]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/tsc_32.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / tsc_32.c
1 #include <linux/sched.h>
2 #include <linux/clocksource.h>
3 #include <linux/workqueue.h>
4 #include <linux/cpufreq.h>
5 #include <linux/jiffies.h>
6 #include <linux/init.h>
7 #include <linux/dmi.h>
8 #include <linux/percpu.h>
9
10 #include <asm/delay.h>
11 #include <asm/tsc.h>
12 #include <asm/io.h>
13 #include <asm/timer.h>
14
15 #include "mach_timer.h"
16
17 static int tsc_enabled;
18
19 /*
20 * On some systems the TSC frequency does not
21 * change with the cpu frequency. So we need
22 * an extra value to store the TSC freq
23 */
24 unsigned int tsc_khz;
25 EXPORT_SYMBOL_GPL(tsc_khz);
26
27 #ifdef CONFIG_X86_TSC
28 static int __init tsc_setup(char *str)
29 {
30 printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
31 "cannot disable TSC completely.\n");
32 mark_tsc_unstable("user disabled TSC");
33 return 1;
34 }
35 #else
36 /*
37 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
38 * in cpu/common.c
39 */
40 static int __init tsc_setup(char *str)
41 {
42 setup_clear_cpu_cap(X86_FEATURE_TSC);
43 return 1;
44 }
45 #endif
46
47 __setup("notsc", tsc_setup);
48
49 /*
50 * code to mark and check if the TSC is unstable
51 * due to cpufreq or due to unsynced TSCs
52 */
53 static int tsc_unstable;
54
55 int check_tsc_unstable(void)
56 {
57 return tsc_unstable;
58 }
59 EXPORT_SYMBOL_GPL(check_tsc_unstable);
60
61 /* Accelerators for sched_clock()
62 * convert from cycles(64bits) => nanoseconds (64bits)
63 * basic equation:
64 * ns = cycles / (freq / ns_per_sec)
65 * ns = cycles * (ns_per_sec / freq)
66 * ns = cycles * (10^9 / (cpu_khz * 10^3))
67 * ns = cycles * (10^6 / cpu_khz)
68 *
69 * Then we use scaling math (suggested by george@mvista.com) to get:
70 * ns = cycles * (10^6 * SC / cpu_khz) / SC
71 * ns = cycles * cyc2ns_scale / SC
72 *
73 * And since SC is a constant power of two, we can convert the div
74 * into a shift.
75 *
76 * We can use khz divisor instead of mhz to keep a better precision, since
77 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
78 * (mathieu.desnoyers@polymtl.ca)
79 *
80 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
81 */
82
83 DEFINE_PER_CPU(unsigned long, cyc2ns);
84
85 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
86 {
87 unsigned long long tsc_now, ns_now;
88 unsigned long flags, *scale;
89
90 local_irq_save(flags);
91 sched_clock_idle_sleep_event();
92
93 scale = &per_cpu(cyc2ns, cpu);
94
95 rdtscll(tsc_now);
96 ns_now = __cycles_2_ns(tsc_now);
97
98 if (cpu_khz)
99 *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
100
101 /*
102 * Start smoothly with the new frequency:
103 */
104 sched_clock_idle_wakeup_event(0);
105 local_irq_restore(flags);
106 }
107
108 /*
109 * Scheduler clock - returns current time in nanosec units.
110 */
111 unsigned long long native_sched_clock(void)
112 {
113 unsigned long long this_offset;
114
115 /*
116 * Fall back to jiffies if there's no TSC available:
117 * ( But note that we still use it if the TSC is marked
118 * unstable. We do this because unlike Time Of Day,
119 * the scheduler clock tolerates small errors and it's
120 * very important for it to be as fast as the platform
121 * can achive it. )
122 */
123 if (unlikely(!tsc_enabled && !tsc_unstable))
124 /* No locking but a rare wrong value is not a big deal: */
125 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
126
127 /* read the Time Stamp Counter: */
128 rdtscll(this_offset);
129
130 /* return the value in ns */
131 return cycles_2_ns(this_offset);
132 }
133
134 /* We need to define a real function for sched_clock, to override the
135 weak default version */
136 #ifdef CONFIG_PARAVIRT
137 unsigned long long sched_clock(void)
138 {
139 return paravirt_sched_clock();
140 }
141 #else
142 unsigned long long sched_clock(void)
143 __attribute__((alias("native_sched_clock")));
144 #endif
145
146 unsigned long native_calculate_cpu_khz(void)
147 {
148 unsigned long long start, end;
149 unsigned long count;
150 u64 delta64 = (u64)ULLONG_MAX;
151 int i;
152 unsigned long flags;
153
154 local_irq_save(flags);
155
156 /* run 3 times to ensure the cache is warm and to get an accurate reading */
157 for (i = 0; i < 3; i++) {
158 mach_prepare_counter();
159 rdtscll(start);
160 mach_countup(&count);
161 rdtscll(end);
162
163 /*
164 * Error: ECTCNEVERSET
165 * The CTC wasn't reliable: we got a hit on the very first read,
166 * or the CPU was so fast/slow that the quotient wouldn't fit in
167 * 32 bits..
168 */
169 if (count <= 1)
170 continue;
171
172 /* cpu freq too slow: */
173 if ((end - start) <= CALIBRATE_TIME_MSEC)
174 continue;
175
176 /*
177 * We want the minimum time of all runs in case one of them
178 * is inaccurate due to SMI or other delay
179 */
180 delta64 = min(delta64, (end - start));
181 }
182
183 /* cpu freq too fast (or every run was bad): */
184 if (delta64 > (1ULL<<32))
185 goto err;
186
187 delta64 += CALIBRATE_TIME_MSEC/2; /* round for do_div */
188 do_div(delta64,CALIBRATE_TIME_MSEC);
189
190 local_irq_restore(flags);
191 return (unsigned long)delta64;
192 err:
193 local_irq_restore(flags);
194 return 0;
195 }
196
197 int recalibrate_cpu_khz(void)
198 {
199 #ifndef CONFIG_SMP
200 unsigned long cpu_khz_old = cpu_khz;
201
202 if (cpu_has_tsc) {
203 cpu_khz = calculate_cpu_khz();
204 tsc_khz = cpu_khz;
205 cpu_data(0).loops_per_jiffy =
206 cpufreq_scale(cpu_data(0).loops_per_jiffy,
207 cpu_khz_old, cpu_khz);
208 return 0;
209 } else
210 return -ENODEV;
211 #else
212 return -ENODEV;
213 #endif
214 }
215
216 EXPORT_SYMBOL(recalibrate_cpu_khz);
217
218 #ifdef CONFIG_CPU_FREQ
219
220 /*
221 * if the CPU frequency is scaled, TSC-based delays will need a different
222 * loops_per_jiffy value to function properly.
223 */
224 static unsigned int ref_freq;
225 static unsigned long loops_per_jiffy_ref;
226 static unsigned long cpu_khz_ref;
227
228 static int
229 time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data)
230 {
231 struct cpufreq_freqs *freq = data;
232
233 if (!ref_freq) {
234 if (!freq->old){
235 ref_freq = freq->new;
236 return 0;
237 }
238 ref_freq = freq->old;
239 loops_per_jiffy_ref = cpu_data(freq->cpu).loops_per_jiffy;
240 cpu_khz_ref = cpu_khz;
241 }
242
243 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
244 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
245 (val == CPUFREQ_RESUMECHANGE)) {
246 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
247 cpu_data(freq->cpu).loops_per_jiffy =
248 cpufreq_scale(loops_per_jiffy_ref,
249 ref_freq, freq->new);
250
251 if (cpu_khz) {
252
253 if (num_online_cpus() == 1)
254 cpu_khz = cpufreq_scale(cpu_khz_ref,
255 ref_freq, freq->new);
256 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) {
257 tsc_khz = cpu_khz;
258 set_cyc2ns_scale(cpu_khz, freq->cpu);
259 /*
260 * TSC based sched_clock turns
261 * to junk w/ cpufreq
262 */
263 mark_tsc_unstable("cpufreq changes");
264 }
265 }
266 }
267
268 return 0;
269 }
270
271 static struct notifier_block time_cpufreq_notifier_block = {
272 .notifier_call = time_cpufreq_notifier
273 };
274
275 static int __init cpufreq_tsc(void)
276 {
277 return cpufreq_register_notifier(&time_cpufreq_notifier_block,
278 CPUFREQ_TRANSITION_NOTIFIER);
279 }
280 core_initcall(cpufreq_tsc);
281
282 #endif
283
284 /* clock source code */
285
286 static unsigned long current_tsc_khz;
287 static struct clocksource clocksource_tsc;
288
289 /*
290 * We compare the TSC to the cycle_last value in the clocksource
291 * structure to avoid a nasty time-warp issue. This can be observed in
292 * a very small window right after one CPU updated cycle_last under
293 * xtime lock and the other CPU reads a TSC value which is smaller
294 * than the cycle_last reference value due to a TSC which is slighty
295 * behind. This delta is nowhere else observable, but in that case it
296 * results in a forward time jump in the range of hours due to the
297 * unsigned delta calculation of the time keeping core code, which is
298 * necessary to support wrapping clocksources like pm timer.
299 */
300 static cycle_t read_tsc(void)
301 {
302 cycle_t ret;
303
304 rdtscll(ret);
305
306 return ret >= clocksource_tsc.cycle_last ?
307 ret : clocksource_tsc.cycle_last;
308 }
309
310 static struct clocksource clocksource_tsc = {
311 .name = "tsc",
312 .rating = 300,
313 .read = read_tsc,
314 .mask = CLOCKSOURCE_MASK(64),
315 .mult = 0, /* to be set */
316 .shift = 22,
317 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
318 CLOCK_SOURCE_MUST_VERIFY,
319 };
320
321 void mark_tsc_unstable(char *reason)
322 {
323 if (!tsc_unstable) {
324 tsc_unstable = 1;
325 tsc_enabled = 0;
326 printk("Marking TSC unstable due to: %s.\n", reason);
327 /* Can be called before registration */
328 if (clocksource_tsc.mult)
329 clocksource_change_rating(&clocksource_tsc, 0);
330 else
331 clocksource_tsc.rating = 0;
332 }
333 }
334 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
335
336 static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
337 {
338 printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
339 d->ident);
340 tsc_unstable = 1;
341 return 0;
342 }
343
344 /* List of systems that have known TSC problems */
345 static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
346 {
347 .callback = dmi_mark_tsc_unstable,
348 .ident = "IBM Thinkpad 380XD",
349 .matches = {
350 DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
351 DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
352 },
353 },
354 {}
355 };
356
357 /*
358 * Make an educated guess if the TSC is trustworthy and synchronized
359 * over all CPUs.
360 */
361 __cpuinit int unsynchronized_tsc(void)
362 {
363 if (!cpu_has_tsc || tsc_unstable)
364 return 1;
365
366 /* Anything with constant TSC should be synchronized */
367 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
368 return 0;
369
370 /*
371 * Intel systems are normally all synchronized.
372 * Exceptions must mark TSC as unstable:
373 */
374 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
375 /* assume multi socket systems are not synchronized: */
376 if (num_possible_cpus() > 1)
377 tsc_unstable = 1;
378 }
379 return tsc_unstable;
380 }
381
382 /*
383 * Geode_LX - the OLPC CPU has a possibly a very reliable TSC
384 */
385 #ifdef CONFIG_MGEODE_LX
386 /* RTSC counts during suspend */
387 #define RTSC_SUSP 0x100
388
389 static void __init check_geode_tsc_reliable(void)
390 {
391 unsigned long res_low, res_high;
392
393 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
394 if (res_low & RTSC_SUSP)
395 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
396 }
397 #else
398 static inline void check_geode_tsc_reliable(void) { }
399 #endif
400
401
402 void __init tsc_init(void)
403 {
404 int cpu;
405
406 if (!cpu_has_tsc)
407 return;
408
409 cpu_khz = calculate_cpu_khz();
410 tsc_khz = cpu_khz;
411
412 if (!cpu_khz) {
413 mark_tsc_unstable("could not calculate TSC khz");
414 return;
415 }
416
417 printk("Detected %lu.%03lu MHz processor.\n",
418 (unsigned long)cpu_khz / 1000,
419 (unsigned long)cpu_khz % 1000);
420
421 /*
422 * Secondary CPUs do not run through tsc_init(), so set up
423 * all the scale factors for all CPUs, assuming the same
424 * speed as the bootup CPU. (cpufreq notifiers will fix this
425 * up if their speed diverges)
426 */
427 for_each_possible_cpu(cpu)
428 set_cyc2ns_scale(cpu_khz, cpu);
429
430 use_tsc_delay();
431
432 /* Check and install the TSC clocksource */
433 dmi_check_system(bad_tsc_dmi_table);
434
435 unsynchronized_tsc();
436 check_geode_tsc_reliable();
437 current_tsc_khz = tsc_khz;
438 clocksource_tsc.mult = clocksource_khz2mult(current_tsc_khz,
439 clocksource_tsc.shift);
440 /* lower the rating if we already know its unstable: */
441 if (check_tsc_unstable()) {
442 clocksource_tsc.rating = 0;
443 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
444 } else
445 tsc_enabled = 1;
446
447 clocksource_register(&clocksource_tsc);
448 }