]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/tsc.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / tsc.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/timer.h>
9 #include <linux/acpi_pmtmr.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/clocksource.h>
13 #include <linux/percpu.h>
14 #include <linux/timex.h>
15 #include <linux/static_key.h>
16
17 #include <asm/hpet.h>
18 #include <asm/timer.h>
19 #include <asm/vgtod.h>
20 #include <asm/time.h>
21 #include <asm/delay.h>
22 #include <asm/hypervisor.h>
23 #include <asm/nmi.h>
24 #include <asm/x86_init.h>
25 #include <asm/geode.h>
26 #include <asm/apic.h>
27 #include <asm/intel-family.h>
28
29 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
30 EXPORT_SYMBOL(cpu_khz);
31
32 unsigned int __read_mostly tsc_khz;
33 EXPORT_SYMBOL(tsc_khz);
34
35 /*
36 * TSC can be unstable due to cpufreq or due to unsynced TSCs
37 */
38 static int __read_mostly tsc_unstable;
39
40 /* native_sched_clock() is called before tsc_init(), so
41 we must start with the TSC soft disabled to prevent
42 erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
43 static int __read_mostly tsc_disabled = -1;
44
45 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
46
47 int tsc_clocksource_reliable;
48
49 static u32 art_to_tsc_numerator;
50 static u32 art_to_tsc_denominator;
51 static u64 art_to_tsc_offset;
52 struct clocksource *art_related_clocksource;
53
54 struct cyc2ns {
55 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
56 seqcount_t seq; /* 32 + 4 = 36 */
57
58 }; /* fits one cacheline */
59
60 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
61
62 void cyc2ns_read_begin(struct cyc2ns_data *data)
63 {
64 int seq, idx;
65
66 preempt_disable_notrace();
67
68 do {
69 seq = this_cpu_read(cyc2ns.seq.sequence);
70 idx = seq & 1;
71
72 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
73 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
74 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
75
76 } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
77 }
78
79 void cyc2ns_read_end(void)
80 {
81 preempt_enable_notrace();
82 }
83
84 /*
85 * Accelerators for sched_clock()
86 * convert from cycles(64bits) => nanoseconds (64bits)
87 * basic equation:
88 * ns = cycles / (freq / ns_per_sec)
89 * ns = cycles * (ns_per_sec / freq)
90 * ns = cycles * (10^9 / (cpu_khz * 10^3))
91 * ns = cycles * (10^6 / cpu_khz)
92 *
93 * Then we use scaling math (suggested by george@mvista.com) to get:
94 * ns = cycles * (10^6 * SC / cpu_khz) / SC
95 * ns = cycles * cyc2ns_scale / SC
96 *
97 * And since SC is a constant power of two, we can convert the div
98 * into a shift. The larger SC is, the more accurate the conversion, but
99 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
100 * (64-bit result) can be used.
101 *
102 * We can use khz divisor instead of mhz to keep a better precision.
103 * (mathieu.desnoyers@polymtl.ca)
104 *
105 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
106 */
107
108 static void cyc2ns_data_init(struct cyc2ns_data *data)
109 {
110 data->cyc2ns_mul = 0;
111 data->cyc2ns_shift = 0;
112 data->cyc2ns_offset = 0;
113 }
114
115 static void __init cyc2ns_init(int cpu)
116 {
117 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
118
119 cyc2ns_data_init(&c2n->data[0]);
120 cyc2ns_data_init(&c2n->data[1]);
121
122 seqcount_init(&c2n->seq);
123 }
124
125 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
126 {
127 struct cyc2ns_data data;
128 unsigned long long ns;
129
130 cyc2ns_read_begin(&data);
131
132 ns = data.cyc2ns_offset;
133 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
134
135 cyc2ns_read_end();
136
137 return ns;
138 }
139
140 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
141 {
142 unsigned long long ns_now;
143 struct cyc2ns_data data;
144 struct cyc2ns *c2n;
145 unsigned long flags;
146
147 local_irq_save(flags);
148 sched_clock_idle_sleep_event();
149
150 if (!khz)
151 goto done;
152
153 ns_now = cycles_2_ns(tsc_now);
154
155 /*
156 * Compute a new multiplier as per the above comment and ensure our
157 * time function is continuous; see the comment near struct
158 * cyc2ns_data.
159 */
160 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
161 NSEC_PER_MSEC, 0);
162
163 /*
164 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
165 * not expected to be greater than 31 due to the original published
166 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
167 * value) - refer perf_event_mmap_page documentation in perf_event.h.
168 */
169 if (data.cyc2ns_shift == 32) {
170 data.cyc2ns_shift = 31;
171 data.cyc2ns_mul >>= 1;
172 }
173
174 data.cyc2ns_offset = ns_now -
175 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
176
177 c2n = per_cpu_ptr(&cyc2ns, cpu);
178
179 raw_write_seqcount_latch(&c2n->seq);
180 c2n->data[0] = data;
181 raw_write_seqcount_latch(&c2n->seq);
182 c2n->data[1] = data;
183
184 done:
185 sched_clock_idle_wakeup_event();
186 local_irq_restore(flags);
187 }
188
189 /*
190 * Scheduler clock - returns current time in nanosec units.
191 */
192 u64 native_sched_clock(void)
193 {
194 if (static_branch_likely(&__use_tsc)) {
195 u64 tsc_now = rdtsc();
196
197 /* return the value in ns */
198 return cycles_2_ns(tsc_now);
199 }
200
201 /*
202 * Fall back to jiffies if there's no TSC available:
203 * ( But note that we still use it if the TSC is marked
204 * unstable. We do this because unlike Time Of Day,
205 * the scheduler clock tolerates small errors and it's
206 * very important for it to be as fast as the platform
207 * can achieve it. )
208 */
209
210 /* No locking but a rare wrong value is not a big deal: */
211 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
212 }
213
214 /*
215 * Generate a sched_clock if you already have a TSC value.
216 */
217 u64 native_sched_clock_from_tsc(u64 tsc)
218 {
219 return cycles_2_ns(tsc);
220 }
221
222 /* We need to define a real function for sched_clock, to override the
223 weak default version */
224 #ifdef CONFIG_PARAVIRT
225 unsigned long long sched_clock(void)
226 {
227 return paravirt_sched_clock();
228 }
229
230 bool using_native_sched_clock(void)
231 {
232 return pv_time_ops.sched_clock == native_sched_clock;
233 }
234 #else
235 unsigned long long
236 sched_clock(void) __attribute__((alias("native_sched_clock")));
237
238 bool using_native_sched_clock(void) { return true; }
239 #endif
240
241 int check_tsc_unstable(void)
242 {
243 return tsc_unstable;
244 }
245 EXPORT_SYMBOL_GPL(check_tsc_unstable);
246
247 #ifdef CONFIG_X86_TSC
248 int __init notsc_setup(char *str)
249 {
250 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
251 tsc_disabled = 1;
252 return 1;
253 }
254 #else
255 /*
256 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
257 * in cpu/common.c
258 */
259 int __init notsc_setup(char *str)
260 {
261 setup_clear_cpu_cap(X86_FEATURE_TSC);
262 return 1;
263 }
264 #endif
265
266 __setup("notsc", notsc_setup);
267
268 static int no_sched_irq_time;
269
270 static int __init tsc_setup(char *str)
271 {
272 if (!strcmp(str, "reliable"))
273 tsc_clocksource_reliable = 1;
274 if (!strncmp(str, "noirqtime", 9))
275 no_sched_irq_time = 1;
276 if (!strcmp(str, "unstable"))
277 mark_tsc_unstable("boot parameter");
278 return 1;
279 }
280
281 __setup("tsc=", tsc_setup);
282
283 #define MAX_RETRIES 5
284 #define SMI_TRESHOLD 50000
285
286 /*
287 * Read TSC and the reference counters. Take care of SMI disturbance
288 */
289 static u64 tsc_read_refs(u64 *p, int hpet)
290 {
291 u64 t1, t2;
292 int i;
293
294 for (i = 0; i < MAX_RETRIES; i++) {
295 t1 = get_cycles();
296 if (hpet)
297 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
298 else
299 *p = acpi_pm_read_early();
300 t2 = get_cycles();
301 if ((t2 - t1) < SMI_TRESHOLD)
302 return t2;
303 }
304 return ULLONG_MAX;
305 }
306
307 /*
308 * Calculate the TSC frequency from HPET reference
309 */
310 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
311 {
312 u64 tmp;
313
314 if (hpet2 < hpet1)
315 hpet2 += 0x100000000ULL;
316 hpet2 -= hpet1;
317 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
318 do_div(tmp, 1000000);
319 do_div(deltatsc, tmp);
320
321 return (unsigned long) deltatsc;
322 }
323
324 /*
325 * Calculate the TSC frequency from PMTimer reference
326 */
327 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
328 {
329 u64 tmp;
330
331 if (!pm1 && !pm2)
332 return ULONG_MAX;
333
334 if (pm2 < pm1)
335 pm2 += (u64)ACPI_PM_OVRRUN;
336 pm2 -= pm1;
337 tmp = pm2 * 1000000000LL;
338 do_div(tmp, PMTMR_TICKS_PER_SEC);
339 do_div(deltatsc, tmp);
340
341 return (unsigned long) deltatsc;
342 }
343
344 #define CAL_MS 10
345 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
346 #define CAL_PIT_LOOPS 1000
347
348 #define CAL2_MS 50
349 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
350 #define CAL2_PIT_LOOPS 5000
351
352
353 /*
354 * Try to calibrate the TSC against the Programmable
355 * Interrupt Timer and return the frequency of the TSC
356 * in kHz.
357 *
358 * Return ULONG_MAX on failure to calibrate.
359 */
360 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
361 {
362 u64 tsc, t1, t2, delta;
363 unsigned long tscmin, tscmax;
364 int pitcnt;
365
366 /* Set the Gate high, disable speaker */
367 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
368
369 /*
370 * Setup CTC channel 2* for mode 0, (interrupt on terminal
371 * count mode), binary count. Set the latch register to 50ms
372 * (LSB then MSB) to begin countdown.
373 */
374 outb(0xb0, 0x43);
375 outb(latch & 0xff, 0x42);
376 outb(latch >> 8, 0x42);
377
378 tsc = t1 = t2 = get_cycles();
379
380 pitcnt = 0;
381 tscmax = 0;
382 tscmin = ULONG_MAX;
383 while ((inb(0x61) & 0x20) == 0) {
384 t2 = get_cycles();
385 delta = t2 - tsc;
386 tsc = t2;
387 if ((unsigned long) delta < tscmin)
388 tscmin = (unsigned int) delta;
389 if ((unsigned long) delta > tscmax)
390 tscmax = (unsigned int) delta;
391 pitcnt++;
392 }
393
394 /*
395 * Sanity checks:
396 *
397 * If we were not able to read the PIT more than loopmin
398 * times, then we have been hit by a massive SMI
399 *
400 * If the maximum is 10 times larger than the minimum,
401 * then we got hit by an SMI as well.
402 */
403 if (pitcnt < loopmin || tscmax > 10 * tscmin)
404 return ULONG_MAX;
405
406 /* Calculate the PIT value */
407 delta = t2 - t1;
408 do_div(delta, ms);
409 return delta;
410 }
411
412 /*
413 * This reads the current MSB of the PIT counter, and
414 * checks if we are running on sufficiently fast and
415 * non-virtualized hardware.
416 *
417 * Our expectations are:
418 *
419 * - the PIT is running at roughly 1.19MHz
420 *
421 * - each IO is going to take about 1us on real hardware,
422 * but we allow it to be much faster (by a factor of 10) or
423 * _slightly_ slower (ie we allow up to a 2us read+counter
424 * update - anything else implies a unacceptably slow CPU
425 * or PIT for the fast calibration to work.
426 *
427 * - with 256 PIT ticks to read the value, we have 214us to
428 * see the same MSB (and overhead like doing a single TSC
429 * read per MSB value etc).
430 *
431 * - We're doing 2 reads per loop (LSB, MSB), and we expect
432 * them each to take about a microsecond on real hardware.
433 * So we expect a count value of around 100. But we'll be
434 * generous, and accept anything over 50.
435 *
436 * - if the PIT is stuck, and we see *many* more reads, we
437 * return early (and the next caller of pit_expect_msb()
438 * then consider it a failure when they don't see the
439 * next expected value).
440 *
441 * These expectations mean that we know that we have seen the
442 * transition from one expected value to another with a fairly
443 * high accuracy, and we didn't miss any events. We can thus
444 * use the TSC value at the transitions to calculate a pretty
445 * good value for the TSC frequencty.
446 */
447 static inline int pit_verify_msb(unsigned char val)
448 {
449 /* Ignore LSB */
450 inb(0x42);
451 return inb(0x42) == val;
452 }
453
454 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
455 {
456 int count;
457 u64 tsc = 0, prev_tsc = 0;
458
459 for (count = 0; count < 50000; count++) {
460 if (!pit_verify_msb(val))
461 break;
462 prev_tsc = tsc;
463 tsc = get_cycles();
464 }
465 *deltap = get_cycles() - prev_tsc;
466 *tscp = tsc;
467
468 /*
469 * We require _some_ success, but the quality control
470 * will be based on the error terms on the TSC values.
471 */
472 return count > 5;
473 }
474
475 /*
476 * How many MSB values do we want to see? We aim for
477 * a maximum error rate of 500ppm (in practice the
478 * real error is much smaller), but refuse to spend
479 * more than 50ms on it.
480 */
481 #define MAX_QUICK_PIT_MS 50
482 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
483
484 static unsigned long quick_pit_calibrate(void)
485 {
486 int i;
487 u64 tsc, delta;
488 unsigned long d1, d2;
489
490 /* Set the Gate high, disable speaker */
491 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
492
493 /*
494 * Counter 2, mode 0 (one-shot), binary count
495 *
496 * NOTE! Mode 2 decrements by two (and then the
497 * output is flipped each time, giving the same
498 * final output frequency as a decrement-by-one),
499 * so mode 0 is much better when looking at the
500 * individual counts.
501 */
502 outb(0xb0, 0x43);
503
504 /* Start at 0xffff */
505 outb(0xff, 0x42);
506 outb(0xff, 0x42);
507
508 /*
509 * The PIT starts counting at the next edge, so we
510 * need to delay for a microsecond. The easiest way
511 * to do that is to just read back the 16-bit counter
512 * once from the PIT.
513 */
514 pit_verify_msb(0);
515
516 if (pit_expect_msb(0xff, &tsc, &d1)) {
517 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
518 if (!pit_expect_msb(0xff-i, &delta, &d2))
519 break;
520
521 delta -= tsc;
522
523 /*
524 * Extrapolate the error and fail fast if the error will
525 * never be below 500 ppm.
526 */
527 if (i == 1 &&
528 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
529 return 0;
530
531 /*
532 * Iterate until the error is less than 500 ppm
533 */
534 if (d1+d2 >= delta >> 11)
535 continue;
536
537 /*
538 * Check the PIT one more time to verify that
539 * all TSC reads were stable wrt the PIT.
540 *
541 * This also guarantees serialization of the
542 * last cycle read ('d2') in pit_expect_msb.
543 */
544 if (!pit_verify_msb(0xfe - i))
545 break;
546 goto success;
547 }
548 }
549 pr_info("Fast TSC calibration failed\n");
550 return 0;
551
552 success:
553 /*
554 * Ok, if we get here, then we've seen the
555 * MSB of the PIT decrement 'i' times, and the
556 * error has shrunk to less than 500 ppm.
557 *
558 * As a result, we can depend on there not being
559 * any odd delays anywhere, and the TSC reads are
560 * reliable (within the error).
561 *
562 * kHz = ticks / time-in-seconds / 1000;
563 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
564 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
565 */
566 delta *= PIT_TICK_RATE;
567 do_div(delta, i*256*1000);
568 pr_info("Fast TSC calibration using PIT\n");
569 return delta;
570 }
571
572 /**
573 * native_calibrate_tsc
574 * Determine TSC frequency via CPUID, else return 0.
575 */
576 unsigned long native_calibrate_tsc(void)
577 {
578 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
579 unsigned int crystal_khz;
580
581 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
582 return 0;
583
584 if (boot_cpu_data.cpuid_level < 0x15)
585 return 0;
586
587 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
588
589 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
590 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
591
592 if (ebx_numerator == 0 || eax_denominator == 0)
593 return 0;
594
595 crystal_khz = ecx_hz / 1000;
596
597 if (crystal_khz == 0) {
598 switch (boot_cpu_data.x86_model) {
599 case INTEL_FAM6_SKYLAKE_MOBILE:
600 case INTEL_FAM6_SKYLAKE_DESKTOP:
601 case INTEL_FAM6_KABYLAKE_MOBILE:
602 case INTEL_FAM6_KABYLAKE_DESKTOP:
603 crystal_khz = 24000; /* 24.0 MHz */
604 break;
605 case INTEL_FAM6_ATOM_DENVERTON:
606 crystal_khz = 25000; /* 25.0 MHz */
607 break;
608 case INTEL_FAM6_ATOM_GOLDMONT:
609 crystal_khz = 19200; /* 19.2 MHz */
610 break;
611 }
612 }
613
614 if (crystal_khz == 0)
615 return 0;
616 /*
617 * TSC frequency determined by CPUID is a "hardware reported"
618 * frequency and is the most accurate one so far we have. This
619 * is considered a known frequency.
620 */
621 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
622
623 /*
624 * For Atom SoCs TSC is the only reliable clocksource.
625 * Mark TSC reliable so no watchdog on it.
626 */
627 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
628 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
629
630 return crystal_khz * ebx_numerator / eax_denominator;
631 }
632
633 static unsigned long cpu_khz_from_cpuid(void)
634 {
635 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
636
637 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
638 return 0;
639
640 if (boot_cpu_data.cpuid_level < 0x16)
641 return 0;
642
643 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
644
645 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
646
647 return eax_base_mhz * 1000;
648 }
649
650 /**
651 * native_calibrate_cpu - calibrate the cpu on boot
652 */
653 unsigned long native_calibrate_cpu(void)
654 {
655 u64 tsc1, tsc2, delta, ref1, ref2;
656 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
657 unsigned long flags, latch, ms, fast_calibrate;
658 int hpet = is_hpet_enabled(), i, loopmin;
659
660 fast_calibrate = cpu_khz_from_cpuid();
661 if (fast_calibrate)
662 return fast_calibrate;
663
664 fast_calibrate = cpu_khz_from_msr();
665 if (fast_calibrate)
666 return fast_calibrate;
667
668 local_irq_save(flags);
669 fast_calibrate = quick_pit_calibrate();
670 local_irq_restore(flags);
671 if (fast_calibrate)
672 return fast_calibrate;
673
674 /*
675 * Run 5 calibration loops to get the lowest frequency value
676 * (the best estimate). We use two different calibration modes
677 * here:
678 *
679 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
680 * load a timeout of 50ms. We read the time right after we
681 * started the timer and wait until the PIT count down reaches
682 * zero. In each wait loop iteration we read the TSC and check
683 * the delta to the previous read. We keep track of the min
684 * and max values of that delta. The delta is mostly defined
685 * by the IO time of the PIT access, so we can detect when a
686 * SMI/SMM disturbance happened between the two reads. If the
687 * maximum time is significantly larger than the minimum time,
688 * then we discard the result and have another try.
689 *
690 * 2) Reference counter. If available we use the HPET or the
691 * PMTIMER as a reference to check the sanity of that value.
692 * We use separate TSC readouts and check inside of the
693 * reference read for a SMI/SMM disturbance. We dicard
694 * disturbed values here as well. We do that around the PIT
695 * calibration delay loop as we have to wait for a certain
696 * amount of time anyway.
697 */
698
699 /* Preset PIT loop values */
700 latch = CAL_LATCH;
701 ms = CAL_MS;
702 loopmin = CAL_PIT_LOOPS;
703
704 for (i = 0; i < 3; i++) {
705 unsigned long tsc_pit_khz;
706
707 /*
708 * Read the start value and the reference count of
709 * hpet/pmtimer when available. Then do the PIT
710 * calibration, which will take at least 50ms, and
711 * read the end value.
712 */
713 local_irq_save(flags);
714 tsc1 = tsc_read_refs(&ref1, hpet);
715 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
716 tsc2 = tsc_read_refs(&ref2, hpet);
717 local_irq_restore(flags);
718
719 /* Pick the lowest PIT TSC calibration so far */
720 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
721
722 /* hpet or pmtimer available ? */
723 if (ref1 == ref2)
724 continue;
725
726 /* Check, whether the sampling was disturbed by an SMI */
727 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
728 continue;
729
730 tsc2 = (tsc2 - tsc1) * 1000000LL;
731 if (hpet)
732 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
733 else
734 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
735
736 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
737
738 /* Check the reference deviation */
739 delta = ((u64) tsc_pit_min) * 100;
740 do_div(delta, tsc_ref_min);
741
742 /*
743 * If both calibration results are inside a 10% window
744 * then we can be sure, that the calibration
745 * succeeded. We break out of the loop right away. We
746 * use the reference value, as it is more precise.
747 */
748 if (delta >= 90 && delta <= 110) {
749 pr_info("PIT calibration matches %s. %d loops\n",
750 hpet ? "HPET" : "PMTIMER", i + 1);
751 return tsc_ref_min;
752 }
753
754 /*
755 * Check whether PIT failed more than once. This
756 * happens in virtualized environments. We need to
757 * give the virtual PC a slightly longer timeframe for
758 * the HPET/PMTIMER to make the result precise.
759 */
760 if (i == 1 && tsc_pit_min == ULONG_MAX) {
761 latch = CAL2_LATCH;
762 ms = CAL2_MS;
763 loopmin = CAL2_PIT_LOOPS;
764 }
765 }
766
767 /*
768 * Now check the results.
769 */
770 if (tsc_pit_min == ULONG_MAX) {
771 /* PIT gave no useful value */
772 pr_warn("Unable to calibrate against PIT\n");
773
774 /* We don't have an alternative source, disable TSC */
775 if (!hpet && !ref1 && !ref2) {
776 pr_notice("No reference (HPET/PMTIMER) available\n");
777 return 0;
778 }
779
780 /* The alternative source failed as well, disable TSC */
781 if (tsc_ref_min == ULONG_MAX) {
782 pr_warn("HPET/PMTIMER calibration failed\n");
783 return 0;
784 }
785
786 /* Use the alternative source */
787 pr_info("using %s reference calibration\n",
788 hpet ? "HPET" : "PMTIMER");
789
790 return tsc_ref_min;
791 }
792
793 /* We don't have an alternative source, use the PIT calibration value */
794 if (!hpet && !ref1 && !ref2) {
795 pr_info("Using PIT calibration value\n");
796 return tsc_pit_min;
797 }
798
799 /* The alternative source failed, use the PIT calibration value */
800 if (tsc_ref_min == ULONG_MAX) {
801 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
802 return tsc_pit_min;
803 }
804
805 /*
806 * The calibration values differ too much. In doubt, we use
807 * the PIT value as we know that there are PMTIMERs around
808 * running at double speed. At least we let the user know:
809 */
810 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
811 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
812 pr_info("Using PIT calibration value\n");
813 return tsc_pit_min;
814 }
815
816 void recalibrate_cpu_khz(void)
817 {
818 #ifndef CONFIG_SMP
819 unsigned long cpu_khz_old = cpu_khz;
820
821 if (!boot_cpu_has(X86_FEATURE_TSC))
822 return;
823
824 cpu_khz = x86_platform.calibrate_cpu();
825 tsc_khz = x86_platform.calibrate_tsc();
826 if (tsc_khz == 0)
827 tsc_khz = cpu_khz;
828 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
829 cpu_khz = tsc_khz;
830 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
831 cpu_khz_old, cpu_khz);
832 #endif
833 }
834
835 EXPORT_SYMBOL(recalibrate_cpu_khz);
836
837
838 static unsigned long long cyc2ns_suspend;
839
840 void tsc_save_sched_clock_state(void)
841 {
842 if (!sched_clock_stable())
843 return;
844
845 cyc2ns_suspend = sched_clock();
846 }
847
848 /*
849 * Even on processors with invariant TSC, TSC gets reset in some the
850 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
851 * arbitrary value (still sync'd across cpu's) during resume from such sleep
852 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
853 * that sched_clock() continues from the point where it was left off during
854 * suspend.
855 */
856 void tsc_restore_sched_clock_state(void)
857 {
858 unsigned long long offset;
859 unsigned long flags;
860 int cpu;
861
862 if (!sched_clock_stable())
863 return;
864
865 local_irq_save(flags);
866
867 /*
868 * We're coming out of suspend, there's no concurrency yet; don't
869 * bother being nice about the RCU stuff, just write to both
870 * data fields.
871 */
872
873 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
874 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
875
876 offset = cyc2ns_suspend - sched_clock();
877
878 for_each_possible_cpu(cpu) {
879 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
880 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
881 }
882
883 local_irq_restore(flags);
884 }
885
886 #ifdef CONFIG_CPU_FREQ
887 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
888 * changes.
889 *
890 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
891 * not that important because current Opteron setups do not support
892 * scaling on SMP anyroads.
893 *
894 * Should fix up last_tsc too. Currently gettimeofday in the
895 * first tick after the change will be slightly wrong.
896 */
897
898 static unsigned int ref_freq;
899 static unsigned long loops_per_jiffy_ref;
900 static unsigned long tsc_khz_ref;
901
902 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
903 void *data)
904 {
905 struct cpufreq_freqs *freq = data;
906 unsigned long *lpj;
907
908 lpj = &boot_cpu_data.loops_per_jiffy;
909 #ifdef CONFIG_SMP
910 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
911 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
912 #endif
913
914 if (!ref_freq) {
915 ref_freq = freq->old;
916 loops_per_jiffy_ref = *lpj;
917 tsc_khz_ref = tsc_khz;
918 }
919 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
920 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
921 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
922
923 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
924 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
925 mark_tsc_unstable("cpufreq changes");
926
927 set_cyc2ns_scale(tsc_khz, freq->cpu, rdtsc());
928 }
929
930 return 0;
931 }
932
933 static struct notifier_block time_cpufreq_notifier_block = {
934 .notifier_call = time_cpufreq_notifier
935 };
936
937 static int __init cpufreq_register_tsc_scaling(void)
938 {
939 if (!boot_cpu_has(X86_FEATURE_TSC))
940 return 0;
941 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
942 return 0;
943 cpufreq_register_notifier(&time_cpufreq_notifier_block,
944 CPUFREQ_TRANSITION_NOTIFIER);
945 return 0;
946 }
947
948 core_initcall(cpufreq_register_tsc_scaling);
949
950 #endif /* CONFIG_CPU_FREQ */
951
952 #define ART_CPUID_LEAF (0x15)
953 #define ART_MIN_DENOMINATOR (1)
954
955
956 /*
957 * If ART is present detect the numerator:denominator to convert to TSC
958 */
959 static void __init detect_art(void)
960 {
961 unsigned int unused[2];
962
963 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
964 return;
965
966 /*
967 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
968 * and the TSC counter resets must not occur asynchronously.
969 */
970 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
971 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
972 !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
973 tsc_async_resets)
974 return;
975
976 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
977 &art_to_tsc_numerator, unused, unused+1);
978
979 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
980 return;
981
982 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
983
984 /* Make this sticky over multiple CPU init calls */
985 setup_force_cpu_cap(X86_FEATURE_ART);
986 }
987
988
989 /* clocksource code */
990
991 static struct clocksource clocksource_tsc;
992
993 static void tsc_resume(struct clocksource *cs)
994 {
995 tsc_verify_tsc_adjust(true);
996 }
997
998 /*
999 * We used to compare the TSC to the cycle_last value in the clocksource
1000 * structure to avoid a nasty time-warp. This can be observed in a
1001 * very small window right after one CPU updated cycle_last under
1002 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1003 * is smaller than the cycle_last reference value due to a TSC which
1004 * is slighty behind. This delta is nowhere else observable, but in
1005 * that case it results in a forward time jump in the range of hours
1006 * due to the unsigned delta calculation of the time keeping core
1007 * code, which is necessary to support wrapping clocksources like pm
1008 * timer.
1009 *
1010 * This sanity check is now done in the core timekeeping code.
1011 * checking the result of read_tsc() - cycle_last for being negative.
1012 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1013 */
1014 static u64 read_tsc(struct clocksource *cs)
1015 {
1016 return (u64)rdtsc_ordered();
1017 }
1018
1019 static void tsc_cs_mark_unstable(struct clocksource *cs)
1020 {
1021 if (tsc_unstable)
1022 return;
1023
1024 tsc_unstable = 1;
1025 if (using_native_sched_clock())
1026 clear_sched_clock_stable();
1027 disable_sched_clock_irqtime();
1028 pr_info("Marking TSC unstable due to clocksource watchdog\n");
1029 }
1030
1031 static void tsc_cs_tick_stable(struct clocksource *cs)
1032 {
1033 if (tsc_unstable)
1034 return;
1035
1036 if (using_native_sched_clock())
1037 sched_clock_tick_stable();
1038 }
1039
1040 /*
1041 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1042 */
1043 static struct clocksource clocksource_tsc = {
1044 .name = "tsc",
1045 .rating = 300,
1046 .read = read_tsc,
1047 .mask = CLOCKSOURCE_MASK(64),
1048 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1049 CLOCK_SOURCE_MUST_VERIFY,
1050 .archdata = { .vclock_mode = VCLOCK_TSC },
1051 .resume = tsc_resume,
1052 .mark_unstable = tsc_cs_mark_unstable,
1053 .tick_stable = tsc_cs_tick_stable,
1054 };
1055
1056 void mark_tsc_unstable(char *reason)
1057 {
1058 if (tsc_unstable)
1059 return;
1060
1061 tsc_unstable = 1;
1062 if (using_native_sched_clock())
1063 clear_sched_clock_stable();
1064 disable_sched_clock_irqtime();
1065 pr_info("Marking TSC unstable due to %s\n", reason);
1066 /* Change only the rating, when not registered */
1067 if (clocksource_tsc.mult) {
1068 clocksource_mark_unstable(&clocksource_tsc);
1069 } else {
1070 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1071 clocksource_tsc.rating = 0;
1072 }
1073 }
1074
1075 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1076
1077 static void __init check_system_tsc_reliable(void)
1078 {
1079 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1080 if (is_geode_lx()) {
1081 /* RTSC counts during suspend */
1082 #define RTSC_SUSP 0x100
1083 unsigned long res_low, res_high;
1084
1085 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1086 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1087 if (res_low & RTSC_SUSP)
1088 tsc_clocksource_reliable = 1;
1089 }
1090 #endif
1091 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1092 tsc_clocksource_reliable = 1;
1093 }
1094
1095 /*
1096 * Make an educated guess if the TSC is trustworthy and synchronized
1097 * over all CPUs.
1098 */
1099 int unsynchronized_tsc(void)
1100 {
1101 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1102 return 1;
1103
1104 #ifdef CONFIG_SMP
1105 if (apic_is_clustered_box())
1106 return 1;
1107 #endif
1108
1109 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1110 return 0;
1111
1112 if (tsc_clocksource_reliable)
1113 return 0;
1114 /*
1115 * Intel systems are normally all synchronized.
1116 * Exceptions must mark TSC as unstable:
1117 */
1118 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1119 /* assume multi socket systems are not synchronized: */
1120 if (num_possible_cpus() > 1)
1121 return 1;
1122 }
1123
1124 return 0;
1125 }
1126
1127 /*
1128 * Convert ART to TSC given numerator/denominator found in detect_art()
1129 */
1130 struct system_counterval_t convert_art_to_tsc(u64 art)
1131 {
1132 u64 tmp, res, rem;
1133
1134 rem = do_div(art, art_to_tsc_denominator);
1135
1136 res = art * art_to_tsc_numerator;
1137 tmp = rem * art_to_tsc_numerator;
1138
1139 do_div(tmp, art_to_tsc_denominator);
1140 res += tmp + art_to_tsc_offset;
1141
1142 return (struct system_counterval_t) {.cs = art_related_clocksource,
1143 .cycles = res};
1144 }
1145 EXPORT_SYMBOL(convert_art_to_tsc);
1146
1147 static void tsc_refine_calibration_work(struct work_struct *work);
1148 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1149 /**
1150 * tsc_refine_calibration_work - Further refine tsc freq calibration
1151 * @work - ignored.
1152 *
1153 * This functions uses delayed work over a period of a
1154 * second to further refine the TSC freq value. Since this is
1155 * timer based, instead of loop based, we don't block the boot
1156 * process while this longer calibration is done.
1157 *
1158 * If there are any calibration anomalies (too many SMIs, etc),
1159 * or the refined calibration is off by 1% of the fast early
1160 * calibration, we throw out the new calibration and use the
1161 * early calibration.
1162 */
1163 static void tsc_refine_calibration_work(struct work_struct *work)
1164 {
1165 static u64 tsc_start = -1, ref_start;
1166 static int hpet;
1167 u64 tsc_stop, ref_stop, delta;
1168 unsigned long freq;
1169 int cpu;
1170
1171 /* Don't bother refining TSC on unstable systems */
1172 if (check_tsc_unstable())
1173 goto out;
1174
1175 /*
1176 * Since the work is started early in boot, we may be
1177 * delayed the first time we expire. So set the workqueue
1178 * again once we know timers are working.
1179 */
1180 if (tsc_start == -1) {
1181 /*
1182 * Only set hpet once, to avoid mixing hardware
1183 * if the hpet becomes enabled later.
1184 */
1185 hpet = is_hpet_enabled();
1186 schedule_delayed_work(&tsc_irqwork, HZ);
1187 tsc_start = tsc_read_refs(&ref_start, hpet);
1188 return;
1189 }
1190
1191 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1192
1193 /* hpet or pmtimer available ? */
1194 if (ref_start == ref_stop)
1195 goto out;
1196
1197 /* Check, whether the sampling was disturbed by an SMI */
1198 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1199 goto out;
1200
1201 delta = tsc_stop - tsc_start;
1202 delta *= 1000000LL;
1203 if (hpet)
1204 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1205 else
1206 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1207
1208 /* Make sure we're within 1% */
1209 if (abs(tsc_khz - freq) > tsc_khz/100)
1210 goto out;
1211
1212 tsc_khz = freq;
1213 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1214 (unsigned long)tsc_khz / 1000,
1215 (unsigned long)tsc_khz % 1000);
1216
1217 /* Inform the TSC deadline clockevent devices about the recalibration */
1218 lapic_update_tsc_freq();
1219
1220 /* Update the sched_clock() rate to match the clocksource one */
1221 for_each_possible_cpu(cpu)
1222 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1223
1224 out:
1225 if (boot_cpu_has(X86_FEATURE_ART))
1226 art_related_clocksource = &clocksource_tsc;
1227 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1228 }
1229
1230
1231 static int __init init_tsc_clocksource(void)
1232 {
1233 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1234 return 0;
1235
1236 if (tsc_clocksource_reliable)
1237 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1238 /* lower the rating if we already know its unstable: */
1239 if (check_tsc_unstable()) {
1240 clocksource_tsc.rating = 0;
1241 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1242 }
1243
1244 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1245 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1246
1247 /*
1248 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1249 * the refined calibration and directly register it as a clocksource.
1250 */
1251 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1252 if (boot_cpu_has(X86_FEATURE_ART))
1253 art_related_clocksource = &clocksource_tsc;
1254 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1255 return 0;
1256 }
1257
1258 schedule_delayed_work(&tsc_irqwork, 0);
1259 return 0;
1260 }
1261 /*
1262 * We use device_initcall here, to ensure we run after the hpet
1263 * is fully initialized, which may occur at fs_initcall time.
1264 */
1265 device_initcall(init_tsc_clocksource);
1266
1267 void __init tsc_early_delay_calibrate(void)
1268 {
1269 unsigned long lpj;
1270
1271 if (!boot_cpu_has(X86_FEATURE_TSC))
1272 return;
1273
1274 cpu_khz = x86_platform.calibrate_cpu();
1275 tsc_khz = x86_platform.calibrate_tsc();
1276
1277 tsc_khz = tsc_khz ? : cpu_khz;
1278 if (!tsc_khz)
1279 return;
1280
1281 lpj = tsc_khz * 1000;
1282 do_div(lpj, HZ);
1283 loops_per_jiffy = lpj;
1284 }
1285
1286 void __init tsc_init(void)
1287 {
1288 u64 lpj, cyc;
1289 int cpu;
1290
1291 if (!boot_cpu_has(X86_FEATURE_TSC)) {
1292 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1293 return;
1294 }
1295
1296 cpu_khz = x86_platform.calibrate_cpu();
1297 tsc_khz = x86_platform.calibrate_tsc();
1298
1299 /*
1300 * Trust non-zero tsc_khz as authorative,
1301 * and use it to sanity check cpu_khz,
1302 * which will be off if system timer is off.
1303 */
1304 if (tsc_khz == 0)
1305 tsc_khz = cpu_khz;
1306 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1307 cpu_khz = tsc_khz;
1308
1309 if (!tsc_khz) {
1310 mark_tsc_unstable("could not calculate TSC khz");
1311 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1312 return;
1313 }
1314
1315 pr_info("Detected %lu.%03lu MHz processor\n",
1316 (unsigned long)cpu_khz / 1000,
1317 (unsigned long)cpu_khz % 1000);
1318
1319 if (cpu_khz != tsc_khz) {
1320 pr_info("Detected %lu.%03lu MHz TSC",
1321 (unsigned long)tsc_khz / 1000,
1322 (unsigned long)tsc_khz % 1000);
1323 }
1324
1325 /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1326 tsc_store_and_check_tsc_adjust(true);
1327
1328 /*
1329 * Secondary CPUs do not run through tsc_init(), so set up
1330 * all the scale factors for all CPUs, assuming the same
1331 * speed as the bootup CPU. (cpufreq notifiers will fix this
1332 * up if their speed diverges)
1333 */
1334 cyc = rdtsc();
1335 for_each_possible_cpu(cpu) {
1336 cyc2ns_init(cpu);
1337 set_cyc2ns_scale(tsc_khz, cpu, cyc);
1338 }
1339
1340 if (tsc_disabled > 0)
1341 return;
1342
1343 /* now allow native_sched_clock() to use rdtsc */
1344
1345 tsc_disabled = 0;
1346 static_branch_enable(&__use_tsc);
1347
1348 if (!no_sched_irq_time)
1349 enable_sched_clock_irqtime();
1350
1351 lpj = ((u64)tsc_khz * 1000);
1352 do_div(lpj, HZ);
1353 lpj_fine = lpj;
1354
1355 use_tsc_delay();
1356
1357 check_system_tsc_reliable();
1358
1359 if (unsynchronized_tsc())
1360 mark_tsc_unstable("TSCs unsynchronized");
1361
1362 detect_art();
1363 }
1364
1365 #ifdef CONFIG_SMP
1366 /*
1367 * If we have a constant TSC and are using the TSC for the delay loop,
1368 * we can skip clock calibration if another cpu in the same socket has already
1369 * been calibrated. This assumes that CONSTANT_TSC applies to all
1370 * cpus in the socket - this should be a safe assumption.
1371 */
1372 unsigned long calibrate_delay_is_known(void)
1373 {
1374 int sibling, cpu = smp_processor_id();
1375 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1376 const struct cpumask *mask = topology_core_cpumask(cpu);
1377
1378 if (tsc_disabled || !constant_tsc || !mask)
1379 return 0;
1380
1381 sibling = cpumask_any_but(mask, cpu);
1382 if (sibling < nr_cpu_ids)
1383 return cpu_data(sibling).loops_per_jiffy;
1384 return 0;
1385 }
1386 #endif