]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/tsc.c
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / tsc.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/init.h>
6 #include <linux/module.h>
7 #include <linux/timer.h>
8 #include <linux/acpi_pmtmr.h>
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/clocksource.h>
12 #include <linux/percpu.h>
13 #include <linux/timex.h>
14
15 #include <asm/hpet.h>
16 #include <asm/timer.h>
17 #include <asm/vgtod.h>
18 #include <asm/time.h>
19 #include <asm/delay.h>
20 #include <asm/hypervisor.h>
21 #include <asm/nmi.h>
22 #include <asm/x86_init.h>
23
24 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
25 EXPORT_SYMBOL(cpu_khz);
26
27 unsigned int __read_mostly tsc_khz;
28 EXPORT_SYMBOL(tsc_khz);
29
30 /*
31 * TSC can be unstable due to cpufreq or due to unsynced TSCs
32 */
33 static int __read_mostly tsc_unstable;
34
35 /* native_sched_clock() is called before tsc_init(), so
36 we must start with the TSC soft disabled to prevent
37 erroneous rdtsc usage on !cpu_has_tsc processors */
38 static int __read_mostly tsc_disabled = -1;
39
40 int tsc_clocksource_reliable;
41 /*
42 * Scheduler clock - returns current time in nanosec units.
43 */
44 u64 native_sched_clock(void)
45 {
46 u64 this_offset;
47
48 /*
49 * Fall back to jiffies if there's no TSC available:
50 * ( But note that we still use it if the TSC is marked
51 * unstable. We do this because unlike Time Of Day,
52 * the scheduler clock tolerates small errors and it's
53 * very important for it to be as fast as the platform
54 * can achieve it. )
55 */
56 if (unlikely(tsc_disabled)) {
57 /* No locking but a rare wrong value is not a big deal: */
58 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
59 }
60
61 /* read the Time Stamp Counter: */
62 rdtscll(this_offset);
63
64 /* return the value in ns */
65 return __cycles_2_ns(this_offset);
66 }
67
68 /* We need to define a real function for sched_clock, to override the
69 weak default version */
70 #ifdef CONFIG_PARAVIRT
71 unsigned long long sched_clock(void)
72 {
73 return paravirt_sched_clock();
74 }
75 #else
76 unsigned long long
77 sched_clock(void) __attribute__((alias("native_sched_clock")));
78 #endif
79
80 unsigned long long native_read_tsc(void)
81 {
82 return __native_read_tsc();
83 }
84 EXPORT_SYMBOL(native_read_tsc);
85
86 int check_tsc_unstable(void)
87 {
88 return tsc_unstable;
89 }
90 EXPORT_SYMBOL_GPL(check_tsc_unstable);
91
92 int check_tsc_disabled(void)
93 {
94 return tsc_disabled;
95 }
96 EXPORT_SYMBOL_GPL(check_tsc_disabled);
97
98 #ifdef CONFIG_X86_TSC
99 int __init notsc_setup(char *str)
100 {
101 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
102 tsc_disabled = 1;
103 return 1;
104 }
105 #else
106 /*
107 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
108 * in cpu/common.c
109 */
110 int __init notsc_setup(char *str)
111 {
112 setup_clear_cpu_cap(X86_FEATURE_TSC);
113 return 1;
114 }
115 #endif
116
117 __setup("notsc", notsc_setup);
118
119 static int no_sched_irq_time;
120
121 static int __init tsc_setup(char *str)
122 {
123 if (!strcmp(str, "reliable"))
124 tsc_clocksource_reliable = 1;
125 if (!strncmp(str, "noirqtime", 9))
126 no_sched_irq_time = 1;
127 return 1;
128 }
129
130 __setup("tsc=", tsc_setup);
131
132 #define MAX_RETRIES 5
133 #define SMI_TRESHOLD 50000
134
135 /*
136 * Read TSC and the reference counters. Take care of SMI disturbance
137 */
138 static u64 tsc_read_refs(u64 *p, int hpet)
139 {
140 u64 t1, t2;
141 int i;
142
143 for (i = 0; i < MAX_RETRIES; i++) {
144 t1 = get_cycles();
145 if (hpet)
146 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
147 else
148 *p = acpi_pm_read_early();
149 t2 = get_cycles();
150 if ((t2 - t1) < SMI_TRESHOLD)
151 return t2;
152 }
153 return ULLONG_MAX;
154 }
155
156 /*
157 * Calculate the TSC frequency from HPET reference
158 */
159 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
160 {
161 u64 tmp;
162
163 if (hpet2 < hpet1)
164 hpet2 += 0x100000000ULL;
165 hpet2 -= hpet1;
166 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
167 do_div(tmp, 1000000);
168 do_div(deltatsc, tmp);
169
170 return (unsigned long) deltatsc;
171 }
172
173 /*
174 * Calculate the TSC frequency from PMTimer reference
175 */
176 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
177 {
178 u64 tmp;
179
180 if (!pm1 && !pm2)
181 return ULONG_MAX;
182
183 if (pm2 < pm1)
184 pm2 += (u64)ACPI_PM_OVRRUN;
185 pm2 -= pm1;
186 tmp = pm2 * 1000000000LL;
187 do_div(tmp, PMTMR_TICKS_PER_SEC);
188 do_div(deltatsc, tmp);
189
190 return (unsigned long) deltatsc;
191 }
192
193 #define CAL_MS 10
194 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
195 #define CAL_PIT_LOOPS 1000
196
197 #define CAL2_MS 50
198 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
199 #define CAL2_PIT_LOOPS 5000
200
201
202 /*
203 * Try to calibrate the TSC against the Programmable
204 * Interrupt Timer and return the frequency of the TSC
205 * in kHz.
206 *
207 * Return ULONG_MAX on failure to calibrate.
208 */
209 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
210 {
211 u64 tsc, t1, t2, delta;
212 unsigned long tscmin, tscmax;
213 int pitcnt;
214
215 /* Set the Gate high, disable speaker */
216 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
217
218 /*
219 * Setup CTC channel 2* for mode 0, (interrupt on terminal
220 * count mode), binary count. Set the latch register to 50ms
221 * (LSB then MSB) to begin countdown.
222 */
223 outb(0xb0, 0x43);
224 outb(latch & 0xff, 0x42);
225 outb(latch >> 8, 0x42);
226
227 tsc = t1 = t2 = get_cycles();
228
229 pitcnt = 0;
230 tscmax = 0;
231 tscmin = ULONG_MAX;
232 while ((inb(0x61) & 0x20) == 0) {
233 t2 = get_cycles();
234 delta = t2 - tsc;
235 tsc = t2;
236 if ((unsigned long) delta < tscmin)
237 tscmin = (unsigned int) delta;
238 if ((unsigned long) delta > tscmax)
239 tscmax = (unsigned int) delta;
240 pitcnt++;
241 }
242
243 /*
244 * Sanity checks:
245 *
246 * If we were not able to read the PIT more than loopmin
247 * times, then we have been hit by a massive SMI
248 *
249 * If the maximum is 10 times larger than the minimum,
250 * then we got hit by an SMI as well.
251 */
252 if (pitcnt < loopmin || tscmax > 10 * tscmin)
253 return ULONG_MAX;
254
255 /* Calculate the PIT value */
256 delta = t2 - t1;
257 do_div(delta, ms);
258 return delta;
259 }
260
261 /*
262 * This reads the current MSB of the PIT counter, and
263 * checks if we are running on sufficiently fast and
264 * non-virtualized hardware.
265 *
266 * Our expectations are:
267 *
268 * - the PIT is running at roughly 1.19MHz
269 *
270 * - each IO is going to take about 1us on real hardware,
271 * but we allow it to be much faster (by a factor of 10) or
272 * _slightly_ slower (ie we allow up to a 2us read+counter
273 * update - anything else implies a unacceptably slow CPU
274 * or PIT for the fast calibration to work.
275 *
276 * - with 256 PIT ticks to read the value, we have 214us to
277 * see the same MSB (and overhead like doing a single TSC
278 * read per MSB value etc).
279 *
280 * - We're doing 2 reads per loop (LSB, MSB), and we expect
281 * them each to take about a microsecond on real hardware.
282 * So we expect a count value of around 100. But we'll be
283 * generous, and accept anything over 50.
284 *
285 * - if the PIT is stuck, and we see *many* more reads, we
286 * return early (and the next caller of pit_expect_msb()
287 * then consider it a failure when they don't see the
288 * next expected value).
289 *
290 * These expectations mean that we know that we have seen the
291 * transition from one expected value to another with a fairly
292 * high accuracy, and we didn't miss any events. We can thus
293 * use the TSC value at the transitions to calculate a pretty
294 * good value for the TSC frequencty.
295 */
296 static inline int pit_verify_msb(unsigned char val)
297 {
298 /* Ignore LSB */
299 inb(0x42);
300 return inb(0x42) == val;
301 }
302
303 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
304 {
305 int count;
306 u64 tsc = 0, prev_tsc = 0;
307
308 for (count = 0; count < 50000; count++) {
309 if (!pit_verify_msb(val))
310 break;
311 prev_tsc = tsc;
312 tsc = get_cycles();
313 }
314 *deltap = get_cycles() - prev_tsc;
315 *tscp = tsc;
316
317 /*
318 * We require _some_ success, but the quality control
319 * will be based on the error terms on the TSC values.
320 */
321 return count > 5;
322 }
323
324 /*
325 * How many MSB values do we want to see? We aim for
326 * a maximum error rate of 500ppm (in practice the
327 * real error is much smaller), but refuse to spend
328 * more than 50ms on it.
329 */
330 #define MAX_QUICK_PIT_MS 50
331 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
332
333 static unsigned long quick_pit_calibrate(void)
334 {
335 int i;
336 u64 tsc, delta;
337 unsigned long d1, d2;
338
339 /* Set the Gate high, disable speaker */
340 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
341
342 /*
343 * Counter 2, mode 0 (one-shot), binary count
344 *
345 * NOTE! Mode 2 decrements by two (and then the
346 * output is flipped each time, giving the same
347 * final output frequency as a decrement-by-one),
348 * so mode 0 is much better when looking at the
349 * individual counts.
350 */
351 outb(0xb0, 0x43);
352
353 /* Start at 0xffff */
354 outb(0xff, 0x42);
355 outb(0xff, 0x42);
356
357 /*
358 * The PIT starts counting at the next edge, so we
359 * need to delay for a microsecond. The easiest way
360 * to do that is to just read back the 16-bit counter
361 * once from the PIT.
362 */
363 pit_verify_msb(0);
364
365 if (pit_expect_msb(0xff, &tsc, &d1)) {
366 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
367 if (!pit_expect_msb(0xff-i, &delta, &d2))
368 break;
369
370 /*
371 * Iterate until the error is less than 500 ppm
372 */
373 delta -= tsc;
374 if (d1+d2 >= delta >> 11)
375 continue;
376
377 /*
378 * Check the PIT one more time to verify that
379 * all TSC reads were stable wrt the PIT.
380 *
381 * This also guarantees serialization of the
382 * last cycle read ('d2') in pit_expect_msb.
383 */
384 if (!pit_verify_msb(0xfe - i))
385 break;
386 goto success;
387 }
388 }
389 pr_err("Fast TSC calibration failed\n");
390 return 0;
391
392 success:
393 /*
394 * Ok, if we get here, then we've seen the
395 * MSB of the PIT decrement 'i' times, and the
396 * error has shrunk to less than 500 ppm.
397 *
398 * As a result, we can depend on there not being
399 * any odd delays anywhere, and the TSC reads are
400 * reliable (within the error).
401 *
402 * kHz = ticks / time-in-seconds / 1000;
403 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
404 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
405 */
406 delta *= PIT_TICK_RATE;
407 do_div(delta, i*256*1000);
408 pr_info("Fast TSC calibration using PIT\n");
409 return delta;
410 }
411
412 /**
413 * native_calibrate_tsc - calibrate the tsc on boot
414 */
415 unsigned long native_calibrate_tsc(void)
416 {
417 u64 tsc1, tsc2, delta, ref1, ref2;
418 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
419 unsigned long flags, latch, ms, fast_calibrate;
420 int hpet = is_hpet_enabled(), i, loopmin;
421
422 local_irq_save(flags);
423 fast_calibrate = quick_pit_calibrate();
424 local_irq_restore(flags);
425 if (fast_calibrate)
426 return fast_calibrate;
427
428 /*
429 * Run 5 calibration loops to get the lowest frequency value
430 * (the best estimate). We use two different calibration modes
431 * here:
432 *
433 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
434 * load a timeout of 50ms. We read the time right after we
435 * started the timer and wait until the PIT count down reaches
436 * zero. In each wait loop iteration we read the TSC and check
437 * the delta to the previous read. We keep track of the min
438 * and max values of that delta. The delta is mostly defined
439 * by the IO time of the PIT access, so we can detect when a
440 * SMI/SMM disturbance happened between the two reads. If the
441 * maximum time is significantly larger than the minimum time,
442 * then we discard the result and have another try.
443 *
444 * 2) Reference counter. If available we use the HPET or the
445 * PMTIMER as a reference to check the sanity of that value.
446 * We use separate TSC readouts and check inside of the
447 * reference read for a SMI/SMM disturbance. We dicard
448 * disturbed values here as well. We do that around the PIT
449 * calibration delay loop as we have to wait for a certain
450 * amount of time anyway.
451 */
452
453 /* Preset PIT loop values */
454 latch = CAL_LATCH;
455 ms = CAL_MS;
456 loopmin = CAL_PIT_LOOPS;
457
458 for (i = 0; i < 3; i++) {
459 unsigned long tsc_pit_khz;
460
461 /*
462 * Read the start value and the reference count of
463 * hpet/pmtimer when available. Then do the PIT
464 * calibration, which will take at least 50ms, and
465 * read the end value.
466 */
467 local_irq_save(flags);
468 tsc1 = tsc_read_refs(&ref1, hpet);
469 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
470 tsc2 = tsc_read_refs(&ref2, hpet);
471 local_irq_restore(flags);
472
473 /* Pick the lowest PIT TSC calibration so far */
474 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
475
476 /* hpet or pmtimer available ? */
477 if (ref1 == ref2)
478 continue;
479
480 /* Check, whether the sampling was disturbed by an SMI */
481 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
482 continue;
483
484 tsc2 = (tsc2 - tsc1) * 1000000LL;
485 if (hpet)
486 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
487 else
488 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
489
490 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
491
492 /* Check the reference deviation */
493 delta = ((u64) tsc_pit_min) * 100;
494 do_div(delta, tsc_ref_min);
495
496 /*
497 * If both calibration results are inside a 10% window
498 * then we can be sure, that the calibration
499 * succeeded. We break out of the loop right away. We
500 * use the reference value, as it is more precise.
501 */
502 if (delta >= 90 && delta <= 110) {
503 pr_info("PIT calibration matches %s. %d loops\n",
504 hpet ? "HPET" : "PMTIMER", i + 1);
505 return tsc_ref_min;
506 }
507
508 /*
509 * Check whether PIT failed more than once. This
510 * happens in virtualized environments. We need to
511 * give the virtual PC a slightly longer timeframe for
512 * the HPET/PMTIMER to make the result precise.
513 */
514 if (i == 1 && tsc_pit_min == ULONG_MAX) {
515 latch = CAL2_LATCH;
516 ms = CAL2_MS;
517 loopmin = CAL2_PIT_LOOPS;
518 }
519 }
520
521 /*
522 * Now check the results.
523 */
524 if (tsc_pit_min == ULONG_MAX) {
525 /* PIT gave no useful value */
526 pr_warn("Unable to calibrate against PIT\n");
527
528 /* We don't have an alternative source, disable TSC */
529 if (!hpet && !ref1 && !ref2) {
530 pr_notice("No reference (HPET/PMTIMER) available\n");
531 return 0;
532 }
533
534 /* The alternative source failed as well, disable TSC */
535 if (tsc_ref_min == ULONG_MAX) {
536 pr_warn("HPET/PMTIMER calibration failed\n");
537 return 0;
538 }
539
540 /* Use the alternative source */
541 pr_info("using %s reference calibration\n",
542 hpet ? "HPET" : "PMTIMER");
543
544 return tsc_ref_min;
545 }
546
547 /* We don't have an alternative source, use the PIT calibration value */
548 if (!hpet && !ref1 && !ref2) {
549 pr_info("Using PIT calibration value\n");
550 return tsc_pit_min;
551 }
552
553 /* The alternative source failed, use the PIT calibration value */
554 if (tsc_ref_min == ULONG_MAX) {
555 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
556 return tsc_pit_min;
557 }
558
559 /*
560 * The calibration values differ too much. In doubt, we use
561 * the PIT value as we know that there are PMTIMERs around
562 * running at double speed. At least we let the user know:
563 */
564 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
565 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
566 pr_info("Using PIT calibration value\n");
567 return tsc_pit_min;
568 }
569
570 int recalibrate_cpu_khz(void)
571 {
572 #ifndef CONFIG_SMP
573 unsigned long cpu_khz_old = cpu_khz;
574
575 if (cpu_has_tsc) {
576 tsc_khz = x86_platform.calibrate_tsc();
577 cpu_khz = tsc_khz;
578 cpu_data(0).loops_per_jiffy =
579 cpufreq_scale(cpu_data(0).loops_per_jiffy,
580 cpu_khz_old, cpu_khz);
581 return 0;
582 } else
583 return -ENODEV;
584 #else
585 return -ENODEV;
586 #endif
587 }
588
589 EXPORT_SYMBOL(recalibrate_cpu_khz);
590
591
592 /* Accelerators for sched_clock()
593 * convert from cycles(64bits) => nanoseconds (64bits)
594 * basic equation:
595 * ns = cycles / (freq / ns_per_sec)
596 * ns = cycles * (ns_per_sec / freq)
597 * ns = cycles * (10^9 / (cpu_khz * 10^3))
598 * ns = cycles * (10^6 / cpu_khz)
599 *
600 * Then we use scaling math (suggested by george@mvista.com) to get:
601 * ns = cycles * (10^6 * SC / cpu_khz) / SC
602 * ns = cycles * cyc2ns_scale / SC
603 *
604 * And since SC is a constant power of two, we can convert the div
605 * into a shift.
606 *
607 * We can use khz divisor instead of mhz to keep a better precision, since
608 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
609 * (mathieu.desnoyers@polymtl.ca)
610 *
611 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
612 */
613
614 DEFINE_PER_CPU(unsigned long, cyc2ns);
615 DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
616
617 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
618 {
619 unsigned long long tsc_now, ns_now, *offset;
620 unsigned long flags, *scale;
621
622 local_irq_save(flags);
623 sched_clock_idle_sleep_event();
624
625 scale = &per_cpu(cyc2ns, cpu);
626 offset = &per_cpu(cyc2ns_offset, cpu);
627
628 rdtscll(tsc_now);
629 ns_now = __cycles_2_ns(tsc_now);
630
631 if (cpu_khz) {
632 *scale = ((NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR) +
633 cpu_khz / 2) / cpu_khz;
634 *offset = ns_now - mult_frac(tsc_now, *scale,
635 (1UL << CYC2NS_SCALE_FACTOR));
636 }
637
638 sched_clock_idle_wakeup_event(0);
639 local_irq_restore(flags);
640 }
641
642 static unsigned long long cyc2ns_suspend;
643
644 void tsc_save_sched_clock_state(void)
645 {
646 if (!sched_clock_stable)
647 return;
648
649 cyc2ns_suspend = sched_clock();
650 }
651
652 /*
653 * Even on processors with invariant TSC, TSC gets reset in some the
654 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
655 * arbitrary value (still sync'd across cpu's) during resume from such sleep
656 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
657 * that sched_clock() continues from the point where it was left off during
658 * suspend.
659 */
660 void tsc_restore_sched_clock_state(void)
661 {
662 unsigned long long offset;
663 unsigned long flags;
664 int cpu;
665
666 if (!sched_clock_stable)
667 return;
668
669 local_irq_save(flags);
670
671 __this_cpu_write(cyc2ns_offset, 0);
672 offset = cyc2ns_suspend - sched_clock();
673
674 for_each_possible_cpu(cpu)
675 per_cpu(cyc2ns_offset, cpu) = offset;
676
677 local_irq_restore(flags);
678 }
679
680 #ifdef CONFIG_CPU_FREQ
681
682 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
683 * changes.
684 *
685 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
686 * not that important because current Opteron setups do not support
687 * scaling on SMP anyroads.
688 *
689 * Should fix up last_tsc too. Currently gettimeofday in the
690 * first tick after the change will be slightly wrong.
691 */
692
693 static unsigned int ref_freq;
694 static unsigned long loops_per_jiffy_ref;
695 static unsigned long tsc_khz_ref;
696
697 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
698 void *data)
699 {
700 struct cpufreq_freqs *freq = data;
701 unsigned long *lpj;
702
703 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
704 return 0;
705
706 lpj = &boot_cpu_data.loops_per_jiffy;
707 #ifdef CONFIG_SMP
708 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
709 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
710 #endif
711
712 if (!ref_freq) {
713 ref_freq = freq->old;
714 loops_per_jiffy_ref = *lpj;
715 tsc_khz_ref = tsc_khz;
716 }
717 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
718 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
719 (val == CPUFREQ_RESUMECHANGE)) {
720 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
721
722 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
723 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
724 mark_tsc_unstable("cpufreq changes");
725 }
726
727 set_cyc2ns_scale(tsc_khz, freq->cpu);
728
729 return 0;
730 }
731
732 static struct notifier_block time_cpufreq_notifier_block = {
733 .notifier_call = time_cpufreq_notifier
734 };
735
736 static int __init cpufreq_tsc(void)
737 {
738 if (!cpu_has_tsc)
739 return 0;
740 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
741 return 0;
742 cpufreq_register_notifier(&time_cpufreq_notifier_block,
743 CPUFREQ_TRANSITION_NOTIFIER);
744 return 0;
745 }
746
747 core_initcall(cpufreq_tsc);
748
749 #endif /* CONFIG_CPU_FREQ */
750
751 /* clocksource code */
752
753 static struct clocksource clocksource_tsc;
754
755 /*
756 * We compare the TSC to the cycle_last value in the clocksource
757 * structure to avoid a nasty time-warp. This can be observed in a
758 * very small window right after one CPU updated cycle_last under
759 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
760 * is smaller than the cycle_last reference value due to a TSC which
761 * is slighty behind. This delta is nowhere else observable, but in
762 * that case it results in a forward time jump in the range of hours
763 * due to the unsigned delta calculation of the time keeping core
764 * code, which is necessary to support wrapping clocksources like pm
765 * timer.
766 */
767 static cycle_t read_tsc(struct clocksource *cs)
768 {
769 cycle_t ret = (cycle_t)get_cycles();
770
771 return ret >= clocksource_tsc.cycle_last ?
772 ret : clocksource_tsc.cycle_last;
773 }
774
775 static void resume_tsc(struct clocksource *cs)
776 {
777 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
778 clocksource_tsc.cycle_last = 0;
779 }
780
781 static struct clocksource clocksource_tsc = {
782 .name = "tsc",
783 .rating = 300,
784 .read = read_tsc,
785 .resume = resume_tsc,
786 .mask = CLOCKSOURCE_MASK(64),
787 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
788 CLOCK_SOURCE_MUST_VERIFY,
789 #ifdef CONFIG_X86_64
790 .archdata = { .vclock_mode = VCLOCK_TSC },
791 #endif
792 };
793
794 void mark_tsc_unstable(char *reason)
795 {
796 if (!tsc_unstable) {
797 tsc_unstable = 1;
798 sched_clock_stable = 0;
799 disable_sched_clock_irqtime();
800 pr_info("Marking TSC unstable due to %s\n", reason);
801 /* Change only the rating, when not registered */
802 if (clocksource_tsc.mult)
803 clocksource_mark_unstable(&clocksource_tsc);
804 else {
805 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
806 clocksource_tsc.rating = 0;
807 }
808 }
809 }
810
811 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
812
813 static void __init check_system_tsc_reliable(void)
814 {
815 #ifdef CONFIG_MGEODE_LX
816 /* RTSC counts during suspend */
817 #define RTSC_SUSP 0x100
818 unsigned long res_low, res_high;
819
820 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
821 /* Geode_LX - the OLPC CPU has a very reliable TSC */
822 if (res_low & RTSC_SUSP)
823 tsc_clocksource_reliable = 1;
824 #endif
825 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
826 tsc_clocksource_reliable = 1;
827 }
828
829 /*
830 * Make an educated guess if the TSC is trustworthy and synchronized
831 * over all CPUs.
832 */
833 int unsynchronized_tsc(void)
834 {
835 if (!cpu_has_tsc || tsc_unstable)
836 return 1;
837
838 #ifdef CONFIG_SMP
839 if (apic_is_clustered_box())
840 return 1;
841 #endif
842
843 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
844 return 0;
845
846 if (tsc_clocksource_reliable)
847 return 0;
848 /*
849 * Intel systems are normally all synchronized.
850 * Exceptions must mark TSC as unstable:
851 */
852 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
853 /* assume multi socket systems are not synchronized: */
854 if (num_possible_cpus() > 1)
855 return 1;
856 }
857
858 return 0;
859 }
860
861
862 static void tsc_refine_calibration_work(struct work_struct *work);
863 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
864 /**
865 * tsc_refine_calibration_work - Further refine tsc freq calibration
866 * @work - ignored.
867 *
868 * This functions uses delayed work over a period of a
869 * second to further refine the TSC freq value. Since this is
870 * timer based, instead of loop based, we don't block the boot
871 * process while this longer calibration is done.
872 *
873 * If there are any calibration anomalies (too many SMIs, etc),
874 * or the refined calibration is off by 1% of the fast early
875 * calibration, we throw out the new calibration and use the
876 * early calibration.
877 */
878 static void tsc_refine_calibration_work(struct work_struct *work)
879 {
880 static u64 tsc_start = -1, ref_start;
881 static int hpet;
882 u64 tsc_stop, ref_stop, delta;
883 unsigned long freq;
884
885 /* Don't bother refining TSC on unstable systems */
886 if (check_tsc_unstable())
887 goto out;
888
889 /*
890 * Since the work is started early in boot, we may be
891 * delayed the first time we expire. So set the workqueue
892 * again once we know timers are working.
893 */
894 if (tsc_start == -1) {
895 /*
896 * Only set hpet once, to avoid mixing hardware
897 * if the hpet becomes enabled later.
898 */
899 hpet = is_hpet_enabled();
900 schedule_delayed_work(&tsc_irqwork, HZ);
901 tsc_start = tsc_read_refs(&ref_start, hpet);
902 return;
903 }
904
905 tsc_stop = tsc_read_refs(&ref_stop, hpet);
906
907 /* hpet or pmtimer available ? */
908 if (ref_start == ref_stop)
909 goto out;
910
911 /* Check, whether the sampling was disturbed by an SMI */
912 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
913 goto out;
914
915 delta = tsc_stop - tsc_start;
916 delta *= 1000000LL;
917 if (hpet)
918 freq = calc_hpet_ref(delta, ref_start, ref_stop);
919 else
920 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
921
922 /* Make sure we're within 1% */
923 if (abs(tsc_khz - freq) > tsc_khz/100)
924 goto out;
925
926 tsc_khz = freq;
927 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
928 (unsigned long)tsc_khz / 1000,
929 (unsigned long)tsc_khz % 1000);
930
931 out:
932 clocksource_register_khz(&clocksource_tsc, tsc_khz);
933 }
934
935
936 static int __init init_tsc_clocksource(void)
937 {
938 if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
939 return 0;
940
941 if (tsc_clocksource_reliable)
942 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
943 /* lower the rating if we already know its unstable: */
944 if (check_tsc_unstable()) {
945 clocksource_tsc.rating = 0;
946 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
947 }
948
949 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
950 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
951
952 /*
953 * Trust the results of the earlier calibration on systems
954 * exporting a reliable TSC.
955 */
956 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
957 clocksource_register_khz(&clocksource_tsc, tsc_khz);
958 return 0;
959 }
960
961 schedule_delayed_work(&tsc_irqwork, 0);
962 return 0;
963 }
964 /*
965 * We use device_initcall here, to ensure we run after the hpet
966 * is fully initialized, which may occur at fs_initcall time.
967 */
968 device_initcall(init_tsc_clocksource);
969
970 void __init tsc_init(void)
971 {
972 u64 lpj;
973 int cpu;
974
975 x86_init.timers.tsc_pre_init();
976
977 if (!cpu_has_tsc)
978 return;
979
980 tsc_khz = x86_platform.calibrate_tsc();
981 cpu_khz = tsc_khz;
982
983 if (!tsc_khz) {
984 mark_tsc_unstable("could not calculate TSC khz");
985 return;
986 }
987
988 pr_info("Detected %lu.%03lu MHz processor\n",
989 (unsigned long)cpu_khz / 1000,
990 (unsigned long)cpu_khz % 1000);
991
992 /*
993 * Secondary CPUs do not run through tsc_init(), so set up
994 * all the scale factors for all CPUs, assuming the same
995 * speed as the bootup CPU. (cpufreq notifiers will fix this
996 * up if their speed diverges)
997 */
998 for_each_possible_cpu(cpu)
999 set_cyc2ns_scale(cpu_khz, cpu);
1000
1001 if (tsc_disabled > 0)
1002 return;
1003
1004 /* now allow native_sched_clock() to use rdtsc */
1005 tsc_disabled = 0;
1006
1007 if (!no_sched_irq_time)
1008 enable_sched_clock_irqtime();
1009
1010 lpj = ((u64)tsc_khz * 1000);
1011 do_div(lpj, HZ);
1012 lpj_fine = lpj;
1013
1014 use_tsc_delay();
1015
1016 if (unsynchronized_tsc())
1017 mark_tsc_unstable("TSCs unsynchronized");
1018
1019 check_system_tsc_reliable();
1020 }
1021
1022 #ifdef CONFIG_SMP
1023 /*
1024 * If we have a constant TSC and are using the TSC for the delay loop,
1025 * we can skip clock calibration if another cpu in the same socket has already
1026 * been calibrated. This assumes that CONSTANT_TSC applies to all
1027 * cpus in the socket - this should be a safe assumption.
1028 */
1029 unsigned long calibrate_delay_is_known(void)
1030 {
1031 int i, cpu = smp_processor_id();
1032
1033 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1034 return 0;
1035
1036 for_each_online_cpu(i)
1037 if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1038 return cpu_data(i).loops_per_jiffy;
1039 return 0;
1040 }
1041 #endif