cycles * (ns_per_sec / freq)
168 * ns = cycles * (10^9 / (cpu_khz * 10^3))
169 * ns = cycles * (10^6 / cpu_khz)
170 *
171 * Then we use scaling math (suggested by george@mvista.com) to get:
172 * ns = cycles * (10^6 * SC / cpu_khz) / SC
173 * ns = cycles * cyc2ns_scale / SC
174 *
175 * And since SC is a constant power of two, we can convert the div
176 * into a shift. The larger SC is, the more accurate the conversion, but
177 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
178 * (64-bit result) can be used.
179 *
180 * We can use khz divisor instead of mhz to keep a better precision.
181 * (mathieu.desnoyers@polymtl.ca)
182 *
183 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
184 */
185
186 static void cyc2ns_data_init(struct cyc2ns_data *data)
187 {
188 data->cyc2ns_mul = 0;
189 data->cyc2ns_shift = 0;
190 data->cyc2ns_offset = 0;
191 data->__count = 0;
192 }
193
194 static void cyc2ns_init(int cpu)
195 {
196 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
197
198 cyc2ns_data_init(&c2n->data[0]);
199 cyc2ns_data_init(&c2n->data[1]);
200
201 c2n->head = c2n->data;
202 c2n->tail = c2n->data;
203 }
204
205 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
206 {
207 struct cyc2ns_data *data, *tail;
208 unsigned long long ns;
209
210 /*
211 * See cyc2ns_read_*() for details; replicated in order to avoid
212 * an extra few instructions that came with the abstraction.
213 * Notable, it allows us to only do the __count and tail update
214 * dance when its actually needed.
215 */
216
217 preempt_disable_notrace();
218 data = this_cpu_read(cyc2ns.head);
219 tail = this_cpu_read(cyc2ns.tail);
220
221 if (likely(data == tail)) {
222 ns = data->cyc2ns_offset;
223 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
224 } else {
225 data->__count++;
226
227 barrier();
228
229 ns = data->cyc2ns_offset;
230 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
231
232 barrier();
233
234 if (!--data->__count)
235 this_cpu_write(cyc2ns.tail, data);
236 }
237 preempt_enable_notrace();
238
239 return ns;
240 }
241
242 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
243 {
244 unsigned long long tsc_now, ns_now;
245 struct cyc2ns_data *data;
246 unsigned long flags;
247
248 local_irq_save(flags);
249 sched_clock_idle_sleep_event();
250
251 if (!cpu_khz)
252 goto done;
253
254 data = cyc2ns_write_begin(cpu);
255
256 tsc_now = rdtsc();
257 ns_now = cycles_2_ns(tsc_now);
258
259 /*
260 * Compute a new multiplier as per the above comment and ensure our
261 * time function is continuous; see the comment near struct
262 * cyc2ns_data.
263 */
264 clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, cpu_khz,
265 NSEC_PER_MSEC, 0);
266
267 /*
268 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
269 * not expected to be greater than 31 due to the original published
270 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
271 * value) - refer perf_event_mmap_page documentation in perf_event.h.
272 */
273 if (data->cyc2ns_shift == 32) {
274 data->cyc2ns_shift = 31;
275 data->cyc2ns_mul >>= 1;
276 }
277
278 data->cyc2ns_offset = ns_now -
279 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
280
281 cyc2ns_write_end(cpu, data);
282
283 done:
284 sched_clock_idle_wakeup_event(0);
285 local_irq_restore(flags);
286 }
287 /*
288 * Scheduler clock - returns current time in nanosec units.
289 */
290 u64 native_sched_clock(void)
291 {
292 if (static_branch_likely(&__use_tsc)) {
293 u64 tsc_now = rdtsc();
294
295 /* return the value in ns */
296 return cycles_2_ns(tsc_now);
297 }
298
299 /*
300 * Fall back to jiffies if there's no TSC available:
301 * ( But note that we still use it if the TSC is marked
302 * unstable. We do this because unlike Time Of Day,
303 * the scheduler clock tolerates small errors and it's
304 * very important for it to be as fast as the platform
305 * can achieve it. )
306 */
307
308 /* No locking but a rare wrong value is not a big deal: */
309 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
310 }
311
312 /*
313 * Generate a sched_clock if you already have a TSC value.
314 */
315 u64 native_sched_clock_from_tsc(u64 tsc)
316 {
317 return cycles_2_ns(tsc);
318 }
319
320 /* We need to define a real function for sched_clock, to override the
321 weak default version */
322 #ifdef CONFIG_PARAVIRT
323 unsigned long long sched_clock(void)
324 {
325 return paravirt_sched_clock();
326 }
327 #else
328 unsigned long long
329 sched_clock(void) __attribute__((alias("native_sched_clock")));
330 #endif
331
332 int check_tsc_unstable(void)
333 {
334 return tsc_unstable;
335 }
336 EXPORT_SYMBOL_GPL(check_tsc_unstable);
337
338 int check_tsc_disabled(void)
339 {
340 return tsc_disabled;
341 }
342 EXPORT_SYMBOL_GPL(check_tsc_disabled);
343
344 #ifdef CONFIG_X86_TSC
345 int __init notsc_setup(char *str)
346 {
347 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
348 tsc_disabled = 1;
349 return 1;
350 }
351 #else
352 /*
353 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
354 * in cpu/common.c
355 */
356 int __init notsc_setup(char *str)
357 {
358 setup_clear_cpu_cap(X86_FEATURE_TSC);
359 return 1;
360 }
361 #endif
362
363 __setup("notsc", notsc_setup);
364
365 static int no_sched_irq_time;
366
367 static int __init tsc_setup(char *str)
368 {
369 if (!strcmp(str, "reliable"))
370 tsc_clocksource_reliable = 1;
371 if (!strncmp(str, "noirqtime", 9))
372 no_sched_irq_time = 1;
373 return 1;
374 }
375
376 __setup("tsc=", tsc_setup);
377
378 #define MAX_RETRIES 5
379 #define SMI_TRESHOLD 50000
380
381 /*
382 * Read TSC and the reference counters. Take care of SMI disturbance
383 */
384 static u64 tsc_read_refs(u64 *p, int hpet)
385 {
386 u64 t1, t2;
387 int i;
388
389 for (i = 0; i < MAX_RETRIES; i++) {
390 t1 = get_cycles();
391 if (hpet)
392 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
393 else
394 *p = acpi_pm_read_early();
395 t2 = get_cycles();
396 if ((t2 - t1) < SMI_TRESHOLD)
397 return t2;
398 }
399 return ULLONG_MAX;
400 }
401
402 /*
403 * Calculate the TSC frequency from HPET reference
404 */
405 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
406 {
407 u64 tmp;
408
409 if (hpet2 < hpet1)
410 hpet2 += 0x100000000ULL;
411 hpet2 -= hpet1;
412 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
413 do_div(tmp, 1000000);
414 do_div(deltatsc, tmp);
415
416 return (unsigned long) deltatsc;
417 }
418
419 /*
420 * Calculate the TSC frequency from PMTimer reference
421 */
422 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
423 {
424 u64 tmp;
425
426 if (!pm1 && !pm2)
427 return ULONG_MAX;
428
429 if (pm2 < pm1)
430 pm2 += (u64)ACPI_PM_OVRRUN;
431 pm2 -= pm1;
432 tmp = pm2 * 1000000000LL;
433 do_div(tmp, PMTMR_TICKS_PER_SEC);
434 do_div(deltatsc, tmp);
435
436 return (unsigned long) deltatsc;
437 }
438
439 #define CAL_MS 10
440 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
441 #define CAL_PIT_LOOPS 1000
442
443 #define CAL2_MS 50
444 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
445 #define CAL2_PIT_LOOPS 5000
446
447
448 /*
449 * Try to calibrate the TSC against the Programmable
450 * Interrupt Timer and return the frequency of the TSC
451 * in kHz.
452 *
453 * Return ULONG_MAX on failure to calibrate.
454 */
455 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
456 {
457 u64 tsc, t1, t2, delta;
458 unsigned long tscmin, tscmax;
459 int pitcnt;
460
461 /* Set the Gate high, disable speaker */
462 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
463
464 /*
465 * Setup CTC channel 2* for mode 0, (interrupt on terminal
466 * count mode), binary count. Set the latch register to 50ms
467 * (LSB then MSB) to begin countdown.
468 */
469 outb(0xb0, 0x43);
470 outb(latch & 0xff, 0x42);
471 outb(latch >> 8, 0x42);
472
473 tsc = t1 = t2 = get_cycles();
474
475 pitcnt = 0;
476 tscmax = 0;
477 tscmin = ULONG_MAX;
478 while ((inb(0x61) & 0x20) == 0) {
479 t2 = get_cycles();
480 delta = t2 - tsc;
481 tsc = t2;
482 if ((unsigned long) delta < tscmin)
483 tscmin = (unsigned int) delta;
484 if ((unsigned long) delta > tscmax)
485 tscmax = (unsigned int) delta;
486 pitcnt++;
487 }
488
489 /*
490 * Sanity checks:
491 *
492 * If we were not able to read the PIT more than loopmin
493 * times, then we have been hit by a massive SMI
494 *
495 * If the maximum is 10 times larger than the minimum,
496 * then we got hit by an SMI as well.
497 */
498 if (pitcnt < loopmin || tscmax > 10 * tscmin)
499 return ULONG_MAX;
500
501 /* Calculate the PIT value */
502 delta = t2 - t1;
503 do_div(delta, ms);
504 return delta;
505 }
506
507 /*
508 * This reads the current MSB of the PIT counter, and
509 * checks if we are running on sufficiently fast and
510 * non-virtualized hardware.
511 *
512 * Our expectations are:
513 *
514 * - the PIT is running at roughly 1.19MHz
515 *
516 * - each IO is going to take about 1us on real hardware,
517 * but we allow it to be much faster (by a factor of 10) or
518 * _slightly_ slower (ie we allow up to a 2us read+counter
519 * update - anything else implies a unacceptably slow CPU
520 * or PIT for the fast calibration to work.
521 *
522 * - with 256 PIT ticks to read the value, we have 214us to
523 * see the same MSB (and overhead like doing a single TSC
524 * read per MSB value etc).
525 *
526 * - We're doing 2 reads per loop (LSB, MSB), and we expect
527 * them each to take about a microsecond on real hardware.
528 * So we expect a count value of around 100. But we'll be
529 * generous, and accept anything over 50.
530 *
531 * - if the PIT is stuck, and we see *many* more reads, we
532 * return early (and the next caller of pit_expect_msb()
533 * then consider it a failure when they don't see the
534 * next expected value).
535 *
536 * These expectations mean that we know that we have seen the
537 * transition from one expected value to another with a fairly
538 * high accuracy, and we didn't miss any events. We can thus
539 * use the TSC value at the transitions to calculate a pretty
540 * good value for the TSC frequencty.
541 */
542 static inline int pit_verify_msb(unsigned char val)
543 {
544 /* Ignore LSB */
545 inb(0x42);
546 return inb(0x42) == val;
547 }
548
549 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
550 {
551 int count;
552 u64 tsc = 0, prev_tsc = 0;
553
554 for (count = 0; count < 50000; count++) {
555 if (!pit_verify_msb(val))
556 break;
557 prev_tsc = tsc;
558 tsc = get_cycles();
559 }
560 *deltap = get_cycles() - prev_tsc;
561 *tscp = tsc;
562
563 /*
564 * We require _some_ success, but the quality control
565 * will be based on the error terms on the TSC values.
566 */
567 return count > 5;
568 }
569
570 /*
571 * How many MSB values do we want to see? We aim for
572 * a maximum error rate of 500ppm (in practice the
573 * real error is much smaller), but refuse to spend
574 * more than 50ms on it.
575 */
576 #define MAX_QUICK_PIT_MS 50
577 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
578
579 static unsigned long quick_pit_calibrate(void)
580 {
581 int i;
582 u64 tsc, delta;
583 unsigned long d1, d2;
584
585 /* Set the Gate high, disable speaker */
586 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
587
588 /*
589 * Counter 2, mode 0 (one-shot), binary count
590 *
591 * NOTE! Mode 2 decrements by two (and then the
592 * output is flipped each time, giving the same
593 * final output frequency as a decrement-by-one),
594 * so mode 0 is much better when looking at the
595 * individual counts.
596 */
597 outb(0xb0, 0x43);
598
599 /* Start at 0xffff */
600 outb(0xff, 0x42);
601 outb(0xff, 0x42);
602
603 /*
604 * The PIT starts counting at the next edge, so we
605 * need to delay for a microsecond. The easiest way
606 * to do that is to just read back the 16-bit counter
607 * once from the PIT.
608 */
609 pit_verify_msb(0);
610
611 if (pit_expect_msb(0xff, &tsc, &d1)) {
612 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
613 if (!pit_expect_msb(0xff-i, &delta, &d2))
614 break;
615
616 delta -= tsc;
617
618 /*
619 * Extrapolate the error and fail fast if the error will
620 * never be below 500 ppm.
621 */
622 if (i == 1 &&
623 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
624 return 0;
625
626 /*
627 * Iterate until the error is less than 500 ppm
628 */
629 if (d1+d2 >= delta >> 11)
630 continue;
631
632 /*
633 * Check the PIT one more time to verify that
634 * all TSC reads were stable wrt the PIT.
635 *
636 * This also guarantees serialization of the
637 * last cycle read ('d2') in pit_expect_msb.
638 */
639 if (!pit_verify_msb(0xfe - i))
640 break;
641 goto success;
642 }
643 }
644 pr_info("Fast TSC calibration failed\n");
645 return 0;
646
647 success:
648 /*
649 * Ok, if we get here, then we've seen the
650 * MSB of the PIT decrement 'i' times, and the
651 * error has shrunk to less than 500 ppm.
652 *
653 * As a result, we can depend on there not being
654 * any odd delays anywhere, and the TSC reads are
655 * reliable (within the error).
656 *
657 * kHz = ticks / time-in-seconds / 1000;
658 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
659 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
660 */
661 delta *= PIT_TICK_RATE;
662 do_div(delta, i*256*1000);
663 pr_info("Fast TSC calibration using PIT\n");
664 return delta;
665 }
666
667 /**
668 * native_calibrate_tsc - calibrate the tsc on boot
669 */
670 unsigned long native_calibrate_tsc(void)
671 {
672 u64 tsc1, tsc2, delta, ref1, ref2;
673 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
674 unsigned long flags, latch, ms, fast_calibrate;
675 int hpet = is_hpet_enabled(), i, loopmin;
676
677 /* Calibrate TSC using MSR for Intel Atom SoCs */
678 local_irq_save(flags);
679 fast_calibrate = try_msr_calibrate_tsc();
680 local_irq_restore(flags);
681 if (fast_calibrate)
682 return fast_calibrate;
683
684 local_irq_save(flags);
685 fast_calibrate = quick_pit_calibrate();
686 local_irq_restore(flags);
687 if (fast_calibrate)
688 return fast_calibrate;
689
690 /*
691 * Run 5 calibration loops to get the lowest frequency value
692 * (the best estimate). We use two different calibration modes
693 * here:
694 *
695 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
696 * load a timeout of 50ms. We read the time right after we
697 * started the timer and wait until the PIT count down reaches
698 * zero. In each wait loop iteration we read the TSC and check
699 * the delta to the previous read. We keep track of the min
700 * and max values of that delta. The delta is mostly defined
701 * by the IO time of the PIT access, so we can detect when a
702 * SMI/SMM disturbance happened between the two reads. If the
703 * maximum time is significantly larger than the minimum time,
704 * then we discard the result and have another try.
705 *
706 * 2) Reference counter. If available we use the HPET or the
707 * PMTIMER as a reference to check the sanity of that value.
708 * We use separate TSC readouts and check inside of the
709 * reference read for a SMI/SMM disturbance. We dicard
710 * disturbed values here as well. We do that around the PIT
711 * calibration delay loop as we have to wait for a certain
712 * amount of time anyway.
713 */
714
715 /* Preset PIT loop values */
716 latch = CAL_LATCH;
717 ms = CAL_MS;
718 loopmin = CAL_PIT_LOOPS;
719
720 for (i = 0; i < 3; i++) {
721 unsigned long tsc_pit_khz;
722
723 /*
724 * Read the start value and the reference count of
725 * hpet/pmtimer when available. Then do the PIT
726 * calibration, which will take at least 50ms, and
727 * read the end value.
728 */
729 local_irq_save(flags);
730 tsc1 = tsc_read_refs(&ref1, hpet);
731 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
732 tsc2 = tsc_read_refs(&ref2, hpet);
733 local_irq_restore(flags);
734
735 /* Pick the lowest PIT TSC calibration so far */
736 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
737
738 /* hpet or pmtimer available ? */
739 if (ref1 == ref2)
740 continue;
741
742 /* Check, whether the sampling was disturbed by an SMI */
743 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
744 continue;
745
746 tsc2 = (tsc2 - tsc1) * 1000000LL;
747 if (hpet)
748 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
749 else
750 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
751
752 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
753
754 /* Check the reference deviation */
755 delta = ((u64) tsc_pit_min) * 100;
756 do_div(delta, tsc_ref_min);
757
758 /*
759 * If both calibration results are inside a 10% window
760 * then we can be sure, that the calibration
761 * succeeded. We break out of the loop right away. We
762 * use the reference value, as it is more precise.
763 */
764 if (delta >= 90 && delta <= 110) {
765 pr_info("PIT calibration matches %s. %d loops\n",
766 hpet ? "HPET" : "PMTIMER", i + 1);
767 return tsc_ref_min;
768 }
769
770 /*
771 * Check whether PIT failed more than once. This
772 * happens in virtualized environments. We need to
773 * give the virtual PC a slightly longer timeframe for
774 * the HPET/PMTIMER to make the result precise.
775 */
776 if (i == 1 && tsc_pit_min == ULONG_MAX) {
777 latch = CAL2_LATCH;
778 ms = CAL2_MS;
779 loopmin = CAL2_PIT_LOOPS;
780 }
781 }
782
783 /*
784 * Now check the results.
785 */
786 if (tsc_pit_min == ULONG_MAX) {
787 /* PIT gave no useful value */
788 pr_warn("Unable to calibrate against PIT\n");
789
790 /* We don't have an alternative source, disable TSC */
791 if (!hpet && !ref1 && !ref2) {
792 pr_notice("No reference (HPET/PMTIMER) available\n");
793 return 0;
794 }
795
796 /* The alternative source failed as well, disable TSC */
797 if (tsc_ref_min == ULONG_MAX) {
798 pr_warn("HPET/PMTIMER calibration failed\n");
799 return 0;
800 }
801
802 /* Use the alternative source */
803 pr_info("using %s reference calibration\n",
804 hpet ? "HPET" : "PMTIMER");
805
806 return tsc_ref_min;
807 }
808
809 /* We don't have an alternative source, use the PIT calibration value */
810 if (!hpet && !ref1 && !ref2) {
811 pr_info("Using PIT calibration value\n");
812 return tsc_pit_min;
813 }
814
815 /* The alternative source failed, use the PIT calibration value */
816 if (tsc_ref_min == ULONG_MAX) {
817 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
818 return tsc_pit_min;
819 }
820
821 /*
822 * The calibration values differ too much. In doubt, we use
823 * the PIT value as we know that there are PMTIMERs around
824 * running at double speed. At least we let the user know:
825 */
826 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
827 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
828 pr_info("Using PIT calibration value\n");
829 return tsc_pit_min;
830 }
831
832 int recalibrate_cpu_khz(void)
833 {
834 #ifndef CONFIG_SMP
835 unsigned long cpu_khz_old = cpu_khz;
836
837 if (!boot_cpu_has(X86_FEATURE_TSC))
838 return -ENODEV;
839
840 tsc_khz = x86_platform.calibrate_tsc();
841 cpu_khz = tsc_khz;
842 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
843 cpu_khz_old, cpu_khz);
844
845 return 0;
846 #else
847 return -ENODEV;
848 #endif
849 }
850
851 EXPORT_SYMBOL(recalibrate_cpu_khz);
852
853
854 static unsigned long long cyc2ns_suspend;
855
856 void tsc_save_sched_clock_state(void)
857 {
858 if (!sched_clock_stable())
859 return;
860
861 cyc2ns_suspend = sched_clock();
862 }
863
864 /*
865 * Even on processors with invariant TSC, TSC gets reset in some the
866 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
867 * arbitrary value (still sync'd across cpu's) during resume from such sleep
868 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
869 * that sched_clock() continues from the point where it was left off during
870 * suspend.
871 */
872 void tsc_restore_sched_clock_state(void)
873 {
874 unsigned long long offset;
875 unsigned long flags;
876 int cpu;
877
878 if (!sched_clock_stable())
879 return;
880
881 local_irq_save(flags);
882
883 /*
884 * We're coming out of suspend, there's no concurrency yet; don't
885 * bother being nice about the RCU stuff, just write to both
886 * data fields.
887 */
888
889 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
890 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
891
892 offset = cyc2ns_suspend - sched_clock();
893
894 for_each_possible_cpu(cpu) {
895 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
896 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
897 }
898
899 local_irq_restore(flags);
900 }
901
902 #ifdef CONFIG_CPU_FREQ
903
904 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
905 * changes.
906 *
907 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
908 * not that important because current Opteron setups do not support
909 * scaling on SMP anyroads.
910 *
911 * Should fix up last_tsc too. Currently gettimeofday in the
912 * first tick after the change will be slightly wrong.
913 */
914
915 static unsigned int ref_freq;
916 static unsigned long loops_per_jiffy_ref;
917 static unsigned long tsc_khz_ref;
918
919 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
920 void *data)
921 {
922 struct cpufreq_freqs *freq = data;
923 unsigned long *lpj;
924
925 lpj = &boot_cpu_data.loops_per_jiffy;
926 #ifdef CONFIG_SMP
927 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
928 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
929 #endif
930
931 if (!ref_freq) {
932 ref_freq = freq->old;
933 loops_per_jiffy_ref = *lpj;
934 tsc_khz_ref = tsc_khz;
935 }
936 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
937 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
938 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
939
940 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
941 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
942 mark_tsc_unstable("cpufreq changes");
943
944 set_cyc2ns_scale(tsc_khz, freq->cpu);
945 }
946
947 return 0;
948 }
949
950 static struct notifier_block time_cpufreq_notifier_block = {
951 .notifier_call = time_cpufreq_notifier
952 };
953
954 static int __init cpufreq_register_tsc_scaling(void)
955 {
956 if (!boot_cpu_has(X86_FEATURE_TSC))
957 return 0;
958 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
959 return 0;
960 cpufreq_register_notifier(&time_cpufreq_notifier_block,
961 CPUFREQ_TRANSITION_NOTIFIER);
962 return 0;
963 }
964
965 core_initcall(cpufreq_register_tsc_scaling);
966
967 #endif /* CONFIG_CPU_FREQ */
968
969 #define ART_CPUID_LEAF (0x15)
970 #define ART_MIN_DENOMINATOR (1)
971
972
973 /*
974 * If ART is present detect the numerator:denominator to convert to TSC
975 */
976 static void detect_art(void)
977 {
978 unsigned int unused[2];
979
980 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
981 return;
982
983 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
984 &art_to_tsc_numerator, unused, unused+1);
985
986 /* Don't enable ART in a VM, non-stop TSC required */
987 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
988 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
989 art_to_tsc_denominator < ART_MIN_DENOMINATOR)
990 return;
991
992 if (rdmsrl_safe(MSR_IA32_TSC_ADJUST, &art_to_tsc_offset))
993 return;
994
995 /* Make this sticky over multiple CPU init calls */
996 setup_force_cpu_cap(X86_FEATURE_ART);
997 }
998
999
1000 /* clocksource code */
1001
1002 static struct clocksource clocksource_tsc;
1003
1004 /*
1005 * We used to compare the TSC to the cycle_last value in the clocksource
1006 * structure to avoid a nasty time-warp. This can be observed in a
1007 * very small window right after one CPU updated cycle_last under
1008 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1009 * is smaller than the cycle_last reference value due to a TSC which
1010 * is slighty behind. This delta is nowhere else observable, but in
1011 * that case it results in a forward time jump in the range of hours
1012 * due to the unsigned delta calculation of the time keeping core
1013 * code, which is necessary to support wrapping clocksources like pm
1014 * timer.
1015 *
1016 * This sanity check is now done in the core timekeeping code.
1017 * checking the result of read_tsc() - cycle_last for being negative.
1018 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1019 */
1020 static cycle_t read_tsc(struct clocksource *cs)
1021 {
1022 return (cycle_t)rdtsc_ordered();
1023 }
1024
1025 /*
1026 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1027 */
1028 static struct clocksource clocksource_tsc = {
1029 .name = "tsc",
1030 .rating = 300,
1031 .read = read_tsc,
1032 .mask = CLOCKSOURCE_MASK(64),
1033 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1034 CLOCK_SOURCE_MUST_VERIFY,
1035 .archdata = { .vclock_mode = VCLOCK_TSC },
1036 };
1037
1038 void mark_tsc_unstable(char *reason)
1039 {
1040 if (!tsc_unstable) {
1041 tsc_unstable = 1;
1042 clear_sched_clock_stable();
1043 disable_sched_clock_irqtime();
1044 pr_info("Marking TSC unstable due to %s\n", reason);
1045 /* Change only the rating, when not registered */
1046 if (clocksource_tsc.mult)
1047 clocksource_mark_unstable(&clocksource_tsc);
1048 else {
1049 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1050 clocksource_tsc.rating = 0;
1051 }
1052 }
1053 }
1054
1055 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1056
1057 static void __init check_system_tsc_reliable(void)
1058 {
1059 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1060 if (is_geode_lx()) {
1061 /* RTSC counts during suspend */
1062 #define RTSC_SUSP 0x100
1063 unsigned long res_low, res_high;
1064
1065 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1066 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1067 if (res_low & RTSC_SUSP)
1068 tsc_clocksource_reliable = 1;
1069 }
1070 #endif
1071 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1072 tsc_clocksource_reliable = 1;
1073 }
1074
1075 /*
1076 * Make an educated guess if the TSC is trustworthy and synchronized
1077 * over all CPUs.
1078 */
1079 int unsynchronized_tsc(void)
1080 {
1081 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1082 return 1;
1083
1084 #ifdef CONFIG_SMP
1085 if (apic_is_clustered_box())
1086 return 1;
1087 #endif
1088
1089 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1090 return 0;
1091
1092 if (tsc_clocksource_reliable)
1093 return 0;
1094 /*
1095 * Intel systems are normally all synchronized.
1096 * Exceptions must mark TSC as unstable:
1097 */
1098 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1099 /* assume multi socket systems are not synchronized: */
1100 if (num_possible_cpus() > 1)
1101 return 1;
1102 }
1103
1104 return 0;
1105 }
1106
1107 /*
1108 * Convert ART to TSC given numerator/denominator found in detect_art()
1109 */
1110 struct system_counterval_t convert_art_to_tsc(cycle_t art)
1111 {
1112 u64 tmp, res, rem;
1113
1114 rem = do_div(art, art_to_tsc_denominator);
1115
1116 res = art * art_to_tsc_numerator;
1117 tmp = rem * art_to_tsc_numerator;
1118
1119 do_div(tmp, art_to_tsc_denominator);
1120 res += tmp + art_to_tsc_offset;
1121
1122 return (struct system_counterval_t) {.cs = art_related_clocksource,
1123 .cycles = res};
1124 }
1125 EXPORT_SYMBOL(convert_art_to_tsc);
1126
1127 static void tsc_refine_calibration_work(struct work_struct *work);
1128 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1129 /**
1130 * tsc_refine_calibration_work - Further refine tsc freq calibration
1131 * @work - ignored.
1132 *
1133 * This functions uses delayed work over a period of a
1134 * second to further refine the TSC freq value. Since this is
1135 * timer based, instead of loop based, we don't block the boot
1136 * process while this longer calibration is done.
1137 *
1138 * If there are any calibration anomalies (too many SMIs, etc),
1139 * or the refined calibration is off by 1% of the fast early
1140 * calibration, we throw out the new calibration and use the
1141 * early calibration.
1142 */
1143 static void tsc_refine_calibration_work(struct work_struct *work)
1144 {
1145 static u64 tsc_start = -1, ref_start;
1146 static int hpet;
1147 u64 tsc_stop, ref_stop, delta;
1148 unsigned long freq;
1149
1150 /* Don't bother refining TSC on unstable systems */
1151 if (check_tsc_unstable())
1152 goto out;
1153
1154 /*
1155 * Since the work is started early in boot, we may be
1156 * delayed the first time we expire. So set the workqueue
1157 * again once we know timers are working.
1158 */
1159 if (tsc_start == -1) {
1160 /*
1161 * Only set hpet once, to avoid mixing hardware
1162 * if the hpet becomes enabled later.
1163 */
1164 hpet = is_hpet_enabled();
1165 schedule_delayed_work(&tsc_irqwork, HZ);
1166 tsc_start = tsc_read_refs(&ref_start, hpet);
1167 return;
1168 }
1169
1170 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1171
1172 /* hpet or pmtimer available ? */
1173 if (ref_start == ref_stop)
1174 goto out;
1175
1176 /* Check, whether the sampling was disturbed by an SMI */
1177 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1178 goto out;
1179
1180 delta = tsc_stop - tsc_start;
1181 delta *= 1000000LL;
1182 if (hpet)
1183 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1184 else
1185 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1186
1187 /* Make sure we're within 1% */
1188 if (abs(tsc_khz - freq) > tsc_khz/100)
1189 goto out;
1190
1191 tsc_khz = freq;
1192 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1193 (unsigned long)tsc_khz / 1000,
1194 (unsigned long)tsc_khz % 1000);
1195
1196 out:
1197 if (boot_cpu_has(X86_FEATURE_ART))
1198 art_related_clocksource = &clocksource_tsc;
1199 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1200 }
1201
1202
1203 static int __init init_tsc_clocksource(void)
1204 {
1205 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1206 return 0;
1207
1208 if (tsc_clocksource_reliable)
1209 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1210 /* lower the rating if we already know its unstable: */
1211 if (check_tsc_unstable()) {
1212 clocksource_tsc.rating = 0;
1213 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1214 }
1215
1216 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1217 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1218
1219 /*
1220 * Trust the results of the earlier calibration on systems
1221 * exporting a reliable TSC.
1222 */
1223 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1224 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1225 return 0;
1226 }
1227
1228 schedule_delayed_work(&tsc_irqwork, 0);
1229 return 0;
1230 }
1231 /*
1232 * We use device_initcall here, to ensure we run after the hpet
1233 * is fully initialized, which may occur at fs_initcall time.
1234 */
1235 device_initcall(init_tsc_clocksource);
1236
1237 void __init tsc_init(void)
1238 {
1239 u64 lpj;
1240 int cpu;
1241
1242 if (!boot_cpu_has(X86_FEATURE_TSC)) {
1243 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1244 return;
1245 }
1246
1247 tsc_khz = x86_platform.calibrate_tsc();
1248 cpu_khz = tsc_khz;
1249
1250 if (!tsc_khz) {
1251 mark_tsc_unstable("could not calculate TSC khz");
1252 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1253 return;
1254 }
1255
1256 pr_info("Detected %lu.%03lu MHz processor\n",
1257 (unsigned long)cpu_khz / 1000,
1258 (unsigned long)cpu_khz % 1000);
1259
1260 /*
1261 * Secondary CPUs do not run through tsc_init(), so set up
1262 * all the scale factors for all CPUs, assuming the same
1263 * speed as the bootup CPU. (cpufreq notifiers will fix this
1264 * up if their speed diverges)
1265 */
1266 for_each_possible_cpu(cpu) {
1267 cyc2ns_init(cpu);
1268 set_cyc2ns_scale(cpu_khz, cpu);
1269 }
1270
1271 if (tsc_disabled > 0)
1272 return;
1273
1274 /* now allow native_sched_clock() to use rdtsc */
1275
1276 tsc_disabled = 0;
1277 static_branch_enable(&__use_tsc);
1278
1279 if (!no_sched_irq_time)
1280 enable_sched_clock_irqtime();
1281
1282 lpj = ((u64)tsc_khz * 1000);
1283 do_div(lpj, HZ);
1284 lpj_fine = lpj;
1285
1286 use_tsc_delay();
1287
1288 if (unsynchronized_tsc())
1289 mark_tsc_unstable("TSCs unsynchronized");
1290
1291 check_system_tsc_reliable();
1292
1293 detect_art();
1294 }
1295
1296 #ifdef CONFIG_SMP
1297 /*
1298 * If we have a constant TSC and are using the TSC for the delay loop,
1299 * we can skip clock calibration if another cpu in the same socket has already
1300 * been calibrated. This assumes that CONSTANT_TSC applies to all
1301 * cpus in the socket - this should be a safe assumption.
1302 */
1303 unsigned long calibrate_delay_is_known(void)
1304 {
1305 int sibling, cpu = smp_processor_id();
1306 struct cpumask *mask = topology_core_cpumask(cpu);
1307
1308 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1309 return 0;
1310
1311 if (!mask)
1312 return 0;
1313
1314 sibling = cpumask_any_but(mask, cpu);
1315 if (sibling < nr_cpu_ids)
1316 return cpu_data(sibling).loops_per_jiffy;
1317 return 0;
1318 }
1319 #endif