]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/tsc.c
spi-imx: Implements handling of the SPI_READY mode flag.
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / tsc.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/timer.h>
9 #include <linux/acpi_pmtmr.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/clocksource.h>
13 #include <linux/percpu.h>
14 #include <linux/timex.h>
15 #include <linux/static_key.h>
16
17 #include <asm/hpet.h>
18 #include <asm/timer.h>
19 #include <asm/vgtod.h>
20 #include <asm/time.h>
21 #include <asm/delay.h>
22 #include <asm/hypervisor.h>
23 #include <asm/nmi.h>
24 #include <asm/x86_init.h>
25 #include <asm/geode.h>
26 #include <asm/apic.h>
27 #include <asm/intel-family.h>
28
29 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
30 EXPORT_SYMBOL(cpu_khz);
31
32 unsigned int __read_mostly tsc_khz;
33 EXPORT_SYMBOL(tsc_khz);
34
35 /*
36 * TSC can be unstable due to cpufreq or due to unsynced TSCs
37 */
38 static int __read_mostly tsc_unstable;
39
40 /* native_sched_clock() is called before tsc_init(), so
41 we must start with the TSC soft disabled to prevent
42 erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
43 static int __read_mostly tsc_disabled = -1;
44
45 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
46
47 int tsc_clocksource_reliable;
48
49 static u32 art_to_tsc_numerator;
50 static u32 art_to_tsc_denominator;
51 static u64 art_to_tsc_offset;
52 struct clocksource *art_related_clocksource;
53
54 /*
55 * Use a ring-buffer like data structure, where a writer advances the head by
56 * writing a new data entry and a reader advances the tail when it observes a
57 * new entry.
58 *
59 * Writers are made to wait on readers until there's space to write a new
60 * entry.
61 *
62 * This means that we can always use an {offset, mul} pair to compute a ns
63 * value that is 'roughly' in the right direction, even if we're writing a new
64 * {offset, mul} pair during the clock read.
65 *
66 * The down-side is that we can no longer guarantee strict monotonicity anymore
67 * (assuming the TSC was that to begin with), because while we compute the
68 * intersection point of the two clock slopes and make sure the time is
69 * continuous at the point of switching; we can no longer guarantee a reader is
70 * strictly before or after the switch point.
71 *
72 * It does mean a reader no longer needs to disable IRQs in order to avoid
73 * CPU-Freq updates messing with his times, and similarly an NMI reader will
74 * no longer run the risk of hitting half-written state.
75 */
76
77 struct cyc2ns {
78 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
79 struct cyc2ns_data *head; /* 48 + 8 = 56 */
80 struct cyc2ns_data *tail; /* 56 + 8 = 64 */
81 }; /* exactly fits one cacheline */
82
83 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
84
85 struct cyc2ns_data *cyc2ns_read_begin(void)
86 {
87 struct cyc2ns_data *head;
88
89 preempt_disable();
90
91 head = this_cpu_read(cyc2ns.head);
92 /*
93 * Ensure we observe the entry when we observe the pointer to it.
94 * matches the wmb from cyc2ns_write_end().
95 */
96 smp_read_barrier_depends();
97 head->__count++;
98 barrier();
99
100 return head;
101 }
102
103 void cyc2ns_read_end(struct cyc2ns_data *head)
104 {
105 barrier();
106 /*
107 * If we're the outer most nested read; update the tail pointer
108 * when we're done. This notifies possible pending writers
109 * that we've observed the head pointer and that the other
110 * entry is now free.
111 */
112 if (!--head->__count) {
113 /*
114 * x86-TSO does not reorder writes with older reads;
115 * therefore once this write becomes visible to another
116 * cpu, we must be finished reading the cyc2ns_data.
117 *
118 * matches with cyc2ns_write_begin().
119 */
120 this_cpu_write(cyc2ns.tail, head);
121 }
122 preempt_enable();
123 }
124
125 /*
126 * Begin writing a new @data entry for @cpu.
127 *
128 * Assumes some sort of write side lock; currently 'provided' by the assumption
129 * that cpufreq will call its notifiers sequentially.
130 */
131 static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
132 {
133 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
134 struct cyc2ns_data *data = c2n->data;
135
136 if (data == c2n->head)
137 data++;
138
139 /* XXX send an IPI to @cpu in order to guarantee a read? */
140
141 /*
142 * When we observe the tail write from cyc2ns_read_end(),
143 * the cpu must be done with that entry and its safe
144 * to start writing to it.
145 */
146 while (c2n->tail == data)
147 cpu_relax();
148
149 return data;
150 }
151
152 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
153 {
154 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
155
156 /*
157 * Ensure the @data writes are visible before we publish the
158 * entry. Matches the data-depencency in cyc2ns_read_begin().
159 */
160 smp_wmb();
161
162 ACCESS_ONCE(c2n->head) = data;
163 }
164
165 /*
166 * Accelerators for sched_clock()
167 * convert from cycles(64bits) => nanoseconds (64bits)
168 * basic equation:
169 * ns = cycles / (freq / ns_per_sec)
170 * ns = cycles * (ns_per_sec / freq)
171 * ns = cycles * (10^9 / (cpu_khz * 10^3))
172 * ns = cycles * (10^6 / cpu_khz)
173 *
174 * Then we use scaling math (suggested by george@mvista.com) to get:
175 * ns = cycles * (10^6 * SC / cpu_khz) / SC
176 * ns = cycles * cyc2ns_scale / SC
177 *
178 * And since SC is a constant power of two, we can convert the div
179 * into a shift. The larger SC is, the more accurate the conversion, but
180 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
181 * (64-bit result) can be used.
182 *
183 * We can use khz divisor instead of mhz to keep a better precision.
184 * (mathieu.desnoyers@polymtl.ca)
185 *
186 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
187 */
188
189 static void cyc2ns_data_init(struct cyc2ns_data *data)
190 {
191 data->cyc2ns_mul = 0;
192 data->cyc2ns_shift = 0;
193 data->cyc2ns_offset = 0;
194 data->__count = 0;
195 }
196
197 static void cyc2ns_init(int cpu)
198 {
199 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
200
201 cyc2ns_data_init(&c2n->data[0]);
202 cyc2ns_data_init(&c2n->data[1]);
203
204 c2n->head = c2n->data;
205 c2n->tail = c2n->data;
206 }
207
208 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
209 {
210 struct cyc2ns_data *data, *tail;
211 unsigned long long ns;
212
213 /*
214 * See cyc2ns_read_*() for details; replicated in order to avoid
215 * an extra few instructions that came with the abstraction.
216 * Notable, it allows us to only do the __count and tail update
217 * dance when its actually needed.
218 */
219
220 preempt_disable_notrace();
221 data = this_cpu_read(cyc2ns.head);
222 tail = this_cpu_read(cyc2ns.tail);
223
224 if (likely(data == tail)) {
225 ns = data->cyc2ns_offset;
226 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
227 } else {
228 data->__count++;
229
230 barrier();
231
232 ns = data->cyc2ns_offset;
233 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
234
235 barrier();
236
237 if (!--data->__count)
238 this_cpu_write(cyc2ns.tail, data);
239 }
240 preempt_enable_notrace();
241
242 return ns;
243 }
244
245 static void set_cyc2ns_scale(unsigned long khz, int cpu)
246 {
247 unsigned long long tsc_now, ns_now;
248 struct cyc2ns_data *data;
249 unsigned long flags;
250
251 local_irq_save(flags);
252 sched_clock_idle_sleep_event();
253
254 if (!khz)
255 goto done;
256
257 data = cyc2ns_write_begin(cpu);
258
259 tsc_now = rdtsc();
260 ns_now = cycles_2_ns(tsc_now);
261
262 /*
263 * Compute a new multiplier as per the above comment and ensure our
264 * time function is continuous; see the comment near struct
265 * cyc2ns_data.
266 */
267 clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
268 NSEC_PER_MSEC, 0);
269
270 /*
271 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
272 * not expected to be greater than 31 due to the original published
273 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
274 * value) - refer perf_event_mmap_page documentation in perf_event.h.
275 */
276 if (data->cyc2ns_shift == 32) {
277 data->cyc2ns_shift = 31;
278 data->cyc2ns_mul >>= 1;
279 }
280
281 data->cyc2ns_offset = ns_now -
282 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
283
284 cyc2ns_write_end(cpu, data);
285
286 done:
287 sched_clock_idle_wakeup_event(0);
288 local_irq_restore(flags);
289 }
290 /*
291 * Scheduler clock - returns current time in nanosec units.
292 */
293 u64 native_sched_clock(void)
294 {
295 if (static_branch_likely(&__use_tsc)) {
296 u64 tsc_now = rdtsc();
297
298 /* return the value in ns */
299 return cycles_2_ns(tsc_now);
300 }
301
302 /*
303 * Fall back to jiffies if there's no TSC available:
304 * ( But note that we still use it if the TSC is marked
305 * unstable. We do this because unlike Time Of Day,
306 * the scheduler clock tolerates small errors and it's
307 * very important for it to be as fast as the platform
308 * can achieve it. )
309 */
310
311 /* No locking but a rare wrong value is not a big deal: */
312 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
313 }
314
315 /*
316 * Generate a sched_clock if you already have a TSC value.
317 */
318 u64 native_sched_clock_from_tsc(u64 tsc)
319 {
320 return cycles_2_ns(tsc);
321 }
322
323 /* We need to define a real function for sched_clock, to override the
324 weak default version */
325 #ifdef CONFIG_PARAVIRT
326 unsigned long long sched_clock(void)
327 {
328 return paravirt_sched_clock();
329 }
330 #else
331 unsigned long long
332 sched_clock(void) __attribute__((alias("native_sched_clock")));
333 #endif
334
335 int check_tsc_unstable(void)
336 {
337 return tsc_unstable;
338 }
339 EXPORT_SYMBOL_GPL(check_tsc_unstable);
340
341 #ifdef CONFIG_X86_TSC
342 int __init notsc_setup(char *str)
343 {
344 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
345 tsc_disabled = 1;
346 return 1;
347 }
348 #else
349 /*
350 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
351 * in cpu/common.c
352 */
353 int __init notsc_setup(char *str)
354 {
355 setup_clear_cpu_cap(X86_FEATURE_TSC);
356 return 1;
357 }
358 #endif
359
360 __setup("notsc", notsc_setup);
361
362 static int no_sched_irq_time;
363
364 static int __init tsc_setup(char *str)
365 {
366 if (!strcmp(str, "reliable"))
367 tsc_clocksource_reliable = 1;
368 if (!strncmp(str, "noirqtime", 9))
369 no_sched_irq_time = 1;
370 return 1;
371 }
372
373 __setup("tsc=", tsc_setup);
374
375 #define MAX_RETRIES 5
376 #define SMI_TRESHOLD 50000
377
378 /*
379 * Read TSC and the reference counters. Take care of SMI disturbance
380 */
381 static u64 tsc_read_refs(u64 *p, int hpet)
382 {
383 u64 t1, t2;
384 int i;
385
386 for (i = 0; i < MAX_RETRIES; i++) {
387 t1 = get_cycles();
388 if (hpet)
389 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
390 else
391 *p = acpi_pm_read_early();
392 t2 = get_cycles();
393 if ((t2 - t1) < SMI_TRESHOLD)
394 return t2;
395 }
396 return ULLONG_MAX;
397 }
398
399 /*
400 * Calculate the TSC frequency from HPET reference
401 */
402 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
403 {
404 u64 tmp;
405
406 if (hpet2 < hpet1)
407 hpet2 += 0x100000000ULL;
408 hpet2 -= hpet1;
409 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
410 do_div(tmp, 1000000);
411 do_div(deltatsc, tmp);
412
413 return (unsigned long) deltatsc;
414 }
415
416 /*
417 * Calculate the TSC frequency from PMTimer reference
418 */
419 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
420 {
421 u64 tmp;
422
423 if (!pm1 && !pm2)
424 return ULONG_MAX;
425
426 if (pm2 < pm1)
427 pm2 += (u64)ACPI_PM_OVRRUN;
428 pm2 -= pm1;
429 tmp = pm2 * 1000000000LL;
430 do_div(tmp, PMTMR_TICKS_PER_SEC);
431 do_div(deltatsc, tmp);
432
433 return (unsigned long) deltatsc;
434 }
435
436 #define CAL_MS 10
437 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
438 #define CAL_PIT_LOOPS 1000
439
440 #define CAL2_MS 50
441 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
442 #define CAL2_PIT_LOOPS 5000
443
444
445 /*
446 * Try to calibrate the TSC against the Programmable
447 * Interrupt Timer and return the frequency of the TSC
448 * in kHz.
449 *
450 * Return ULONG_MAX on failure to calibrate.
451 */
452 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
453 {
454 u64 tsc, t1, t2, delta;
455 unsigned long tscmin, tscmax;
456 int pitcnt;
457
458 /* Set the Gate high, disable speaker */
459 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
460
461 /*
462 * Setup CTC channel 2* for mode 0, (interrupt on terminal
463 * count mode), binary count. Set the latch register to 50ms
464 * (LSB then MSB) to begin countdown.
465 */
466 outb(0xb0, 0x43);
467 outb(latch & 0xff, 0x42);
468 outb(latch >> 8, 0x42);
469
470 tsc = t1 = t2 = get_cycles();
471
472 pitcnt = 0;
473 tscmax = 0;
474 tscmin = ULONG_MAX;
475 while ((inb(0x61) & 0x20) == 0) {
476 t2 = get_cycles();
477 delta = t2 - tsc;
478 tsc = t2;
479 if ((unsigned long) delta < tscmin)
480 tscmin = (unsigned int) delta;
481 if ((unsigned long) delta > tscmax)
482 tscmax = (unsigned int) delta;
483 pitcnt++;
484 }
485
486 /*
487 * Sanity checks:
488 *
489 * If we were not able to read the PIT more than loopmin
490 * times, then we have been hit by a massive SMI
491 *
492 * If the maximum is 10 times larger than the minimum,
493 * then we got hit by an SMI as well.
494 */
495 if (pitcnt < loopmin || tscmax > 10 * tscmin)
496 return ULONG_MAX;
497
498 /* Calculate the PIT value */
499 delta = t2 - t1;
500 do_div(delta, ms);
501 return delta;
502 }
503
504 /*
505 * This reads the current MSB of the PIT counter, and
506 * checks if we are running on sufficiently fast and
507 * non-virtualized hardware.
508 *
509 * Our expectations are:
510 *
511 * - the PIT is running at roughly 1.19MHz
512 *
513 * - each IO is going to take about 1us on real hardware,
514 * but we allow it to be much faster (by a factor of 10) or
515 * _slightly_ slower (ie we allow up to a 2us read+counter
516 * update - anything else implies a unacceptably slow CPU
517 * or PIT for the fast calibration to work.
518 *
519 * - with 256 PIT ticks to read the value, we have 214us to
520 * see the same MSB (and overhead like doing a single TSC
521 * read per MSB value etc).
522 *
523 * - We're doing 2 reads per loop (LSB, MSB), and we expect
524 * them each to take about a microsecond on real hardware.
525 * So we expect a count value of around 100. But we'll be
526 * generous, and accept anything over 50.
527 *
528 * - if the PIT is stuck, and we see *many* more reads, we
529 * return early (and the next caller of pit_expect_msb()
530 * then consider it a failure when they don't see the
531 * next expected value).
532 *
533 * These expectations mean that we know that we have seen the
534 * transition from one expected value to another with a fairly
535 * high accuracy, and we didn't miss any events. We can thus
536 * use the TSC value at the transitions to calculate a pretty
537 * good value for the TSC frequencty.
538 */
539 static inline int pit_verify_msb(unsigned char val)
540 {
541 /* Ignore LSB */
542 inb(0x42);
543 return inb(0x42) == val;
544 }
545
546 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
547 {
548 int count;
549 u64 tsc = 0, prev_tsc = 0;
550
551 for (count = 0; count < 50000; count++) {
552 if (!pit_verify_msb(val))
553 break;
554 prev_tsc = tsc;
555 tsc = get_cycles();
556 }
557 *deltap = get_cycles() - prev_tsc;
558 *tscp = tsc;
559
560 /*
561 * We require _some_ success, but the quality control
562 * will be based on the error terms on the TSC values.
563 */
564 return count > 5;
565 }
566
567 /*
568 * How many MSB values do we want to see? We aim for
569 * a maximum error rate of 500ppm (in practice the
570 * real error is much smaller), but refuse to spend
571 * more than 50ms on it.
572 */
573 #define MAX_QUICK_PIT_MS 50
574 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
575
576 static unsigned long quick_pit_calibrate(void)
577 {
578 int i;
579 u64 tsc, delta;
580 unsigned long d1, d2;
581
582 /* Set the Gate high, disable speaker */
583 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
584
585 /*
586 * Counter 2, mode 0 (one-shot), binary count
587 *
588 * NOTE! Mode 2 decrements by two (and then the
589 * output is flipped each time, giving the same
590 * final output frequency as a decrement-by-one),
591 * so mode 0 is much better when looking at the
592 * individual counts.
593 */
594 outb(0xb0, 0x43);
595
596 /* Start at 0xffff */
597 outb(0xff, 0x42);
598 outb(0xff, 0x42);
599
600 /*
601 * The PIT starts counting at the next edge, so we
602 * need to delay for a microsecond. The easiest way
603 * to do that is to just read back the 16-bit counter
604 * once from the PIT.
605 */
606 pit_verify_msb(0);
607
608 if (pit_expect_msb(0xff, &tsc, &d1)) {
609 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
610 if (!pit_expect_msb(0xff-i, &delta, &d2))
611 break;
612
613 delta -= tsc;
614
615 /*
616 * Extrapolate the error and fail fast if the error will
617 * never be below 500 ppm.
618 */
619 if (i == 1 &&
620 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
621 return 0;
622
623 /*
624 * Iterate until the error is less than 500 ppm
625 */
626 if (d1+d2 >= delta >> 11)
627 continue;
628
629 /*
630 * Check the PIT one more time to verify that
631 * all TSC reads were stable wrt the PIT.
632 *
633 * This also guarantees serialization of the
634 * last cycle read ('d2') in pit_expect_msb.
635 */
636 if (!pit_verify_msb(0xfe - i))
637 break;
638 goto success;
639 }
640 }
641 pr_info("Fast TSC calibration failed\n");
642 return 0;
643
644 success:
645 /*
646 * Ok, if we get here, then we've seen the
647 * MSB of the PIT decrement 'i' times, and the
648 * error has shrunk to less than 500 ppm.
649 *
650 * As a result, we can depend on there not being
651 * any odd delays anywhere, and the TSC reads are
652 * reliable (within the error).
653 *
654 * kHz = ticks / time-in-seconds / 1000;
655 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
656 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
657 */
658 delta *= PIT_TICK_RATE;
659 do_div(delta, i*256*1000);
660 pr_info("Fast TSC calibration using PIT\n");
661 return delta;
662 }
663
664 /**
665 * native_calibrate_tsc
666 * Determine TSC frequency via CPUID, else return 0.
667 */
668 unsigned long native_calibrate_tsc(void)
669 {
670 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
671 unsigned int crystal_khz;
672
673 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
674 return 0;
675
676 if (boot_cpu_data.cpuid_level < 0x15)
677 return 0;
678
679 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
680
681 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
682 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
683
684 if (ebx_numerator == 0 || eax_denominator == 0)
685 return 0;
686
687 crystal_khz = ecx_hz / 1000;
688
689 if (crystal_khz == 0) {
690 switch (boot_cpu_data.x86_model) {
691 case INTEL_FAM6_SKYLAKE_MOBILE:
692 case INTEL_FAM6_SKYLAKE_DESKTOP:
693 case INTEL_FAM6_KABYLAKE_MOBILE:
694 case INTEL_FAM6_KABYLAKE_DESKTOP:
695 crystal_khz = 24000; /* 24.0 MHz */
696 break;
697 case INTEL_FAM6_SKYLAKE_X:
698 case INTEL_FAM6_ATOM_DENVERTON:
699 crystal_khz = 25000; /* 25.0 MHz */
700 break;
701 case INTEL_FAM6_ATOM_GOLDMONT:
702 crystal_khz = 19200; /* 19.2 MHz */
703 break;
704 }
705 }
706
707 /*
708 * TSC frequency determined by CPUID is a "hardware reported"
709 * frequency and is the most accurate one so far we have. This
710 * is considered a known frequency.
711 */
712 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
713
714 /*
715 * For Atom SoCs TSC is the only reliable clocksource.
716 * Mark TSC reliable so no watchdog on it.
717 */
718 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
719 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
720
721 return crystal_khz * ebx_numerator / eax_denominator;
722 }
723
724 static unsigned long cpu_khz_from_cpuid(void)
725 {
726 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
727
728 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
729 return 0;
730
731 if (boot_cpu_data.cpuid_level < 0x16)
732 return 0;
733
734 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
735
736 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
737
738 return eax_base_mhz * 1000;
739 }
740
741 /**
742 * native_calibrate_cpu - calibrate the cpu on boot
743 */
744 unsigned long native_calibrate_cpu(void)
745 {
746 u64 tsc1, tsc2, delta, ref1, ref2;
747 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
748 unsigned long flags, latch, ms, fast_calibrate;
749 int hpet = is_hpet_enabled(), i, loopmin;
750
751 fast_calibrate = cpu_khz_from_cpuid();
752 if (fast_calibrate)
753 return fast_calibrate;
754
755 fast_calibrate = cpu_khz_from_msr();
756 if (fast_calibrate)
757 return fast_calibrate;
758
759 local_irq_save(flags);
760 fast_calibrate = quick_pit_calibrate();
761 local_irq_restore(flags);
762 if (fast_calibrate)
763 return fast_calibrate;
764
765 /*
766 * Run 5 calibration loops to get the lowest frequency value
767 * (the best estimate). We use two different calibration modes
768 * here:
769 *
770 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
771 * load a timeout of 50ms. We read the time right after we
772 * started the timer and wait until the PIT count down reaches
773 * zero. In each wait loop iteration we read the TSC and check
774 * the delta to the previous read. We keep track of the min
775 * and max values of that delta. The delta is mostly defined
776 * by the IO time of the PIT access, so we can detect when a
777 * SMI/SMM disturbance happened between the two reads. If the
778 * maximum time is significantly larger than the minimum time,
779 * then we discard the result and have another try.
780 *
781 * 2) Reference counter. If available we use the HPET or the
782 * PMTIMER as a reference to check the sanity of that value.
783 * We use separate TSC readouts and check inside of the
784 * reference read for a SMI/SMM disturbance. We dicard
785 * disturbed values here as well. We do that around the PIT
786 * calibration delay loop as we have to wait for a certain
787 * amount of time anyway.
788 */
789
790 /* Preset PIT loop values */
791 latch = CAL_LATCH;
792 ms = CAL_MS;
793 loopmin = CAL_PIT_LOOPS;
794
795 for (i = 0; i < 3; i++) {
796 unsigned long tsc_pit_khz;
797
798 /*
799 * Read the start value and the reference count of
800 * hpet/pmtimer when available. Then do the PIT
801 * calibration, which will take at least 50ms, and
802 * read the end value.
803 */
804 local_irq_save(flags);
805 tsc1 = tsc_read_refs(&ref1, hpet);
806 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
807 tsc2 = tsc_read_refs(&ref2, hpet);
808 local_irq_restore(flags);
809
810 /* Pick the lowest PIT TSC calibration so far */
811 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
812
813 /* hpet or pmtimer available ? */
814 if (ref1 == ref2)
815 continue;
816
817 /* Check, whether the sampling was disturbed by an SMI */
818 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
819 continue;
820
821 tsc2 = (tsc2 - tsc1) * 1000000LL;
822 if (hpet)
823 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
824 else
825 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
826
827 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
828
829 /* Check the reference deviation */
830 delta = ((u64) tsc_pit_min) * 100;
831 do_div(delta, tsc_ref_min);
832
833 /*
834 * If both calibration results are inside a 10% window
835 * then we can be sure, that the calibration
836 * succeeded. We break out of the loop right away. We
837 * use the reference value, as it is more precise.
838 */
839 if (delta >= 90 && delta <= 110) {
840 pr_info("PIT calibration matches %s. %d loops\n",
841 hpet ? "HPET" : "PMTIMER", i + 1);
842 return tsc_ref_min;
843 }
844
845 /*
846 * Check whether PIT failed more than once. This
847 * happens in virtualized environments. We need to
848 * give the virtual PC a slightly longer timeframe for
849 * the HPET/PMTIMER to make the result precise.
850 */
851 if (i == 1 && tsc_pit_min == ULONG_MAX) {
852 latch = CAL2_LATCH;
853 ms = CAL2_MS;
854 loopmin = CAL2_PIT_LOOPS;
855 }
856 }
857
858 /*
859 * Now check the results.
860 */
861 if (tsc_pit_min == ULONG_MAX) {
862 /* PIT gave no useful value */
863 pr_warn("Unable to calibrate against PIT\n");
864
865 /* We don't have an alternative source, disable TSC */
866 if (!hpet && !ref1 && !ref2) {
867 pr_notice("No reference (HPET/PMTIMER) available\n");
868 return 0;
869 }
870
871 /* The alternative source failed as well, disable TSC */
872 if (tsc_ref_min == ULONG_MAX) {
873 pr_warn("HPET/PMTIMER calibration failed\n");
874 return 0;
875 }
876
877 /* Use the alternative source */
878 pr_info("using %s reference calibration\n",
879 hpet ? "HPET" : "PMTIMER");
880
881 return tsc_ref_min;
882 }
883
884 /* We don't have an alternative source, use the PIT calibration value */
885 if (!hpet && !ref1 && !ref2) {
886 pr_info("Using PIT calibration value\n");
887 return tsc_pit_min;
888 }
889
890 /* The alternative source failed, use the PIT calibration value */
891 if (tsc_ref_min == ULONG_MAX) {
892 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
893 return tsc_pit_min;
894 }
895
896 /*
897 * The calibration values differ too much. In doubt, we use
898 * the PIT value as we know that there are PMTIMERs around
899 * running at double speed. At least we let the user know:
900 */
901 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
902 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
903 pr_info("Using PIT calibration value\n");
904 return tsc_pit_min;
905 }
906
907 int recalibrate_cpu_khz(void)
908 {
909 #ifndef CONFIG_SMP
910 unsigned long cpu_khz_old = cpu_khz;
911
912 if (!boot_cpu_has(X86_FEATURE_TSC))
913 return -ENODEV;
914
915 cpu_khz = x86_platform.calibrate_cpu();
916 tsc_khz = x86_platform.calibrate_tsc();
917 if (tsc_khz == 0)
918 tsc_khz = cpu_khz;
919 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
920 cpu_khz = tsc_khz;
921 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
922 cpu_khz_old, cpu_khz);
923
924 return 0;
925 #else
926 return -ENODEV;
927 #endif
928 }
929
930 EXPORT_SYMBOL(recalibrate_cpu_khz);
931
932
933 static unsigned long long cyc2ns_suspend;
934
935 void tsc_save_sched_clock_state(void)
936 {
937 if (!sched_clock_stable())
938 return;
939
940 cyc2ns_suspend = sched_clock();
941 }
942
943 /*
944 * Even on processors with invariant TSC, TSC gets reset in some the
945 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
946 * arbitrary value (still sync'd across cpu's) during resume from such sleep
947 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
948 * that sched_clock() continues from the point where it was left off during
949 * suspend.
950 */
951 void tsc_restore_sched_clock_state(void)
952 {
953 unsigned long long offset;
954 unsigned long flags;
955 int cpu;
956
957 if (!sched_clock_stable())
958 return;
959
960 local_irq_save(flags);
961
962 /*
963 * We're coming out of suspend, there's no concurrency yet; don't
964 * bother being nice about the RCU stuff, just write to both
965 * data fields.
966 */
967
968 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
969 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
970
971 offset = cyc2ns_suspend - sched_clock();
972
973 for_each_possible_cpu(cpu) {
974 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
975 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
976 }
977
978 local_irq_restore(flags);
979 }
980
981 #ifdef CONFIG_CPU_FREQ
982
983 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
984 * changes.
985 *
986 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
987 * not that important because current Opteron setups do not support
988 * scaling on SMP anyroads.
989 *
990 * Should fix up last_tsc too. Currently gettimeofday in the
991 * first tick after the change will be slightly wrong.
992 */
993
994 static unsigned int ref_freq;
995 static unsigned long loops_per_jiffy_ref;
996 static unsigned long tsc_khz_ref;
997
998 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
999 void *data)
1000 {
1001 struct cpufreq_freqs *freq = data;
1002 unsigned long *lpj;
1003
1004 lpj = &boot_cpu_data.loops_per_jiffy;
1005 #ifdef CONFIG_SMP
1006 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1007 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
1008 #endif
1009
1010 if (!ref_freq) {
1011 ref_freq = freq->old;
1012 loops_per_jiffy_ref = *lpj;
1013 tsc_khz_ref = tsc_khz;
1014 }
1015 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
1016 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1017 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1018
1019 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1020 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1021 mark_tsc_unstable("cpufreq changes");
1022
1023 set_cyc2ns_scale(tsc_khz, freq->cpu);
1024 }
1025
1026 return 0;
1027 }
1028
1029 static struct notifier_block time_cpufreq_notifier_block = {
1030 .notifier_call = time_cpufreq_notifier
1031 };
1032
1033 static int __init cpufreq_register_tsc_scaling(void)
1034 {
1035 if (!boot_cpu_has(X86_FEATURE_TSC))
1036 return 0;
1037 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1038 return 0;
1039 cpufreq_register_notifier(&time_cpufreq_notifier_block,
1040 CPUFREQ_TRANSITION_NOTIFIER);
1041 return 0;
1042 }
1043
1044 core_initcall(cpufreq_register_tsc_scaling);
1045
1046 #endif /* CONFIG_CPU_FREQ */
1047
1048 #define ART_CPUID_LEAF (0x15)
1049 #define ART_MIN_DENOMINATOR (1)
1050
1051
1052 /*
1053 * If ART is present detect the numerator:denominator to convert to TSC
1054 */
1055 static void detect_art(void)
1056 {
1057 unsigned int unused[2];
1058
1059 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1060 return;
1061
1062 /* Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required */
1063 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1064 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1065 !boot_cpu_has(X86_FEATURE_TSC_ADJUST))
1066 return;
1067
1068 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1069 &art_to_tsc_numerator, unused, unused+1);
1070
1071 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1072 return;
1073
1074 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1075
1076 /* Make this sticky over multiple CPU init calls */
1077 setup_force_cpu_cap(X86_FEATURE_ART);
1078 }
1079
1080
1081 /* clocksource code */
1082
1083 static struct clocksource clocksource_tsc;
1084
1085 static void tsc_resume(struct clocksource *cs)
1086 {
1087 tsc_verify_tsc_adjust(true);
1088 }
1089
1090 /*
1091 * We used to compare the TSC to the cycle_last value in the clocksource
1092 * structure to avoid a nasty time-warp. This can be observed in a
1093 * very small window right after one CPU updated cycle_last under
1094 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1095 * is smaller than the cycle_last reference value due to a TSC which
1096 * is slighty behind. This delta is nowhere else observable, but in
1097 * that case it results in a forward time jump in the range of hours
1098 * due to the unsigned delta calculation of the time keeping core
1099 * code, which is necessary to support wrapping clocksources like pm
1100 * timer.
1101 *
1102 * This sanity check is now done in the core timekeeping code.
1103 * checking the result of read_tsc() - cycle_last for being negative.
1104 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1105 */
1106 static u64 read_tsc(struct clocksource *cs)
1107 {
1108 return (u64)rdtsc_ordered();
1109 }
1110
1111 static void tsc_cs_mark_unstable(struct clocksource *cs)
1112 {
1113 if (tsc_unstable)
1114 return;
1115 tsc_unstable = 1;
1116 clear_sched_clock_stable();
1117 disable_sched_clock_irqtime();
1118 pr_info("Marking TSC unstable due to clocksource watchdog\n");
1119 }
1120
1121 /*
1122 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1123 */
1124 static struct clocksource clocksource_tsc = {
1125 .name = "tsc",
1126 .rating = 300,
1127 .read = read_tsc,
1128 .mask = CLOCKSOURCE_MASK(64),
1129 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1130 CLOCK_SOURCE_MUST_VERIFY,
1131 .archdata = { .vclock_mode = VCLOCK_TSC },
1132 .resume = tsc_resume,
1133 .mark_unstable = tsc_cs_mark_unstable,
1134 };
1135
1136 void mark_tsc_unstable(char *reason)
1137 {
1138 if (!tsc_unstable) {
1139 tsc_unstable = 1;
1140 clear_sched_clock_stable();
1141 disable_sched_clock_irqtime();
1142 pr_info("Marking TSC unstable due to %s\n", reason);
1143 /* Change only the rating, when not registered */
1144 if (clocksource_tsc.mult)
1145 clocksource_mark_unstable(&clocksource_tsc);
1146 else {
1147 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1148 clocksource_tsc.rating = 0;
1149 }
1150 }
1151 }
1152
1153 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1154
1155 static void __init check_system_tsc_reliable(void)
1156 {
1157 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1158 if (is_geode_lx()) {
1159 /* RTSC counts during suspend */
1160 #define RTSC_SUSP 0x100
1161 unsigned long res_low, res_high;
1162
1163 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1164 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1165 if (res_low & RTSC_SUSP)
1166 tsc_clocksource_reliable = 1;
1167 }
1168 #endif
1169 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1170 tsc_clocksource_reliable = 1;
1171 }
1172
1173 /*
1174 * Make an educated guess if the TSC is trustworthy and synchronized
1175 * over all CPUs.
1176 */
1177 int unsynchronized_tsc(void)
1178 {
1179 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1180 return 1;
1181
1182 #ifdef CONFIG_SMP
1183 if (apic_is_clustered_box())
1184 return 1;
1185 #endif
1186
1187 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1188 return 0;
1189
1190 if (tsc_clocksource_reliable)
1191 return 0;
1192 /*
1193 * Intel systems are normally all synchronized.
1194 * Exceptions must mark TSC as unstable:
1195 */
1196 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1197 /* assume multi socket systems are not synchronized: */
1198 if (num_possible_cpus() > 1)
1199 return 1;
1200 }
1201
1202 return 0;
1203 }
1204
1205 /*
1206 * Convert ART to TSC given numerator/denominator found in detect_art()
1207 */
1208 struct system_counterval_t convert_art_to_tsc(u64 art)
1209 {
1210 u64 tmp, res, rem;
1211
1212 rem = do_div(art, art_to_tsc_denominator);
1213
1214 res = art * art_to_tsc_numerator;
1215 tmp = rem * art_to_tsc_numerator;
1216
1217 do_div(tmp, art_to_tsc_denominator);
1218 res += tmp + art_to_tsc_offset;
1219
1220 return (struct system_counterval_t) {.cs = art_related_clocksource,
1221 .cycles = res};
1222 }
1223 EXPORT_SYMBOL(convert_art_to_tsc);
1224
1225 static void tsc_refine_calibration_work(struct work_struct *work);
1226 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1227 /**
1228 * tsc_refine_calibration_work - Further refine tsc freq calibration
1229 * @work - ignored.
1230 *
1231 * This functions uses delayed work over a period of a
1232 * second to further refine the TSC freq value. Since this is
1233 * timer based, instead of loop based, we don't block the boot
1234 * process while this longer calibration is done.
1235 *
1236 * If there are any calibration anomalies (too many SMIs, etc),
1237 * or the refined calibration is off by 1% of the fast early
1238 * calibration, we throw out the new calibration and use the
1239 * early calibration.
1240 */
1241 static void tsc_refine_calibration_work(struct work_struct *work)
1242 {
1243 static u64 tsc_start = -1, ref_start;
1244 static int hpet;
1245 u64 tsc_stop, ref_stop, delta;
1246 unsigned long freq;
1247
1248 /* Don't bother refining TSC on unstable systems */
1249 if (check_tsc_unstable())
1250 goto out;
1251
1252 /*
1253 * Since the work is started early in boot, we may be
1254 * delayed the first time we expire. So set the workqueue
1255 * again once we know timers are working.
1256 */
1257 if (tsc_start == -1) {
1258 /*
1259 * Only set hpet once, to avoid mixing hardware
1260 * if the hpet becomes enabled later.
1261 */
1262 hpet = is_hpet_enabled();
1263 schedule_delayed_work(&tsc_irqwork, HZ);
1264 tsc_start = tsc_read_refs(&ref_start, hpet);
1265 return;
1266 }
1267
1268 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1269
1270 /* hpet or pmtimer available ? */
1271 if (ref_start == ref_stop)
1272 goto out;
1273
1274 /* Check, whether the sampling was disturbed by an SMI */
1275 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1276 goto out;
1277
1278 delta = tsc_stop - tsc_start;
1279 delta *= 1000000LL;
1280 if (hpet)
1281 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1282 else
1283 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1284
1285 /* Make sure we're within 1% */
1286 if (abs(tsc_khz - freq) > tsc_khz/100)
1287 goto out;
1288
1289 tsc_khz = freq;
1290 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1291 (unsigned long)tsc_khz / 1000,
1292 (unsigned long)tsc_khz % 1000);
1293
1294 /* Inform the TSC deadline clockevent devices about the recalibration */
1295 lapic_update_tsc_freq();
1296
1297 out:
1298 if (boot_cpu_has(X86_FEATURE_ART))
1299 art_related_clocksource = &clocksource_tsc;
1300 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1301 }
1302
1303
1304 static int __init init_tsc_clocksource(void)
1305 {
1306 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1307 return 0;
1308
1309 if (tsc_clocksource_reliable)
1310 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1311 /* lower the rating if we already know its unstable: */
1312 if (check_tsc_unstable()) {
1313 clocksource_tsc.rating = 0;
1314 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1315 }
1316
1317 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1318 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1319
1320 /*
1321 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1322 * the refined calibration and directly register it as a clocksource.
1323 */
1324 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1325 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1326 return 0;
1327 }
1328
1329 schedule_delayed_work(&tsc_irqwork, 0);
1330 return 0;
1331 }
1332 /*
1333 * We use device_initcall here, to ensure we run after the hpet
1334 * is fully initialized, which may occur at fs_initcall time.
1335 */
1336 device_initcall(init_tsc_clocksource);
1337
1338 void __init tsc_init(void)
1339 {
1340 u64 lpj;
1341 int cpu;
1342
1343 if (!boot_cpu_has(X86_FEATURE_TSC)) {
1344 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1345 return;
1346 }
1347
1348 cpu_khz = x86_platform.calibrate_cpu();
1349 tsc_khz = x86_platform.calibrate_tsc();
1350
1351 /*
1352 * Trust non-zero tsc_khz as authorative,
1353 * and use it to sanity check cpu_khz,
1354 * which will be off if system timer is off.
1355 */
1356 if (tsc_khz == 0)
1357 tsc_khz = cpu_khz;
1358 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1359 cpu_khz = tsc_khz;
1360
1361 if (!tsc_khz) {
1362 mark_tsc_unstable("could not calculate TSC khz");
1363 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1364 return;
1365 }
1366
1367 pr_info("Detected %lu.%03lu MHz processor\n",
1368 (unsigned long)cpu_khz / 1000,
1369 (unsigned long)cpu_khz % 1000);
1370
1371 /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1372 tsc_store_and_check_tsc_adjust(true);
1373
1374 /*
1375 * Secondary CPUs do not run through tsc_init(), so set up
1376 * all the scale factors for all CPUs, assuming the same
1377 * speed as the bootup CPU. (cpufreq notifiers will fix this
1378 * up if their speed diverges)
1379 */
1380 for_each_possible_cpu(cpu) {
1381 cyc2ns_init(cpu);
1382 set_cyc2ns_scale(tsc_khz, cpu);
1383 }
1384
1385 if (tsc_disabled > 0)
1386 return;
1387
1388 /* now allow native_sched_clock() to use rdtsc */
1389
1390 tsc_disabled = 0;
1391 static_branch_enable(&__use_tsc);
1392
1393 if (!no_sched_irq_time)
1394 enable_sched_clock_irqtime();
1395
1396 lpj = ((u64)tsc_khz * 1000);
1397 do_div(lpj, HZ);
1398 lpj_fine = lpj;
1399
1400 use_tsc_delay();
1401
1402 if (unsynchronized_tsc())
1403 mark_tsc_unstable("TSCs unsynchronized");
1404
1405 check_system_tsc_reliable();
1406
1407 detect_art();
1408 }
1409
1410 #ifdef CONFIG_SMP
1411 /*
1412 * If we have a constant TSC and are using the TSC for the delay loop,
1413 * we can skip clock calibration if another cpu in the same socket has already
1414 * been calibrated. This assumes that CONSTANT_TSC applies to all
1415 * cpus in the socket - this should be a safe assumption.
1416 */
1417 unsigned long calibrate_delay_is_known(void)
1418 {
1419 int sibling, cpu = smp_processor_id();
1420 struct cpumask *mask = topology_core_cpumask(cpu);
1421
1422 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1423 return 0;
1424
1425 if (!mask)
1426 return 0;
1427
1428 sibling = cpumask_any_but(mask, cpu);
1429 if (sibling < nr_cpu_ids)
1430 return cpu_data(sibling).loops_per_jiffy;
1431 return 0;
1432 }
1433 #endif