]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/tsc.c
Merge remote-tracking branch 'origin/master' into drm-misc-next-fixes
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / tsc.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/timer.h>
9 #include <linux/acpi_pmtmr.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/clocksource.h>
13 #include <linux/percpu.h>
14 #include <linux/timex.h>
15 #include <linux/static_key.h>
16
17 #include <asm/hpet.h>
18 #include <asm/timer.h>
19 #include <asm/vgtod.h>
20 #include <asm/time.h>
21 #include <asm/delay.h>
22 #include <asm/hypervisor.h>
23 #include <asm/nmi.h>
24 #include <asm/x86_init.h>
25 #include <asm/geode.h>
26 #include <asm/apic.h>
27 #include <asm/intel-family.h>
28
29 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
30 EXPORT_SYMBOL(cpu_khz);
31
32 unsigned int __read_mostly tsc_khz;
33 EXPORT_SYMBOL(tsc_khz);
34
35 /*
36 * TSC can be unstable due to cpufreq or due to unsynced TSCs
37 */
38 static int __read_mostly tsc_unstable;
39
40 /* native_sched_clock() is called before tsc_init(), so
41 we must start with the TSC soft disabled to prevent
42 erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
43 static int __read_mostly tsc_disabled = -1;
44
45 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
46
47 int tsc_clocksource_reliable;
48
49 static u32 art_to_tsc_numerator;
50 static u32 art_to_tsc_denominator;
51 static u64 art_to_tsc_offset;
52 struct clocksource *art_related_clocksource;
53
54 /*
55 * Use a ring-buffer like data structure, where a writer advances the head by
56 * writing a new data entry and a reader advances the tail when it observes a
57 * new entry.
58 *
59 * Writers are made to wait on readers until there's space to write a new
60 * entry.
61 *
62 * This means that we can always use an {offset, mul} pair to compute a ns
63 * value that is 'roughly' in the right direction, even if we're writing a new
64 * {offset, mul} pair during the clock read.
65 *
66 * The down-side is that we can no longer guarantee strict monotonicity anymore
67 * (assuming the TSC was that to begin with), because while we compute the
68 * intersection point of the two clock slopes and make sure the time is
69 * continuous at the point of switching; we can no longer guarantee a reader is
70 * strictly before or after the switch point.
71 *
72 * It does mean a reader no longer needs to disable IRQs in order to avoid
73 * CPU-Freq updates messing with his times, and similarly an NMI reader will
74 * no longer run the risk of hitting half-written state.
75 */
76
77 struct cyc2ns {
78 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
79 struct cyc2ns_data *head; /* 48 + 8 = 56 */
80 struct cyc2ns_data *tail; /* 56 + 8 = 64 */
81 }; /* exactly fits one cacheline */
82
83 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
84
85 struct cyc2ns_data *cyc2ns_read_begin(void)
86 {
87 struct cyc2ns_data *head;
88
89 preempt_disable();
90
91 head = this_cpu_read(cyc2ns.head);
92 /*
93 * Ensure we observe the entry when we observe the pointer to it.
94 * matches the wmb from cyc2ns_write_end().
95 */
96 smp_read_barrier_depends();
97 head->__count++;
98 barrier();
99
100 return head;
101 }
102
103 void cyc2ns_read_end(struct cyc2ns_data *head)
104 {
105 barrier();
106 /*
107 * If we're the outer most nested read; update the tail pointer
108 * when we're done. This notifies possible pending writers
109 * that we've observed the head pointer and that the other
110 * entry is now free.
111 */
112 if (!--head->__count) {
113 /*
114 * x86-TSO does not reorder writes with older reads;
115 * therefore once this write becomes visible to another
116 * cpu, we must be finished reading the cyc2ns_data.
117 *
118 * matches with cyc2ns_write_begin().
119 */
120 this_cpu_write(cyc2ns.tail, head);
121 }
122 preempt_enable();
123 }
124
125 /*
126 * Begin writing a new @data entry for @cpu.
127 *
128 * Assumes some sort of write side lock; currently 'provided' by the assumption
129 * that cpufreq will call its notifiers sequentially.
130 */
131 static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
132 {
133 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
134 struct cyc2ns_data *data = c2n->data;
135
136 if (data == c2n->head)
137 data++;
138
139 /* XXX send an IPI to @cpu in order to guarantee a read? */
140
141 /*
142 * When we observe the tail write from cyc2ns_read_end(),
143 * the cpu must be done with that entry and its safe
144 * to start writing to it.
145 */
146 while (c2n->tail == data)
147 cpu_relax();
148
149 return data;
150 }
151
152 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
153 {
154 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
155
156 /*
157 * Ensure the @data writes are visible before we publish the
158 * entry. Matches the data-depencency in cyc2ns_read_begin().
159 */
160 smp_wmb();
161
162 ACCESS_ONCE(c2n->head) = data;
163 }
164
165 /*
166 * Accelerators for sched_clock()
167 * convert from cycles(64bits) => nanoseconds (64bits)
168 * basic equation:
169 * ns = cycles / (freq / ns_per_sec)
170 * ns = cycles * (ns_per_sec / freq)
171 * ns = cycles * (10^9 / (cpu_khz * 10^3))
172 * ns = cycles * (10^6 / cpu_khz)
173 *
174 * Then we use scaling math (suggested by george@mvista.com) to get:
175 * ns = cycles * (10^6 * SC / cpu_khz) / SC
176 * ns = cycles * cyc2ns_scale / SC
177 *
178 * And since SC is a constant power of two, we can convert the div
179 * into a shift. The larger SC is, the more accurate the conversion, but
180 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
181 * (64-bit result) can be used.
182 *
183 * We can use khz divisor instead of mhz to keep a better precision.
184 * (mathieu.desnoyers@polymtl.ca)
185 *
186 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
187 */
188
189 static void cyc2ns_data_init(struct cyc2ns_data *data)
190 {
191 data->cyc2ns_mul = 0;
192 data->cyc2ns_shift = 0;
193 data->cyc2ns_offset = 0;
194 data->__count = 0;
195 }
196
197 static void cyc2ns_init(int cpu)
198 {
199 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
200
201 cyc2ns_data_init(&c2n->data[0]);
202 cyc2ns_data_init(&c2n->data[1]);
203
204 c2n->head = c2n->data;
205 c2n->tail = c2n->data;
206 }
207
208 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
209 {
210 struct cyc2ns_data *data, *tail;
211 unsigned long long ns;
212
213 /*
214 * See cyc2ns_read_*() for details; replicated in order to avoid
215 * an extra few instructions that came with the abstraction.
216 * Notable, it allows us to only do the __count and tail update
217 * dance when its actually needed.
218 */
219
220 preempt_disable_notrace();
221 data = this_cpu_read(cyc2ns.head);
222 tail = this_cpu_read(cyc2ns.tail);
223
224 if (likely(data == tail)) {
225 ns = data->cyc2ns_offset;
226 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
227 } else {
228 data->__count++;
229
230 barrier();
231
232 ns = data->cyc2ns_offset;
233 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
234
235 barrier();
236
237 if (!--data->__count)
238 this_cpu_write(cyc2ns.tail, data);
239 }
240 preempt_enable_notrace();
241
242 return ns;
243 }
244
245 static void set_cyc2ns_scale(unsigned long khz, int cpu)
246 {
247 unsigned long long tsc_now, ns_now;
248 struct cyc2ns_data *data;
249 unsigned long flags;
250
251 local_irq_save(flags);
252 sched_clock_idle_sleep_event();
253
254 if (!khz)
255 goto done;
256
257 data = cyc2ns_write_begin(cpu);
258
259 tsc_now = rdtsc();
260 ns_now = cycles_2_ns(tsc_now);
261
262 /*
263 * Compute a new multiplier as per the above comment and ensure our
264 * time function is continuous; see the comment near struct
265 * cyc2ns_data.
266 */
267 clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
268 NSEC_PER_MSEC, 0);
269
270 /*
271 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
272 * not expected to be greater than 31 due to the original published
273 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
274 * value) - refer perf_event_mmap_page documentation in perf_event.h.
275 */
276 if (data->cyc2ns_shift == 32) {
277 data->cyc2ns_shift = 31;
278 data->cyc2ns_mul >>= 1;
279 }
280
281 data->cyc2ns_offset = ns_now -
282 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
283
284 cyc2ns_write_end(cpu, data);
285
286 done:
287 sched_clock_idle_wakeup_event(0);
288 local_irq_restore(flags);
289 }
290 /*
291 * Scheduler clock - returns current time in nanosec units.
292 */
293 u64 native_sched_clock(void)
294 {
295 if (static_branch_likely(&__use_tsc)) {
296 u64 tsc_now = rdtsc();
297
298 /* return the value in ns */
299 return cycles_2_ns(tsc_now);
300 }
301
302 /*
303 * Fall back to jiffies if there's no TSC available:
304 * ( But note that we still use it if the TSC is marked
305 * unstable. We do this because unlike Time Of Day,
306 * the scheduler clock tolerates small errors and it's
307 * very important for it to be as fast as the platform
308 * can achieve it. )
309 */
310
311 /* No locking but a rare wrong value is not a big deal: */
312 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
313 }
314
315 /*
316 * Generate a sched_clock if you already have a TSC value.
317 */
318 u64 native_sched_clock_from_tsc(u64 tsc)
319 {
320 return cycles_2_ns(tsc);
321 }
322
323 /* We need to define a real function for sched_clock, to override the
324 weak default version */
325 #ifdef CONFIG_PARAVIRT
326 unsigned long long sched_clock(void)
327 {
328 return paravirt_sched_clock();
329 }
330
331 bool using_native_sched_clock(void)
332 {
333 return pv_time_ops.sched_clock == native_sched_clock;
334 }
335 #else
336 unsigned long long
337 sched_clock(void) __attribute__((alias("native_sched_clock")));
338
339 bool using_native_sched_clock(void) { return true; }
340 #endif
341
342 int check_tsc_unstable(void)
343 {
344 return tsc_unstable;
345 }
346 EXPORT_SYMBOL_GPL(check_tsc_unstable);
347
348 #ifdef CONFIG_X86_TSC
349 int __init notsc_setup(char *str)
350 {
351 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
352 tsc_disabled = 1;
353 return 1;
354 }
355 #else
356 /*
357 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
358 * in cpu/common.c
359 */
360 int __init notsc_setup(char *str)
361 {
362 setup_clear_cpu_cap(X86_FEATURE_TSC);
363 return 1;
364 }
365 #endif
366
367 __setup("notsc", notsc_setup);
368
369 static int no_sched_irq_time;
370
371 static int __init tsc_setup(char *str)
372 {
373 if (!strcmp(str, "reliable"))
374 tsc_clocksource_reliable = 1;
375 if (!strncmp(str, "noirqtime", 9))
376 no_sched_irq_time = 1;
377 return 1;
378 }
379
380 __setup("tsc=", tsc_setup);
381
382 #define MAX_RETRIES 5
383 #define SMI_TRESHOLD 50000
384
385 /*
386 * Read TSC and the reference counters. Take care of SMI disturbance
387 */
388 static u64 tsc_read_refs(u64 *p, int hpet)
389 {
390 u64 t1, t2;
391 int i;
392
393 for (i = 0; i < MAX_RETRIES; i++) {
394 t1 = get_cycles();
395 if (hpet)
396 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
397 else
398 *p = acpi_pm_read_early();
399 t2 = get_cycles();
400 if ((t2 - t1) < SMI_TRESHOLD)
401 return t2;
402 }
403 return ULLONG_MAX;
404 }
405
406 /*
407 * Calculate the TSC frequency from HPET reference
408 */
409 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
410 {
411 u64 tmp;
412
413 if (hpet2 < hpet1)
414 hpet2 += 0x100000000ULL;
415 hpet2 -= hpet1;
416 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
417 do_div(tmp, 1000000);
418 do_div(deltatsc, tmp);
419
420 return (unsigned long) deltatsc;
421 }
422
423 /*
424 * Calculate the TSC frequency from PMTimer reference
425 */
426 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
427 {
428 u64 tmp;
429
430 if (!pm1 && !pm2)
431 return ULONG_MAX;
432
433 if (pm2 < pm1)
434 pm2 += (u64)ACPI_PM_OVRRUN;
435 pm2 -= pm1;
436 tmp = pm2 * 1000000000LL;
437 do_div(tmp, PMTMR_TICKS_PER_SEC);
438 do_div(deltatsc, tmp);
439
440 return (unsigned long) deltatsc;
441 }
442
443 #define CAL_MS 10
444 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
445 #define CAL_PIT_LOOPS 1000
446
447 #define CAL2_MS 50
448 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
449 #define CAL2_PIT_LOOPS 5000
450
451
452 /*
453 * Try to calibrate the TSC against the Programmable
454 * Interrupt Timer and return the frequency of the TSC
455 * in kHz.
456 *
457 * Return ULONG_MAX on failure to calibrate.
458 */
459 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
460 {
461 u64 tsc, t1, t2, delta;
462 unsigned long tscmin, tscmax;
463 int pitcnt;
464
465 /* Set the Gate high, disable speaker */
466 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
467
468 /*
469 * Setup CTC channel 2* for mode 0, (interrupt on terminal
470 * count mode), binary count. Set the latch register to 50ms
471 * (LSB then MSB) to begin countdown.
472 */
473 outb(0xb0, 0x43);
474 outb(latch & 0xff, 0x42);
475 outb(latch >> 8, 0x42);
476
477 tsc = t1 = t2 = get_cycles();
478
479 pitcnt = 0;
480 tscmax = 0;
481 tscmin = ULONG_MAX;
482 while ((inb(0x61) & 0x20) == 0) {
483 t2 = get_cycles();
484 delta = t2 - tsc;
485 tsc = t2;
486 if ((unsigned long) delta < tscmin)
487 tscmin = (unsigned int) delta;
488 if ((unsigned long) delta > tscmax)
489 tscmax = (unsigned int) delta;
490 pitcnt++;
491 }
492
493 /*
494 * Sanity checks:
495 *
496 * If we were not able to read the PIT more than loopmin
497 * times, then we have been hit by a massive SMI
498 *
499 * If the maximum is 10 times larger than the minimum,
500 * then we got hit by an SMI as well.
501 */
502 if (pitcnt < loopmin || tscmax > 10 * tscmin)
503 return ULONG_MAX;
504
505 /* Calculate the PIT value */
506 delta = t2 - t1;
507 do_div(delta, ms);
508 return delta;
509 }
510
511 /*
512 * This reads the current MSB of the PIT counter, and
513 * checks if we are running on sufficiently fast and
514 * non-virtualized hardware.
515 *
516 * Our expectations are:
517 *
518 * - the PIT is running at roughly 1.19MHz
519 *
520 * - each IO is going to take about 1us on real hardware,
521 * but we allow it to be much faster (by a factor of 10) or
522 * _slightly_ slower (ie we allow up to a 2us read+counter
523 * update - anything else implies a unacceptably slow CPU
524 * or PIT for the fast calibration to work.
525 *
526 * - with 256 PIT ticks to read the value, we have 214us to
527 * see the same MSB (and overhead like doing a single TSC
528 * read per MSB value etc).
529 *
530 * - We're doing 2 reads per loop (LSB, MSB), and we expect
531 * them each to take about a microsecond on real hardware.
532 * So we expect a count value of around 100. But we'll be
533 * generous, and accept anything over 50.
534 *
535 * - if the PIT is stuck, and we see *many* more reads, we
536 * return early (and the next caller of pit_expect_msb()
537 * then consider it a failure when they don't see the
538 * next expected value).
539 *
540 * These expectations mean that we know that we have seen the
541 * transition from one expected value to another with a fairly
542 * high accuracy, and we didn't miss any events. We can thus
543 * use the TSC value at the transitions to calculate a pretty
544 * good value for the TSC frequencty.
545 */
546 static inline int pit_verify_msb(unsigned char val)
547 {
548 /* Ignore LSB */
549 inb(0x42);
550 return inb(0x42) == val;
551 }
552
553 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
554 {
555 int count;
556 u64 tsc = 0, prev_tsc = 0;
557
558 for (count = 0; count < 50000; count++) {
559 if (!pit_verify_msb(val))
560 break;
561 prev_tsc = tsc;
562 tsc = get_cycles();
563 }
564 *deltap = get_cycles() - prev_tsc;
565 *tscp = tsc;
566
567 /*
568 * We require _some_ success, but the quality control
569 * will be based on the error terms on the TSC values.
570 */
571 return count > 5;
572 }
573
574 /*
575 * How many MSB values do we want to see? We aim for
576 * a maximum error rate of 500ppm (in practice the
577 * real error is much smaller), but refuse to spend
578 * more than 50ms on it.
579 */
580 #define MAX_QUICK_PIT_MS 50
581 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
582
583 static unsigned long quick_pit_calibrate(void)
584 {
585 int i;
586 u64 tsc, delta;
587 unsigned long d1, d2;
588
589 /* Set the Gate high, disable speaker */
590 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
591
592 /*
593 * Counter 2, mode 0 (one-shot), binary count
594 *
595 * NOTE! Mode 2 decrements by two (and then the
596 * output is flipped each time, giving the same
597 * final output frequency as a decrement-by-one),
598 * so mode 0 is much better when looking at the
599 * individual counts.
600 */
601 outb(0xb0, 0x43);
602
603 /* Start at 0xffff */
604 outb(0xff, 0x42);
605 outb(0xff, 0x42);
606
607 /*
608 * The PIT starts counting at the next edge, so we
609 * need to delay for a microsecond. The easiest way
610 * to do that is to just read back the 16-bit counter
611 * once from the PIT.
612 */
613 pit_verify_msb(0);
614
615 if (pit_expect_msb(0xff, &tsc, &d1)) {
616 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
617 if (!pit_expect_msb(0xff-i, &delta, &d2))
618 break;
619
620 delta -= tsc;
621
622 /*
623 * Extrapolate the error and fail fast if the error will
624 * never be below 500 ppm.
625 */
626 if (i == 1 &&
627 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
628 return 0;
629
630 /*
631 * Iterate until the error is less than 500 ppm
632 */
633 if (d1+d2 >= delta >> 11)
634 continue;
635
636 /*
637 * Check the PIT one more time to verify that
638 * all TSC reads were stable wrt the PIT.
639 *
640 * This also guarantees serialization of the
641 * last cycle read ('d2') in pit_expect_msb.
642 */
643 if (!pit_verify_msb(0xfe - i))
644 break;
645 goto success;
646 }
647 }
648 pr_info("Fast TSC calibration failed\n");
649 return 0;
650
651 success:
652 /*
653 * Ok, if we get here, then we've seen the
654 * MSB of the PIT decrement 'i' times, and the
655 * error has shrunk to less than 500 ppm.
656 *
657 * As a result, we can depend on there not being
658 * any odd delays anywhere, and the TSC reads are
659 * reliable (within the error).
660 *
661 * kHz = ticks / time-in-seconds / 1000;
662 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
663 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
664 */
665 delta *= PIT_TICK_RATE;
666 do_div(delta, i*256*1000);
667 pr_info("Fast TSC calibration using PIT\n");
668 return delta;
669 }
670
671 /**
672 * native_calibrate_tsc
673 * Determine TSC frequency via CPUID, else return 0.
674 */
675 unsigned long native_calibrate_tsc(void)
676 {
677 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
678 unsigned int crystal_khz;
679
680 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
681 return 0;
682
683 if (boot_cpu_data.cpuid_level < 0x15)
684 return 0;
685
686 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
687
688 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
689 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
690
691 if (ebx_numerator == 0 || eax_denominator == 0)
692 return 0;
693
694 crystal_khz = ecx_hz / 1000;
695
696 if (crystal_khz == 0) {
697 switch (boot_cpu_data.x86_model) {
698 case INTEL_FAM6_SKYLAKE_MOBILE:
699 case INTEL_FAM6_SKYLAKE_DESKTOP:
700 case INTEL_FAM6_KABYLAKE_MOBILE:
701 case INTEL_FAM6_KABYLAKE_DESKTOP:
702 crystal_khz = 24000; /* 24.0 MHz */
703 break;
704 case INTEL_FAM6_SKYLAKE_X:
705 case INTEL_FAM6_ATOM_DENVERTON:
706 crystal_khz = 25000; /* 25.0 MHz */
707 break;
708 case INTEL_FAM6_ATOM_GOLDMONT:
709 crystal_khz = 19200; /* 19.2 MHz */
710 break;
711 }
712 }
713
714 /*
715 * TSC frequency determined by CPUID is a "hardware reported"
716 * frequency and is the most accurate one so far we have. This
717 * is considered a known frequency.
718 */
719 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
720
721 /*
722 * For Atom SoCs TSC is the only reliable clocksource.
723 * Mark TSC reliable so no watchdog on it.
724 */
725 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
726 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
727
728 return crystal_khz * ebx_numerator / eax_denominator;
729 }
730
731 static unsigned long cpu_khz_from_cpuid(void)
732 {
733 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
734
735 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
736 return 0;
737
738 if (boot_cpu_data.cpuid_level < 0x16)
739 return 0;
740
741 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
742
743 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
744
745 return eax_base_mhz * 1000;
746 }
747
748 /**
749 * native_calibrate_cpu - calibrate the cpu on boot
750 */
751 unsigned long native_calibrate_cpu(void)
752 {
753 u64 tsc1, tsc2, delta, ref1, ref2;
754 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
755 unsigned long flags, latch, ms, fast_calibrate;
756 int hpet = is_hpet_enabled(), i, loopmin;
757
758 fast_calibrate = cpu_khz_from_cpuid();
759 if (fast_calibrate)
760 return fast_calibrate;
761
762 fast_calibrate = cpu_khz_from_msr();
763 if (fast_calibrate)
764 return fast_calibrate;
765
766 local_irq_save(flags);
767 fast_calibrate = quick_pit_calibrate();
768 local_irq_restore(flags);
769 if (fast_calibrate)
770 return fast_calibrate;
771
772 /*
773 * Run 5 calibration loops to get the lowest frequency value
774 * (the best estimate). We use two different calibration modes
775 * here:
776 *
777 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
778 * load a timeout of 50ms. We read the time right after we
779 * started the timer and wait until the PIT count down reaches
780 * zero. In each wait loop iteration we read the TSC and check
781 * the delta to the previous read. We keep track of the min
782 * and max values of that delta. The delta is mostly defined
783 * by the IO time of the PIT access, so we can detect when a
784 * SMI/SMM disturbance happened between the two reads. If the
785 * maximum time is significantly larger than the minimum time,
786 * then we discard the result and have another try.
787 *
788 * 2) Reference counter. If available we use the HPET or the
789 * PMTIMER as a reference to check the sanity of that value.
790 * We use separate TSC readouts and check inside of the
791 * reference read for a SMI/SMM disturbance. We dicard
792 * disturbed values here as well. We do that around the PIT
793 * calibration delay loop as we have to wait for a certain
794 * amount of time anyway.
795 */
796
797 /* Preset PIT loop values */
798 latch = CAL_LATCH;
799 ms = CAL_MS;
800 loopmin = CAL_PIT_LOOPS;
801
802 for (i = 0; i < 3; i++) {
803 unsigned long tsc_pit_khz;
804
805 /*
806 * Read the start value and the reference count of
807 * hpet/pmtimer when available. Then do the PIT
808 * calibration, which will take at least 50ms, and
809 * read the end value.
810 */
811 local_irq_save(flags);
812 tsc1 = tsc_read_refs(&ref1, hpet);
813 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
814 tsc2 = tsc_read_refs(&ref2, hpet);
815 local_irq_restore(flags);
816
817 /* Pick the lowest PIT TSC calibration so far */
818 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
819
820 /* hpet or pmtimer available ? */
821 if (ref1 == ref2)
822 continue;
823
824 /* Check, whether the sampling was disturbed by an SMI */
825 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
826 continue;
827
828 tsc2 = (tsc2 - tsc1) * 1000000LL;
829 if (hpet)
830 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
831 else
832 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
833
834 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
835
836 /* Check the reference deviation */
837 delta = ((u64) tsc_pit_min) * 100;
838 do_div(delta, tsc_ref_min);
839
840 /*
841 * If both calibration results are inside a 10% window
842 * then we can be sure, that the calibration
843 * succeeded. We break out of the loop right away. We
844 * use the reference value, as it is more precise.
845 */
846 if (delta >= 90 && delta <= 110) {
847 pr_info("PIT calibration matches %s. %d loops\n",
848 hpet ? "HPET" : "PMTIMER", i + 1);
849 return tsc_ref_min;
850 }
851
852 /*
853 * Check whether PIT failed more than once. This
854 * happens in virtualized environments. We need to
855 * give the virtual PC a slightly longer timeframe for
856 * the HPET/PMTIMER to make the result precise.
857 */
858 if (i == 1 && tsc_pit_min == ULONG_MAX) {
859 latch = CAL2_LATCH;
860 ms = CAL2_MS;
861 loopmin = CAL2_PIT_LOOPS;
862 }
863 }
864
865 /*
866 * Now check the results.
867 */
868 if (tsc_pit_min == ULONG_MAX) {
869 /* PIT gave no useful value */
870 pr_warn("Unable to calibrate against PIT\n");
871
872 /* We don't have an alternative source, disable TSC */
873 if (!hpet && !ref1 && !ref2) {
874 pr_notice("No reference (HPET/PMTIMER) available\n");
875 return 0;
876 }
877
878 /* The alternative source failed as well, disable TSC */
879 if (tsc_ref_min == ULONG_MAX) {
880 pr_warn("HPET/PMTIMER calibration failed\n");
881 return 0;
882 }
883
884 /* Use the alternative source */
885 pr_info("using %s reference calibration\n",
886 hpet ? "HPET" : "PMTIMER");
887
888 return tsc_ref_min;
889 }
890
891 /* We don't have an alternative source, use the PIT calibration value */
892 if (!hpet && !ref1 && !ref2) {
893 pr_info("Using PIT calibration value\n");
894 return tsc_pit_min;
895 }
896
897 /* The alternative source failed, use the PIT calibration value */
898 if (tsc_ref_min == ULONG_MAX) {
899 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
900 return tsc_pit_min;
901 }
902
903 /*
904 * The calibration values differ too much. In doubt, we use
905 * the PIT value as we know that there are PMTIMERs around
906 * running at double speed. At least we let the user know:
907 */
908 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
909 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
910 pr_info("Using PIT calibration value\n");
911 return tsc_pit_min;
912 }
913
914 int recalibrate_cpu_khz(void)
915 {
916 #ifndef CONFIG_SMP
917 unsigned long cpu_khz_old = cpu_khz;
918
919 if (!boot_cpu_has(X86_FEATURE_TSC))
920 return -ENODEV;
921
922 cpu_khz = x86_platform.calibrate_cpu();
923 tsc_khz = x86_platform.calibrate_tsc();
924 if (tsc_khz == 0)
925 tsc_khz = cpu_khz;
926 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
927 cpu_khz = tsc_khz;
928 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
929 cpu_khz_old, cpu_khz);
930
931 return 0;
932 #else
933 return -ENODEV;
934 #endif
935 }
936
937 EXPORT_SYMBOL(recalibrate_cpu_khz);
938
939
940 static unsigned long long cyc2ns_suspend;
941
942 void tsc_save_sched_clock_state(void)
943 {
944 if (!sched_clock_stable())
945 return;
946
947 cyc2ns_suspend = sched_clock();
948 }
949
950 /*
951 * Even on processors with invariant TSC, TSC gets reset in some the
952 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
953 * arbitrary value (still sync'd across cpu's) during resume from such sleep
954 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
955 * that sched_clock() continues from the point where it was left off during
956 * suspend.
957 */
958 void tsc_restore_sched_clock_state(void)
959 {
960 unsigned long long offset;
961 unsigned long flags;
962 int cpu;
963
964 if (!sched_clock_stable())
965 return;
966
967 local_irq_save(flags);
968
969 /*
970 * We're coming out of suspend, there's no concurrency yet; don't
971 * bother being nice about the RCU stuff, just write to both
972 * data fields.
973 */
974
975 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
976 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
977
978 offset = cyc2ns_suspend - sched_clock();
979
980 for_each_possible_cpu(cpu) {
981 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
982 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
983 }
984
985 local_irq_restore(flags);
986 }
987
988 #ifdef CONFIG_CPU_FREQ
989
990 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
991 * changes.
992 *
993 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
994 * not that important because current Opteron setups do not support
995 * scaling on SMP anyroads.
996 *
997 * Should fix up last_tsc too. Currently gettimeofday in the
998 * first tick after the change will be slightly wrong.
999 */
1000
1001 static unsigned int ref_freq;
1002 static unsigned long loops_per_jiffy_ref;
1003 static unsigned long tsc_khz_ref;
1004
1005 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
1006 void *data)
1007 {
1008 struct cpufreq_freqs *freq = data;
1009 unsigned long *lpj;
1010
1011 lpj = &boot_cpu_data.loops_per_jiffy;
1012 #ifdef CONFIG_SMP
1013 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1014 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
1015 #endif
1016
1017 if (!ref_freq) {
1018 ref_freq = freq->old;
1019 loops_per_jiffy_ref = *lpj;
1020 tsc_khz_ref = tsc_khz;
1021 }
1022 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
1023 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1024 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1025
1026 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1027 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1028 mark_tsc_unstable("cpufreq changes");
1029
1030 set_cyc2ns_scale(tsc_khz, freq->cpu);
1031 }
1032
1033 return 0;
1034 }
1035
1036 static struct notifier_block time_cpufreq_notifier_block = {
1037 .notifier_call = time_cpufreq_notifier
1038 };
1039
1040 static int __init cpufreq_register_tsc_scaling(void)
1041 {
1042 if (!boot_cpu_has(X86_FEATURE_TSC))
1043 return 0;
1044 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1045 return 0;
1046 cpufreq_register_notifier(&time_cpufreq_notifier_block,
1047 CPUFREQ_TRANSITION_NOTIFIER);
1048 return 0;
1049 }
1050
1051 core_initcall(cpufreq_register_tsc_scaling);
1052
1053 #endif /* CONFIG_CPU_FREQ */
1054
1055 #define ART_CPUID_LEAF (0x15)
1056 #define ART_MIN_DENOMINATOR (1)
1057
1058
1059 /*
1060 * If ART is present detect the numerator:denominator to convert to TSC
1061 */
1062 static void detect_art(void)
1063 {
1064 unsigned int unused[2];
1065
1066 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1067 return;
1068
1069 /* Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required */
1070 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1071 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1072 !boot_cpu_has(X86_FEATURE_TSC_ADJUST))
1073 return;
1074
1075 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1076 &art_to_tsc_numerator, unused, unused+1);
1077
1078 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1079 return;
1080
1081 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1082
1083 /* Make this sticky over multiple CPU init calls */
1084 setup_force_cpu_cap(X86_FEATURE_ART);
1085 }
1086
1087
1088 /* clocksource code */
1089
1090 static struct clocksource clocksource_tsc;
1091
1092 static void tsc_resume(struct clocksource *cs)
1093 {
1094 tsc_verify_tsc_adjust(true);
1095 }
1096
1097 /*
1098 * We used to compare the TSC to the cycle_last value in the clocksource
1099 * structure to avoid a nasty time-warp. This can be observed in a
1100 * very small window right after one CPU updated cycle_last under
1101 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1102 * is smaller than the cycle_last reference value due to a TSC which
1103 * is slighty behind. This delta is nowhere else observable, but in
1104 * that case it results in a forward time jump in the range of hours
1105 * due to the unsigned delta calculation of the time keeping core
1106 * code, which is necessary to support wrapping clocksources like pm
1107 * timer.
1108 *
1109 * This sanity check is now done in the core timekeeping code.
1110 * checking the result of read_tsc() - cycle_last for being negative.
1111 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1112 */
1113 static u64 read_tsc(struct clocksource *cs)
1114 {
1115 return (u64)rdtsc_ordered();
1116 }
1117
1118 static void tsc_cs_mark_unstable(struct clocksource *cs)
1119 {
1120 if (tsc_unstable)
1121 return;
1122
1123 tsc_unstable = 1;
1124 if (using_native_sched_clock())
1125 clear_sched_clock_stable();
1126 disable_sched_clock_irqtime();
1127 pr_info("Marking TSC unstable due to clocksource watchdog\n");
1128 }
1129
1130 /*
1131 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1132 */
1133 static struct clocksource clocksource_tsc = {
1134 .name = "tsc",
1135 .rating = 300,
1136 .read = read_tsc,
1137 .mask = CLOCKSOURCE_MASK(64),
1138 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1139 CLOCK_SOURCE_MUST_VERIFY,
1140 .archdata = { .vclock_mode = VCLOCK_TSC },
1141 .resume = tsc_resume,
1142 .mark_unstable = tsc_cs_mark_unstable,
1143 };
1144
1145 void mark_tsc_unstable(char *reason)
1146 {
1147 if (tsc_unstable)
1148 return;
1149
1150 tsc_unstable = 1;
1151 if (using_native_sched_clock())
1152 clear_sched_clock_stable();
1153 disable_sched_clock_irqtime();
1154 pr_info("Marking TSC unstable due to %s\n", reason);
1155 /* Change only the rating, when not registered */
1156 if (clocksource_tsc.mult) {
1157 clocksource_mark_unstable(&clocksource_tsc);
1158 } else {
1159 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1160 clocksource_tsc.rating = 0;
1161 }
1162 }
1163
1164 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1165
1166 static void __init check_system_tsc_reliable(void)
1167 {
1168 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1169 if (is_geode_lx()) {
1170 /* RTSC counts during suspend */
1171 #define RTSC_SUSP 0x100
1172 unsigned long res_low, res_high;
1173
1174 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1175 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1176 if (res_low & RTSC_SUSP)
1177 tsc_clocksource_reliable = 1;
1178 }
1179 #endif
1180 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1181 tsc_clocksource_reliable = 1;
1182 }
1183
1184 /*
1185 * Make an educated guess if the TSC is trustworthy and synchronized
1186 * over all CPUs.
1187 */
1188 int unsynchronized_tsc(void)
1189 {
1190 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1191 return 1;
1192
1193 #ifdef CONFIG_SMP
1194 if (apic_is_clustered_box())
1195 return 1;
1196 #endif
1197
1198 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1199 return 0;
1200
1201 if (tsc_clocksource_reliable)
1202 return 0;
1203 /*
1204 * Intel systems are normally all synchronized.
1205 * Exceptions must mark TSC as unstable:
1206 */
1207 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1208 /* assume multi socket systems are not synchronized: */
1209 if (num_possible_cpus() > 1)
1210 return 1;
1211 }
1212
1213 return 0;
1214 }
1215
1216 /*
1217 * Convert ART to TSC given numerator/denominator found in detect_art()
1218 */
1219 struct system_counterval_t convert_art_to_tsc(u64 art)
1220 {
1221 u64 tmp, res, rem;
1222
1223 rem = do_div(art, art_to_tsc_denominator);
1224
1225 res = art * art_to_tsc_numerator;
1226 tmp = rem * art_to_tsc_numerator;
1227
1228 do_div(tmp, art_to_tsc_denominator);
1229 res += tmp + art_to_tsc_offset;
1230
1231 return (struct system_counterval_t) {.cs = art_related_clocksource,
1232 .cycles = res};
1233 }
1234 EXPORT_SYMBOL(convert_art_to_tsc);
1235
1236 static void tsc_refine_calibration_work(struct work_struct *work);
1237 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1238 /**
1239 * tsc_refine_calibration_work - Further refine tsc freq calibration
1240 * @work - ignored.
1241 *
1242 * This functions uses delayed work over a period of a
1243 * second to further refine the TSC freq value. Since this is
1244 * timer based, instead of loop based, we don't block the boot
1245 * process while this longer calibration is done.
1246 *
1247 * If there are any calibration anomalies (too many SMIs, etc),
1248 * or the refined calibration is off by 1% of the fast early
1249 * calibration, we throw out the new calibration and use the
1250 * early calibration.
1251 */
1252 static void tsc_refine_calibration_work(struct work_struct *work)
1253 {
1254 static u64 tsc_start = -1, ref_start;
1255 static int hpet;
1256 u64 tsc_stop, ref_stop, delta;
1257 unsigned long freq;
1258
1259 /* Don't bother refining TSC on unstable systems */
1260 if (check_tsc_unstable())
1261 goto out;
1262
1263 /*
1264 * Since the work is started early in boot, we may be
1265 * delayed the first time we expire. So set the workqueue
1266 * again once we know timers are working.
1267 */
1268 if (tsc_start == -1) {
1269 /*
1270 * Only set hpet once, to avoid mixing hardware
1271 * if the hpet becomes enabled later.
1272 */
1273 hpet = is_hpet_enabled();
1274 schedule_delayed_work(&tsc_irqwork, HZ);
1275 tsc_start = tsc_read_refs(&ref_start, hpet);
1276 return;
1277 }
1278
1279 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1280
1281 /* hpet or pmtimer available ? */
1282 if (ref_start == ref_stop)
1283 goto out;
1284
1285 /* Check, whether the sampling was disturbed by an SMI */
1286 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1287 goto out;
1288
1289 delta = tsc_stop - tsc_start;
1290 delta *= 1000000LL;
1291 if (hpet)
1292 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1293 else
1294 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1295
1296 /* Make sure we're within 1% */
1297 if (abs(tsc_khz - freq) > tsc_khz/100)
1298 goto out;
1299
1300 tsc_khz = freq;
1301 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1302 (unsigned long)tsc_khz / 1000,
1303 (unsigned long)tsc_khz % 1000);
1304
1305 /* Inform the TSC deadline clockevent devices about the recalibration */
1306 lapic_update_tsc_freq();
1307
1308 out:
1309 if (boot_cpu_has(X86_FEATURE_ART))
1310 art_related_clocksource = &clocksource_tsc;
1311 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1312 }
1313
1314
1315 static int __init init_tsc_clocksource(void)
1316 {
1317 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1318 return 0;
1319
1320 if (tsc_clocksource_reliable)
1321 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1322 /* lower the rating if we already know its unstable: */
1323 if (check_tsc_unstable()) {
1324 clocksource_tsc.rating = 0;
1325 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1326 }
1327
1328 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1329 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1330
1331 /*
1332 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1333 * the refined calibration and directly register it as a clocksource.
1334 */
1335 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1336 if (boot_cpu_has(X86_FEATURE_ART))
1337 art_related_clocksource = &clocksource_tsc;
1338 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1339 return 0;
1340 }
1341
1342 schedule_delayed_work(&tsc_irqwork, 0);
1343 return 0;
1344 }
1345 /*
1346 * We use device_initcall here, to ensure we run after the hpet
1347 * is fully initialized, which may occur at fs_initcall time.
1348 */
1349 device_initcall(init_tsc_clocksource);
1350
1351 void __init tsc_init(void)
1352 {
1353 u64 lpj;
1354 int cpu;
1355
1356 if (!boot_cpu_has(X86_FEATURE_TSC)) {
1357 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1358 return;
1359 }
1360
1361 cpu_khz = x86_platform.calibrate_cpu();
1362 tsc_khz = x86_platform.calibrate_tsc();
1363
1364 /*
1365 * Trust non-zero tsc_khz as authorative,
1366 * and use it to sanity check cpu_khz,
1367 * which will be off if system timer is off.
1368 */
1369 if (tsc_khz == 0)
1370 tsc_khz = cpu_khz;
1371 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1372 cpu_khz = tsc_khz;
1373
1374 if (!tsc_khz) {
1375 mark_tsc_unstable("could not calculate TSC khz");
1376 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1377 return;
1378 }
1379
1380 pr_info("Detected %lu.%03lu MHz processor\n",
1381 (unsigned long)cpu_khz / 1000,
1382 (unsigned long)cpu_khz % 1000);
1383
1384 /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1385 tsc_store_and_check_tsc_adjust(true);
1386
1387 /*
1388 * Secondary CPUs do not run through tsc_init(), so set up
1389 * all the scale factors for all CPUs, assuming the same
1390 * speed as the bootup CPU. (cpufreq notifiers will fix this
1391 * up if their speed diverges)
1392 */
1393 for_each_possible_cpu(cpu) {
1394 cyc2ns_init(cpu);
1395 set_cyc2ns_scale(tsc_khz, cpu);
1396 }
1397
1398 if (tsc_disabled > 0)
1399 return;
1400
1401 /* now allow native_sched_clock() to use rdtsc */
1402
1403 tsc_disabled = 0;
1404 static_branch_enable(&__use_tsc);
1405
1406 if (!no_sched_irq_time)
1407 enable_sched_clock_irqtime();
1408
1409 lpj = ((u64)tsc_khz * 1000);
1410 do_div(lpj, HZ);
1411 lpj_fine = lpj;
1412
1413 use_tsc_delay();
1414
1415 if (unsynchronized_tsc())
1416 mark_tsc_unstable("TSCs unsynchronized");
1417
1418 check_system_tsc_reliable();
1419
1420 detect_art();
1421 }
1422
1423 #ifdef CONFIG_SMP
1424 /*
1425 * If we have a constant TSC and are using the TSC for the delay loop,
1426 * we can skip clock calibration if another cpu in the same socket has already
1427 * been calibrated. This assumes that CONSTANT_TSC applies to all
1428 * cpus in the socket - this should be a safe assumption.
1429 */
1430 unsigned long calibrate_delay_is_known(void)
1431 {
1432 int sibling, cpu = smp_processor_id();
1433 struct cpumask *mask = topology_core_cpumask(cpu);
1434
1435 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1436 return 0;
1437
1438 if (!mask)
1439 return 0;
1440
1441 sibling = cpumask_any_but(mask, cpu);
1442 if (sibling < nr_cpu_ids)
1443 return cpu_data(sibling).loops_per_jiffy;
1444 return 0;
1445 }
1446 #endif