]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/uprobes.c
Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / uprobes.c
1 /*
2 * User-space Probes (UProbes) for x86
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2011
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 */
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/uaccess.h>
28
29 #include <linux/kdebug.h>
30 #include <asm/processor.h>
31 #include <asm/insn.h>
32 #include <asm/mmu_context.h>
33
34 /* Post-execution fixups. */
35
36 /* Adjust IP back to vicinity of actual insn */
37 #define UPROBE_FIX_IP 0x01
38
39 /* Adjust the return address of a call insn */
40 #define UPROBE_FIX_CALL 0x02
41
42 /* Instruction will modify TF, don't change it */
43 #define UPROBE_FIX_SETF 0x04
44
45 #define UPROBE_FIX_RIP_SI 0x08
46 #define UPROBE_FIX_RIP_DI 0x10
47 #define UPROBE_FIX_RIP_BX 0x20
48 #define UPROBE_FIX_RIP_MASK \
49 (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
50
51 #define UPROBE_TRAP_NR UINT_MAX
52
53 /* Adaptations for mhiramat x86 decoder v14. */
54 #define OPCODE1(insn) ((insn)->opcode.bytes[0])
55 #define OPCODE2(insn) ((insn)->opcode.bytes[1])
56 #define OPCODE3(insn) ((insn)->opcode.bytes[2])
57 #define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value)
58
59 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
60 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
61 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
62 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
63 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
64 << (row % 32))
65
66 /*
67 * Good-instruction tables for 32-bit apps. This is non-const and volatile
68 * to keep gcc from statically optimizing it out, as variable_test_bit makes
69 * some versions of gcc to think only *(unsigned long*) is used.
70 *
71 * Opcodes we'll probably never support:
72 * 6c-6f - ins,outs. SEGVs if used in userspace
73 * e4-e7 - in,out imm. SEGVs if used in userspace
74 * ec-ef - in,out acc. SEGVs if used in userspace
75 * cc - int3. SIGTRAP if used in userspace
76 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
77 * (why we support bound (62) then? it's similar, and similarly unused...)
78 * f1 - int1. SIGTRAP if used in userspace
79 * f4 - hlt. SEGVs if used in userspace
80 * fa - cli. SEGVs if used in userspace
81 * fb - sti. SEGVs if used in userspace
82 *
83 * Opcodes which need some work to be supported:
84 * 07,17,1f - pop es/ss/ds
85 * Normally not used in userspace, but would execute if used.
86 * Can cause GP or stack exception if tries to load wrong segment descriptor.
87 * We hesitate to run them under single step since kernel's handling
88 * of userspace single-stepping (TF flag) is fragile.
89 * We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
90 * on the same grounds that they are never used.
91 * cd - int N.
92 * Used by userspace for "int 80" syscall entry. (Other "int N"
93 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
94 * Not supported since kernel's handling of userspace single-stepping
95 * (TF flag) is fragile.
96 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
97 */
98 #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
99 static volatile u32 good_insns_32[256 / 32] = {
100 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
101 /* ---------------------------------------------- */
102 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
103 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
104 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
105 W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
106 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
107 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
108 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
109 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
110 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
111 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
112 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
113 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
114 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
115 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
116 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
117 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
118 /* ---------------------------------------------- */
119 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
120 };
121 #else
122 #define good_insns_32 NULL
123 #endif
124
125 /* Good-instruction tables for 64-bit apps.
126 *
127 * Genuinely invalid opcodes:
128 * 06,07 - formerly push/pop es
129 * 0e - formerly push cs
130 * 16,17 - formerly push/pop ss
131 * 1e,1f - formerly push/pop ds
132 * 27,2f,37,3f - formerly daa/das/aaa/aas
133 * 60,61 - formerly pusha/popa
134 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
135 * 82 - formerly redundant encoding of Group1
136 * 9a - formerly call seg:ofs
137 * ce - formerly into
138 * d4,d5 - formerly aam/aad
139 * d6 - formerly undocumented salc
140 * ea - formerly jmp seg:ofs
141 *
142 * Opcodes we'll probably never support:
143 * 6c-6f - ins,outs. SEGVs if used in userspace
144 * e4-e7 - in,out imm. SEGVs if used in userspace
145 * ec-ef - in,out acc. SEGVs if used in userspace
146 * cc - int3. SIGTRAP if used in userspace
147 * f1 - int1. SIGTRAP if used in userspace
148 * f4 - hlt. SEGVs if used in userspace
149 * fa - cli. SEGVs if used in userspace
150 * fb - sti. SEGVs if used in userspace
151 *
152 * Opcodes which need some work to be supported:
153 * cd - int N.
154 * Used by userspace for "int 80" syscall entry. (Other "int N"
155 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
156 * Not supported since kernel's handling of userspace single-stepping
157 * (TF flag) is fragile.
158 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
159 */
160 #if defined(CONFIG_X86_64)
161 static volatile u32 good_insns_64[256 / 32] = {
162 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
163 /* ---------------------------------------------- */
164 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
165 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
166 W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
167 W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
168 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
169 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
170 W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
171 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
172 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
173 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
174 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
175 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
176 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
177 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
178 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
179 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
180 /* ---------------------------------------------- */
181 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
182 };
183 #else
184 #define good_insns_64 NULL
185 #endif
186
187 /* Using this for both 64-bit and 32-bit apps.
188 * Opcodes we don't support:
189 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
190 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
191 * Also encodes tons of other system insns if mod=11.
192 * Some are in fact non-system: xend, xtest, rdtscp, maybe more
193 * 0f 05 - syscall
194 * 0f 06 - clts (CPL0 insn)
195 * 0f 07 - sysret
196 * 0f 08 - invd (CPL0 insn)
197 * 0f 09 - wbinvd (CPL0 insn)
198 * 0f 0b - ud2
199 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
200 * 0f 34 - sysenter
201 * 0f 35 - sysexit
202 * 0f 37 - getsec
203 * 0f 78 - vmread (Intel VMX. CPL0 insn)
204 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
205 * Note: with prefixes, these two opcodes are
206 * extrq/insertq/AVX512 convert vector ops.
207 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
208 * {rd,wr}{fs,gs}base,{s,l,m}fence.
209 * Why? They are all user-executable.
210 */
211 static volatile u32 good_2byte_insns[256 / 32] = {
212 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
213 /* ---------------------------------------------- */
214 W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
215 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
216 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
217 W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
218 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
219 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
220 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
221 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
222 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
223 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
224 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
225 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
226 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
227 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
228 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
229 W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /* f0 */
230 /* ---------------------------------------------- */
231 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
232 };
233 #undef W
234
235 /*
236 * opcodes we may need to refine support for:
237 *
238 * 0f - 2-byte instructions: For many of these instructions, the validity
239 * depends on the prefix and/or the reg field. On such instructions, we
240 * just consider the opcode combination valid if it corresponds to any
241 * valid instruction.
242 *
243 * 8f - Group 1 - only reg = 0 is OK
244 * c6-c7 - Group 11 - only reg = 0 is OK
245 * d9-df - fpu insns with some illegal encodings
246 * f2, f3 - repnz, repz prefixes. These are also the first byte for
247 * certain floating-point instructions, such as addsd.
248 *
249 * fe - Group 4 - only reg = 0 or 1 is OK
250 * ff - Group 5 - only reg = 0-6 is OK
251 *
252 * others -- Do we need to support these?
253 *
254 * 0f - (floating-point?) prefetch instructions
255 * 07, 17, 1f - pop es, pop ss, pop ds
256 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
257 * but 64 and 65 (fs: and gs:) seem to be used, so we support them
258 * 67 - addr16 prefix
259 * ce - into
260 * f0 - lock prefix
261 */
262
263 /*
264 * TODO:
265 * - Where necessary, examine the modrm byte and allow only valid instructions
266 * in the different Groups and fpu instructions.
267 */
268
269 static bool is_prefix_bad(struct insn *insn)
270 {
271 int i;
272
273 for (i = 0; i < insn->prefixes.nbytes; i++) {
274 insn_attr_t attr;
275
276 attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
277 switch (attr) {
278 case INAT_MAKE_PREFIX(INAT_PFX_ES):
279 case INAT_MAKE_PREFIX(INAT_PFX_CS):
280 case INAT_MAKE_PREFIX(INAT_PFX_DS):
281 case INAT_MAKE_PREFIX(INAT_PFX_SS):
282 case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
283 return true;
284 }
285 }
286 return false;
287 }
288
289 static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
290 {
291 u32 volatile *good_insns;
292
293 insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
294 /* has the side-effect of processing the entire instruction */
295 insn_get_length(insn);
296 if (WARN_ON_ONCE(!insn_complete(insn)))
297 return -ENOEXEC;
298
299 if (is_prefix_bad(insn))
300 return -ENOTSUPP;
301
302 if (x86_64)
303 good_insns = good_insns_64;
304 else
305 good_insns = good_insns_32;
306
307 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
308 return 0;
309
310 if (insn->opcode.nbytes == 2) {
311 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
312 return 0;
313 }
314
315 return -ENOTSUPP;
316 }
317
318 #ifdef CONFIG_X86_64
319 /*
320 * If arch_uprobe->insn doesn't use rip-relative addressing, return
321 * immediately. Otherwise, rewrite the instruction so that it accesses
322 * its memory operand indirectly through a scratch register. Set
323 * defparam->fixups accordingly. (The contents of the scratch register
324 * will be saved before we single-step the modified instruction,
325 * and restored afterward).
326 *
327 * We do this because a rip-relative instruction can access only a
328 * relatively small area (+/- 2 GB from the instruction), and the XOL
329 * area typically lies beyond that area. At least for instructions
330 * that store to memory, we can't execute the original instruction
331 * and "fix things up" later, because the misdirected store could be
332 * disastrous.
333 *
334 * Some useful facts about rip-relative instructions:
335 *
336 * - There's always a modrm byte with bit layout "00 reg 101".
337 * - There's never a SIB byte.
338 * - The displacement is always 4 bytes.
339 * - REX.B=1 bit in REX prefix, which normally extends r/m field,
340 * has no effect on rip-relative mode. It doesn't make modrm byte
341 * with r/m=101 refer to register 1101 = R13.
342 */
343 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
344 {
345 u8 *cursor;
346 u8 reg;
347 u8 reg2;
348
349 if (!insn_rip_relative(insn))
350 return;
351
352 /*
353 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
354 * Clear REX.b bit (extension of MODRM.rm field):
355 * we want to encode low numbered reg, not r8+.
356 */
357 if (insn->rex_prefix.nbytes) {
358 cursor = auprobe->insn + insn_offset_rex_prefix(insn);
359 /* REX byte has 0100wrxb layout, clearing REX.b bit */
360 *cursor &= 0xfe;
361 }
362 /*
363 * Similar treatment for VEX3/EVEX prefix.
364 * TODO: add XOP treatment when insn decoder supports them
365 */
366 if (insn->vex_prefix.nbytes >= 3) {
367 /*
368 * vex2: c5 rvvvvLpp (has no b bit)
369 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
370 * evex: 62 rxbR00mm wvvvv1pp zllBVaaa
371 * Setting VEX3.b (setting because it has inverted meaning).
372 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
373 * is the 4th bit of MODRM.rm, and needs the same treatment.
374 * For VEX3-encoded insns, VEX3.x value has no effect in
375 * non-SIB encoding, the change is superfluous but harmless.
376 */
377 cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
378 *cursor |= 0x60;
379 }
380
381 /*
382 * Convert from rip-relative addressing to register-relative addressing
383 * via a scratch register.
384 *
385 * This is tricky since there are insns with modrm byte
386 * which also use registers not encoded in modrm byte:
387 * [i]div/[i]mul: implicitly use dx:ax
388 * shift ops: implicitly use cx
389 * cmpxchg: implicitly uses ax
390 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
391 * Encoding: 0f c7/1 modrm
392 * The code below thinks that reg=1 (cx), chooses si as scratch.
393 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
394 * First appeared in Haswell (BMI2 insn). It is vex-encoded.
395 * Example where none of bx,cx,dx can be used as scratch reg:
396 * c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx
397 * [v]pcmpistri: implicitly uses cx, xmm0
398 * [v]pcmpistrm: implicitly uses xmm0
399 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
400 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
401 * Evil SSE4.2 string comparison ops from hell.
402 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
403 * Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
404 * Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
405 * AMD says it has no 3-operand form (vex.vvvv must be 1111)
406 * and that it can have only register operands, not mem
407 * (its modrm byte must have mode=11).
408 * If these restrictions will ever be lifted,
409 * we'll need code to prevent selection of di as scratch reg!
410 *
411 * Summary: I don't know any insns with modrm byte which
412 * use SI register implicitly. DI register is used only
413 * by one insn (maskmovq) and BX register is used
414 * only by one too (cmpxchg8b).
415 * BP is stack-segment based (may be a problem?).
416 * AX, DX, CX are off-limits (many implicit users).
417 * SP is unusable (it's stack pointer - think about "pop mem";
418 * also, rsp+disp32 needs sib encoding -> insn length change).
419 */
420
421 reg = MODRM_REG(insn); /* Fetch modrm.reg */
422 reg2 = 0xff; /* Fetch vex.vvvv */
423 if (insn->vex_prefix.nbytes)
424 reg2 = insn->vex_prefix.bytes[2];
425 /*
426 * TODO: add XOP vvvv reading.
427 *
428 * vex.vvvv field is in bits 6-3, bits are inverted.
429 * But in 32-bit mode, high-order bit may be ignored.
430 * Therefore, let's consider only 3 low-order bits.
431 */
432 reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
433 /*
434 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
435 *
436 * Choose scratch reg. Order is important: must not select bx
437 * if we can use si (cmpxchg8b case!)
438 */
439 if (reg != 6 && reg2 != 6) {
440 reg2 = 6;
441 auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
442 } else if (reg != 7 && reg2 != 7) {
443 reg2 = 7;
444 auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
445 /* TODO (paranoia): force maskmovq to not use di */
446 } else {
447 reg2 = 3;
448 auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
449 }
450 /*
451 * Point cursor at the modrm byte. The next 4 bytes are the
452 * displacement. Beyond the displacement, for some instructions,
453 * is the immediate operand.
454 */
455 cursor = auprobe->insn + insn_offset_modrm(insn);
456 /*
457 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
458 * 89 05 disp32 mov %eax,disp32(%rip) becomes
459 * 89 86 disp32 mov %eax,disp32(%rsi)
460 */
461 *cursor = 0x80 | (reg << 3) | reg2;
462 }
463
464 static inline unsigned long *
465 scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
466 {
467 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
468 return &regs->si;
469 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
470 return &regs->di;
471 return &regs->bx;
472 }
473
474 /*
475 * If we're emulating a rip-relative instruction, save the contents
476 * of the scratch register and store the target address in that register.
477 */
478 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
479 {
480 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
481 struct uprobe_task *utask = current->utask;
482 unsigned long *sr = scratch_reg(auprobe, regs);
483
484 utask->autask.saved_scratch_register = *sr;
485 *sr = utask->vaddr + auprobe->defparam.ilen;
486 }
487 }
488
489 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
490 {
491 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
492 struct uprobe_task *utask = current->utask;
493 unsigned long *sr = scratch_reg(auprobe, regs);
494
495 *sr = utask->autask.saved_scratch_register;
496 }
497 }
498 #else /* 32-bit: */
499 /*
500 * No RIP-relative addressing on 32-bit
501 */
502 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
503 {
504 }
505 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
506 {
507 }
508 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
509 {
510 }
511 #endif /* CONFIG_X86_64 */
512
513 struct uprobe_xol_ops {
514 bool (*emulate)(struct arch_uprobe *, struct pt_regs *);
515 int (*pre_xol)(struct arch_uprobe *, struct pt_regs *);
516 int (*post_xol)(struct arch_uprobe *, struct pt_regs *);
517 void (*abort)(struct arch_uprobe *, struct pt_regs *);
518 };
519
520 static inline int sizeof_long(void)
521 {
522 return in_ia32_syscall() ? 4 : 8;
523 }
524
525 static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
526 {
527 riprel_pre_xol(auprobe, regs);
528 return 0;
529 }
530
531 static int push_ret_address(struct pt_regs *regs, unsigned long ip)
532 {
533 unsigned long new_sp = regs->sp - sizeof_long();
534
535 if (copy_to_user((void __user *)new_sp, &ip, sizeof_long()))
536 return -EFAULT;
537
538 regs->sp = new_sp;
539 return 0;
540 }
541
542 /*
543 * We have to fix things up as follows:
544 *
545 * Typically, the new ip is relative to the copied instruction. We need
546 * to make it relative to the original instruction (FIX_IP). Exceptions
547 * are return instructions and absolute or indirect jump or call instructions.
548 *
549 * If the single-stepped instruction was a call, the return address that
550 * is atop the stack is the address following the copied instruction. We
551 * need to make it the address following the original instruction (FIX_CALL).
552 *
553 * If the original instruction was a rip-relative instruction such as
554 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
555 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
556 * We need to restore the contents of the scratch register
557 * (FIX_RIP_reg).
558 */
559 static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
560 {
561 struct uprobe_task *utask = current->utask;
562
563 riprel_post_xol(auprobe, regs);
564 if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
565 long correction = utask->vaddr - utask->xol_vaddr;
566 regs->ip += correction;
567 } else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
568 regs->sp += sizeof_long(); /* Pop incorrect return address */
569 if (push_ret_address(regs, utask->vaddr + auprobe->defparam.ilen))
570 return -ERESTART;
571 }
572 /* popf; tell the caller to not touch TF */
573 if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
574 utask->autask.saved_tf = true;
575
576 return 0;
577 }
578
579 static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
580 {
581 riprel_post_xol(auprobe, regs);
582 }
583
584 static const struct uprobe_xol_ops default_xol_ops = {
585 .pre_xol = default_pre_xol_op,
586 .post_xol = default_post_xol_op,
587 .abort = default_abort_op,
588 };
589
590 static bool branch_is_call(struct arch_uprobe *auprobe)
591 {
592 return auprobe->branch.opc1 == 0xe8;
593 }
594
595 #define CASE_COND \
596 COND(70, 71, XF(OF)) \
597 COND(72, 73, XF(CF)) \
598 COND(74, 75, XF(ZF)) \
599 COND(78, 79, XF(SF)) \
600 COND(7a, 7b, XF(PF)) \
601 COND(76, 77, XF(CF) || XF(ZF)) \
602 COND(7c, 7d, XF(SF) != XF(OF)) \
603 COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
604
605 #define COND(op_y, op_n, expr) \
606 case 0x ## op_y: DO((expr) != 0) \
607 case 0x ## op_n: DO((expr) == 0)
608
609 #define XF(xf) (!!(flags & X86_EFLAGS_ ## xf))
610
611 static bool is_cond_jmp_opcode(u8 opcode)
612 {
613 switch (opcode) {
614 #define DO(expr) \
615 return true;
616 CASE_COND
617 #undef DO
618
619 default:
620 return false;
621 }
622 }
623
624 static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
625 {
626 unsigned long flags = regs->flags;
627
628 switch (auprobe->branch.opc1) {
629 #define DO(expr) \
630 return expr;
631 CASE_COND
632 #undef DO
633
634 default: /* not a conditional jmp */
635 return true;
636 }
637 }
638
639 #undef XF
640 #undef COND
641 #undef CASE_COND
642
643 static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
644 {
645 unsigned long new_ip = regs->ip += auprobe->branch.ilen;
646 unsigned long offs = (long)auprobe->branch.offs;
647
648 if (branch_is_call(auprobe)) {
649 /*
650 * If it fails we execute this (mangled, see the comment in
651 * branch_clear_offset) insn out-of-line. In the likely case
652 * this should trigger the trap, and the probed application
653 * should die or restart the same insn after it handles the
654 * signal, arch_uprobe_post_xol() won't be even called.
655 *
656 * But there is corner case, see the comment in ->post_xol().
657 */
658 if (push_ret_address(regs, new_ip))
659 return false;
660 } else if (!check_jmp_cond(auprobe, regs)) {
661 offs = 0;
662 }
663
664 regs->ip = new_ip + offs;
665 return true;
666 }
667
668 static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
669 {
670 BUG_ON(!branch_is_call(auprobe));
671 /*
672 * We can only get here if branch_emulate_op() failed to push the ret
673 * address _and_ another thread expanded our stack before the (mangled)
674 * "call" insn was executed out-of-line. Just restore ->sp and restart.
675 * We could also restore ->ip and try to call branch_emulate_op() again.
676 */
677 regs->sp += sizeof_long();
678 return -ERESTART;
679 }
680
681 static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
682 {
683 /*
684 * Turn this insn into "call 1f; 1:", this is what we will execute
685 * out-of-line if ->emulate() fails. We only need this to generate
686 * a trap, so that the probed task receives the correct signal with
687 * the properly filled siginfo.
688 *
689 * But see the comment in ->post_xol(), in the unlikely case it can
690 * succeed. So we need to ensure that the new ->ip can not fall into
691 * the non-canonical area and trigger #GP.
692 *
693 * We could turn it into (say) "pushf", but then we would need to
694 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
695 * of ->insn[] for set_orig_insn().
696 */
697 memset(auprobe->insn + insn_offset_immediate(insn),
698 0, insn->immediate.nbytes);
699 }
700
701 static const struct uprobe_xol_ops branch_xol_ops = {
702 .emulate = branch_emulate_op,
703 .post_xol = branch_post_xol_op,
704 };
705
706 /* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
707 static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
708 {
709 u8 opc1 = OPCODE1(insn);
710 int i;
711
712 switch (opc1) {
713 case 0xeb: /* jmp 8 */
714 case 0xe9: /* jmp 32 */
715 case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */
716 break;
717
718 case 0xe8: /* call relative */
719 branch_clear_offset(auprobe, insn);
720 break;
721
722 case 0x0f:
723 if (insn->opcode.nbytes != 2)
724 return -ENOSYS;
725 /*
726 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
727 * OPCODE1() of the "short" jmp which checks the same condition.
728 */
729 opc1 = OPCODE2(insn) - 0x10;
730 default:
731 if (!is_cond_jmp_opcode(opc1))
732 return -ENOSYS;
733 }
734
735 /*
736 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
737 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
738 * No one uses these insns, reject any branch insns with such prefix.
739 */
740 for (i = 0; i < insn->prefixes.nbytes; i++) {
741 if (insn->prefixes.bytes[i] == 0x66)
742 return -ENOTSUPP;
743 }
744
745 auprobe->branch.opc1 = opc1;
746 auprobe->branch.ilen = insn->length;
747 auprobe->branch.offs = insn->immediate.value;
748
749 auprobe->ops = &branch_xol_ops;
750 return 0;
751 }
752
753 /**
754 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
755 * @mm: the probed address space.
756 * @arch_uprobe: the probepoint information.
757 * @addr: virtual address at which to install the probepoint
758 * Return 0 on success or a -ve number on error.
759 */
760 int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
761 {
762 struct insn insn;
763 u8 fix_ip_or_call = UPROBE_FIX_IP;
764 int ret;
765
766 ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
767 if (ret)
768 return ret;
769
770 ret = branch_setup_xol_ops(auprobe, &insn);
771 if (ret != -ENOSYS)
772 return ret;
773
774 /*
775 * Figure out which fixups default_post_xol_op() will need to perform,
776 * and annotate defparam->fixups accordingly.
777 */
778 switch (OPCODE1(&insn)) {
779 case 0x9d: /* popf */
780 auprobe->defparam.fixups |= UPROBE_FIX_SETF;
781 break;
782 case 0xc3: /* ret or lret -- ip is correct */
783 case 0xcb:
784 case 0xc2:
785 case 0xca:
786 case 0xea: /* jmp absolute -- ip is correct */
787 fix_ip_or_call = 0;
788 break;
789 case 0x9a: /* call absolute - Fix return addr, not ip */
790 fix_ip_or_call = UPROBE_FIX_CALL;
791 break;
792 case 0xff:
793 switch (MODRM_REG(&insn)) {
794 case 2: case 3: /* call or lcall, indirect */
795 fix_ip_or_call = UPROBE_FIX_CALL;
796 break;
797 case 4: case 5: /* jmp or ljmp, indirect */
798 fix_ip_or_call = 0;
799 break;
800 }
801 /* fall through */
802 default:
803 riprel_analyze(auprobe, &insn);
804 }
805
806 auprobe->defparam.ilen = insn.length;
807 auprobe->defparam.fixups |= fix_ip_or_call;
808
809 auprobe->ops = &default_xol_ops;
810 return 0;
811 }
812
813 /*
814 * arch_uprobe_pre_xol - prepare to execute out of line.
815 * @auprobe: the probepoint information.
816 * @regs: reflects the saved user state of current task.
817 */
818 int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
819 {
820 struct uprobe_task *utask = current->utask;
821
822 if (auprobe->ops->pre_xol) {
823 int err = auprobe->ops->pre_xol(auprobe, regs);
824 if (err)
825 return err;
826 }
827
828 regs->ip = utask->xol_vaddr;
829 utask->autask.saved_trap_nr = current->thread.trap_nr;
830 current->thread.trap_nr = UPROBE_TRAP_NR;
831
832 utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
833 regs->flags |= X86_EFLAGS_TF;
834 if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
835 set_task_blockstep(current, false);
836
837 return 0;
838 }
839
840 /*
841 * If xol insn itself traps and generates a signal(Say,
842 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
843 * instruction jumps back to its own address. It is assumed that anything
844 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
845 *
846 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
847 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
848 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
849 */
850 bool arch_uprobe_xol_was_trapped(struct task_struct *t)
851 {
852 if (t->thread.trap_nr != UPROBE_TRAP_NR)
853 return true;
854
855 return false;
856 }
857
858 /*
859 * Called after single-stepping. To avoid the SMP problems that can
860 * occur when we temporarily put back the original opcode to
861 * single-step, we single-stepped a copy of the instruction.
862 *
863 * This function prepares to resume execution after the single-step.
864 */
865 int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
866 {
867 struct uprobe_task *utask = current->utask;
868 bool send_sigtrap = utask->autask.saved_tf;
869 int err = 0;
870
871 WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
872 current->thread.trap_nr = utask->autask.saved_trap_nr;
873
874 if (auprobe->ops->post_xol) {
875 err = auprobe->ops->post_xol(auprobe, regs);
876 if (err) {
877 /*
878 * Restore ->ip for restart or post mortem analysis.
879 * ->post_xol() must not return -ERESTART unless this
880 * is really possible.
881 */
882 regs->ip = utask->vaddr;
883 if (err == -ERESTART)
884 err = 0;
885 send_sigtrap = false;
886 }
887 }
888 /*
889 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
890 * so we can get an extra SIGTRAP if we do not clear TF. We need
891 * to examine the opcode to make it right.
892 */
893 if (send_sigtrap)
894 send_sig(SIGTRAP, current, 0);
895
896 if (!utask->autask.saved_tf)
897 regs->flags &= ~X86_EFLAGS_TF;
898
899 return err;
900 }
901
902 /* callback routine for handling exceptions. */
903 int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
904 {
905 struct die_args *args = data;
906 struct pt_regs *regs = args->regs;
907 int ret = NOTIFY_DONE;
908
909 /* We are only interested in userspace traps */
910 if (regs && !user_mode(regs))
911 return NOTIFY_DONE;
912
913 switch (val) {
914 case DIE_INT3:
915 if (uprobe_pre_sstep_notifier(regs))
916 ret = NOTIFY_STOP;
917
918 break;
919
920 case DIE_DEBUG:
921 if (uprobe_post_sstep_notifier(regs))
922 ret = NOTIFY_STOP;
923
924 default:
925 break;
926 }
927
928 return ret;
929 }
930
931 /*
932 * This function gets called when XOL instruction either gets trapped or
933 * the thread has a fatal signal. Reset the instruction pointer to its
934 * probed address for the potential restart or for post mortem analysis.
935 */
936 void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
937 {
938 struct uprobe_task *utask = current->utask;
939
940 if (auprobe->ops->abort)
941 auprobe->ops->abort(auprobe, regs);
942
943 current->thread.trap_nr = utask->autask.saved_trap_nr;
944 regs->ip = utask->vaddr;
945 /* clear TF if it was set by us in arch_uprobe_pre_xol() */
946 if (!utask->autask.saved_tf)
947 regs->flags &= ~X86_EFLAGS_TF;
948 }
949
950 static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
951 {
952 if (auprobe->ops->emulate)
953 return auprobe->ops->emulate(auprobe, regs);
954 return false;
955 }
956
957 bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
958 {
959 bool ret = __skip_sstep(auprobe, regs);
960 if (ret && (regs->flags & X86_EFLAGS_TF))
961 send_sig(SIGTRAP, current, 0);
962 return ret;
963 }
964
965 unsigned long
966 arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
967 {
968 int rasize = sizeof_long(), nleft;
969 unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
970
971 if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
972 return -1;
973
974 /* check whether address has been already hijacked */
975 if (orig_ret_vaddr == trampoline_vaddr)
976 return orig_ret_vaddr;
977
978 nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
979 if (likely(!nleft))
980 return orig_ret_vaddr;
981
982 if (nleft != rasize) {
983 pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
984 "%%ip=%#lx\n", current->pid, regs->sp, regs->ip);
985
986 force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
987 }
988
989 return -1;
990 }
991
992 bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
993 struct pt_regs *regs)
994 {
995 if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
996 return regs->sp < ret->stack;
997 else
998 return regs->sp <= ret->stack;
999 }