]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/uprobes.c
timekeeping: Repair ktime_get_coarse*() granularity
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / uprobes.c
1 /*
2 * User-space Probes (UProbes) for x86
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2011
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 */
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/uaccess.h>
28
29 #include <linux/kdebug.h>
30 #include <asm/processor.h>
31 #include <asm/insn.h>
32 #include <asm/mmu_context.h>
33
34 /* Post-execution fixups. */
35
36 /* Adjust IP back to vicinity of actual insn */
37 #define UPROBE_FIX_IP 0x01
38
39 /* Adjust the return address of a call insn */
40 #define UPROBE_FIX_CALL 0x02
41
42 /* Instruction will modify TF, don't change it */
43 #define UPROBE_FIX_SETF 0x04
44
45 #define UPROBE_FIX_RIP_SI 0x08
46 #define UPROBE_FIX_RIP_DI 0x10
47 #define UPROBE_FIX_RIP_BX 0x20
48 #define UPROBE_FIX_RIP_MASK \
49 (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
50
51 #define UPROBE_TRAP_NR UINT_MAX
52
53 /* Adaptations for mhiramat x86 decoder v14. */
54 #define OPCODE1(insn) ((insn)->opcode.bytes[0])
55 #define OPCODE2(insn) ((insn)->opcode.bytes[1])
56 #define OPCODE3(insn) ((insn)->opcode.bytes[2])
57 #define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value)
58
59 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
60 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
61 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
62 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
63 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
64 << (row % 32))
65
66 /*
67 * Good-instruction tables for 32-bit apps. This is non-const and volatile
68 * to keep gcc from statically optimizing it out, as variable_test_bit makes
69 * some versions of gcc to think only *(unsigned long*) is used.
70 *
71 * Opcodes we'll probably never support:
72 * 6c-6f - ins,outs. SEGVs if used in userspace
73 * e4-e7 - in,out imm. SEGVs if used in userspace
74 * ec-ef - in,out acc. SEGVs if used in userspace
75 * cc - int3. SIGTRAP if used in userspace
76 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
77 * (why we support bound (62) then? it's similar, and similarly unused...)
78 * f1 - int1. SIGTRAP if used in userspace
79 * f4 - hlt. SEGVs if used in userspace
80 * fa - cli. SEGVs if used in userspace
81 * fb - sti. SEGVs if used in userspace
82 *
83 * Opcodes which need some work to be supported:
84 * 07,17,1f - pop es/ss/ds
85 * Normally not used in userspace, but would execute if used.
86 * Can cause GP or stack exception if tries to load wrong segment descriptor.
87 * We hesitate to run them under single step since kernel's handling
88 * of userspace single-stepping (TF flag) is fragile.
89 * We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
90 * on the same grounds that they are never used.
91 * cd - int N.
92 * Used by userspace for "int 80" syscall entry. (Other "int N"
93 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
94 * Not supported since kernel's handling of userspace single-stepping
95 * (TF flag) is fragile.
96 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
97 */
98 #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
99 static volatile u32 good_insns_32[256 / 32] = {
100 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
101 /* ---------------------------------------------- */
102 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
103 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
104 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
105 W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
106 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
107 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
108 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
109 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
110 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
111 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
112 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
113 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
114 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
115 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
116 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
117 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
118 /* ---------------------------------------------- */
119 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
120 };
121 #else
122 #define good_insns_32 NULL
123 #endif
124
125 /* Good-instruction tables for 64-bit apps.
126 *
127 * Genuinely invalid opcodes:
128 * 06,07 - formerly push/pop es
129 * 0e - formerly push cs
130 * 16,17 - formerly push/pop ss
131 * 1e,1f - formerly push/pop ds
132 * 27,2f,37,3f - formerly daa/das/aaa/aas
133 * 60,61 - formerly pusha/popa
134 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
135 * 82 - formerly redundant encoding of Group1
136 * 9a - formerly call seg:ofs
137 * ce - formerly into
138 * d4,d5 - formerly aam/aad
139 * d6 - formerly undocumented salc
140 * ea - formerly jmp seg:ofs
141 *
142 * Opcodes we'll probably never support:
143 * 6c-6f - ins,outs. SEGVs if used in userspace
144 * e4-e7 - in,out imm. SEGVs if used in userspace
145 * ec-ef - in,out acc. SEGVs if used in userspace
146 * cc - int3. SIGTRAP if used in userspace
147 * f1 - int1. SIGTRAP if used in userspace
148 * f4 - hlt. SEGVs if used in userspace
149 * fa - cli. SEGVs if used in userspace
150 * fb - sti. SEGVs if used in userspace
151 *
152 * Opcodes which need some work to be supported:
153 * cd - int N.
154 * Used by userspace for "int 80" syscall entry. (Other "int N"
155 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
156 * Not supported since kernel's handling of userspace single-stepping
157 * (TF flag) is fragile.
158 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
159 */
160 #if defined(CONFIG_X86_64)
161 static volatile u32 good_insns_64[256 / 32] = {
162 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
163 /* ---------------------------------------------- */
164 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
165 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
166 W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
167 W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
168 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
169 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
170 W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
171 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
172 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
173 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
174 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
175 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
176 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
177 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
178 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
179 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
180 /* ---------------------------------------------- */
181 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
182 };
183 #else
184 #define good_insns_64 NULL
185 #endif
186
187 /* Using this for both 64-bit and 32-bit apps.
188 * Opcodes we don't support:
189 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
190 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
191 * Also encodes tons of other system insns if mod=11.
192 * Some are in fact non-system: xend, xtest, rdtscp, maybe more
193 * 0f 05 - syscall
194 * 0f 06 - clts (CPL0 insn)
195 * 0f 07 - sysret
196 * 0f 08 - invd (CPL0 insn)
197 * 0f 09 - wbinvd (CPL0 insn)
198 * 0f 0b - ud2
199 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
200 * 0f 34 - sysenter
201 * 0f 35 - sysexit
202 * 0f 37 - getsec
203 * 0f 78 - vmread (Intel VMX. CPL0 insn)
204 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
205 * Note: with prefixes, these two opcodes are
206 * extrq/insertq/AVX512 convert vector ops.
207 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
208 * {rd,wr}{fs,gs}base,{s,l,m}fence.
209 * Why? They are all user-executable.
210 */
211 static volatile u32 good_2byte_insns[256 / 32] = {
212 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
213 /* ---------------------------------------------- */
214 W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
215 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
216 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
217 W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
218 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
219 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
220 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
221 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
222 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
223 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
224 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
225 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
226 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
227 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
228 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
229 W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /* f0 */
230 /* ---------------------------------------------- */
231 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
232 };
233 #undef W
234
235 /*
236 * opcodes we may need to refine support for:
237 *
238 * 0f - 2-byte instructions: For many of these instructions, the validity
239 * depends on the prefix and/or the reg field. On such instructions, we
240 * just consider the opcode combination valid if it corresponds to any
241 * valid instruction.
242 *
243 * 8f - Group 1 - only reg = 0 is OK
244 * c6-c7 - Group 11 - only reg = 0 is OK
245 * d9-df - fpu insns with some illegal encodings
246 * f2, f3 - repnz, repz prefixes. These are also the first byte for
247 * certain floating-point instructions, such as addsd.
248 *
249 * fe - Group 4 - only reg = 0 or 1 is OK
250 * ff - Group 5 - only reg = 0-6 is OK
251 *
252 * others -- Do we need to support these?
253 *
254 * 0f - (floating-point?) prefetch instructions
255 * 07, 17, 1f - pop es, pop ss, pop ds
256 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
257 * but 64 and 65 (fs: and gs:) seem to be used, so we support them
258 * 67 - addr16 prefix
259 * ce - into
260 * f0 - lock prefix
261 */
262
263 /*
264 * TODO:
265 * - Where necessary, examine the modrm byte and allow only valid instructions
266 * in the different Groups and fpu instructions.
267 */
268
269 static bool is_prefix_bad(struct insn *insn)
270 {
271 int i;
272
273 for (i = 0; i < insn->prefixes.nbytes; i++) {
274 insn_attr_t attr;
275
276 attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
277 switch (attr) {
278 case INAT_MAKE_PREFIX(INAT_PFX_ES):
279 case INAT_MAKE_PREFIX(INAT_PFX_CS):
280 case INAT_MAKE_PREFIX(INAT_PFX_DS):
281 case INAT_MAKE_PREFIX(INAT_PFX_SS):
282 case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
283 return true;
284 }
285 }
286 return false;
287 }
288
289 static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
290 {
291 u32 volatile *good_insns;
292
293 insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
294 /* has the side-effect of processing the entire instruction */
295 insn_get_length(insn);
296 if (!insn_complete(insn))
297 return -ENOEXEC;
298
299 if (is_prefix_bad(insn))
300 return -ENOTSUPP;
301
302 /* We should not singlestep on the exception masking instructions */
303 if (insn_masking_exception(insn))
304 return -ENOTSUPP;
305
306 if (x86_64)
307 good_insns = good_insns_64;
308 else
309 good_insns = good_insns_32;
310
311 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
312 return 0;
313
314 if (insn->opcode.nbytes == 2) {
315 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
316 return 0;
317 }
318
319 return -ENOTSUPP;
320 }
321
322 #ifdef CONFIG_X86_64
323 /*
324 * If arch_uprobe->insn doesn't use rip-relative addressing, return
325 * immediately. Otherwise, rewrite the instruction so that it accesses
326 * its memory operand indirectly through a scratch register. Set
327 * defparam->fixups accordingly. (The contents of the scratch register
328 * will be saved before we single-step the modified instruction,
329 * and restored afterward).
330 *
331 * We do this because a rip-relative instruction can access only a
332 * relatively small area (+/- 2 GB from the instruction), and the XOL
333 * area typically lies beyond that area. At least for instructions
334 * that store to memory, we can't execute the original instruction
335 * and "fix things up" later, because the misdirected store could be
336 * disastrous.
337 *
338 * Some useful facts about rip-relative instructions:
339 *
340 * - There's always a modrm byte with bit layout "00 reg 101".
341 * - There's never a SIB byte.
342 * - The displacement is always 4 bytes.
343 * - REX.B=1 bit in REX prefix, which normally extends r/m field,
344 * has no effect on rip-relative mode. It doesn't make modrm byte
345 * with r/m=101 refer to register 1101 = R13.
346 */
347 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
348 {
349 u8 *cursor;
350 u8 reg;
351 u8 reg2;
352
353 if (!insn_rip_relative(insn))
354 return;
355
356 /*
357 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
358 * Clear REX.b bit (extension of MODRM.rm field):
359 * we want to encode low numbered reg, not r8+.
360 */
361 if (insn->rex_prefix.nbytes) {
362 cursor = auprobe->insn + insn_offset_rex_prefix(insn);
363 /* REX byte has 0100wrxb layout, clearing REX.b bit */
364 *cursor &= 0xfe;
365 }
366 /*
367 * Similar treatment for VEX3/EVEX prefix.
368 * TODO: add XOP treatment when insn decoder supports them
369 */
370 if (insn->vex_prefix.nbytes >= 3) {
371 /*
372 * vex2: c5 rvvvvLpp (has no b bit)
373 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
374 * evex: 62 rxbR00mm wvvvv1pp zllBVaaa
375 * Setting VEX3.b (setting because it has inverted meaning).
376 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
377 * is the 4th bit of MODRM.rm, and needs the same treatment.
378 * For VEX3-encoded insns, VEX3.x value has no effect in
379 * non-SIB encoding, the change is superfluous but harmless.
380 */
381 cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
382 *cursor |= 0x60;
383 }
384
385 /*
386 * Convert from rip-relative addressing to register-relative addressing
387 * via a scratch register.
388 *
389 * This is tricky since there are insns with modrm byte
390 * which also use registers not encoded in modrm byte:
391 * [i]div/[i]mul: implicitly use dx:ax
392 * shift ops: implicitly use cx
393 * cmpxchg: implicitly uses ax
394 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
395 * Encoding: 0f c7/1 modrm
396 * The code below thinks that reg=1 (cx), chooses si as scratch.
397 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
398 * First appeared in Haswell (BMI2 insn). It is vex-encoded.
399 * Example where none of bx,cx,dx can be used as scratch reg:
400 * c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx
401 * [v]pcmpistri: implicitly uses cx, xmm0
402 * [v]pcmpistrm: implicitly uses xmm0
403 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
404 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
405 * Evil SSE4.2 string comparison ops from hell.
406 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
407 * Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
408 * Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
409 * AMD says it has no 3-operand form (vex.vvvv must be 1111)
410 * and that it can have only register operands, not mem
411 * (its modrm byte must have mode=11).
412 * If these restrictions will ever be lifted,
413 * we'll need code to prevent selection of di as scratch reg!
414 *
415 * Summary: I don't know any insns with modrm byte which
416 * use SI register implicitly. DI register is used only
417 * by one insn (maskmovq) and BX register is used
418 * only by one too (cmpxchg8b).
419 * BP is stack-segment based (may be a problem?).
420 * AX, DX, CX are off-limits (many implicit users).
421 * SP is unusable (it's stack pointer - think about "pop mem";
422 * also, rsp+disp32 needs sib encoding -> insn length change).
423 */
424
425 reg = MODRM_REG(insn); /* Fetch modrm.reg */
426 reg2 = 0xff; /* Fetch vex.vvvv */
427 if (insn->vex_prefix.nbytes)
428 reg2 = insn->vex_prefix.bytes[2];
429 /*
430 * TODO: add XOP vvvv reading.
431 *
432 * vex.vvvv field is in bits 6-3, bits are inverted.
433 * But in 32-bit mode, high-order bit may be ignored.
434 * Therefore, let's consider only 3 low-order bits.
435 */
436 reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
437 /*
438 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
439 *
440 * Choose scratch reg. Order is important: must not select bx
441 * if we can use si (cmpxchg8b case!)
442 */
443 if (reg != 6 && reg2 != 6) {
444 reg2 = 6;
445 auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
446 } else if (reg != 7 && reg2 != 7) {
447 reg2 = 7;
448 auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
449 /* TODO (paranoia): force maskmovq to not use di */
450 } else {
451 reg2 = 3;
452 auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
453 }
454 /*
455 * Point cursor at the modrm byte. The next 4 bytes are the
456 * displacement. Beyond the displacement, for some instructions,
457 * is the immediate operand.
458 */
459 cursor = auprobe->insn + insn_offset_modrm(insn);
460 /*
461 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
462 * 89 05 disp32 mov %eax,disp32(%rip) becomes
463 * 89 86 disp32 mov %eax,disp32(%rsi)
464 */
465 *cursor = 0x80 | (reg << 3) | reg2;
466 }
467
468 static inline unsigned long *
469 scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
470 {
471 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
472 return &regs->si;
473 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
474 return &regs->di;
475 return &regs->bx;
476 }
477
478 /*
479 * If we're emulating a rip-relative instruction, save the contents
480 * of the scratch register and store the target address in that register.
481 */
482 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
483 {
484 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
485 struct uprobe_task *utask = current->utask;
486 unsigned long *sr = scratch_reg(auprobe, regs);
487
488 utask->autask.saved_scratch_register = *sr;
489 *sr = utask->vaddr + auprobe->defparam.ilen;
490 }
491 }
492
493 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
494 {
495 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
496 struct uprobe_task *utask = current->utask;
497 unsigned long *sr = scratch_reg(auprobe, regs);
498
499 *sr = utask->autask.saved_scratch_register;
500 }
501 }
502 #else /* 32-bit: */
503 /*
504 * No RIP-relative addressing on 32-bit
505 */
506 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
507 {
508 }
509 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
510 {
511 }
512 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
513 {
514 }
515 #endif /* CONFIG_X86_64 */
516
517 struct uprobe_xol_ops {
518 bool (*emulate)(struct arch_uprobe *, struct pt_regs *);
519 int (*pre_xol)(struct arch_uprobe *, struct pt_regs *);
520 int (*post_xol)(struct arch_uprobe *, struct pt_regs *);
521 void (*abort)(struct arch_uprobe *, struct pt_regs *);
522 };
523
524 static inline int sizeof_long(void)
525 {
526 return in_ia32_syscall() ? 4 : 8;
527 }
528
529 static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
530 {
531 riprel_pre_xol(auprobe, regs);
532 return 0;
533 }
534
535 static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
536 {
537 unsigned long new_sp = regs->sp - sizeof_long();
538
539 if (copy_to_user((void __user *)new_sp, &val, sizeof_long()))
540 return -EFAULT;
541
542 regs->sp = new_sp;
543 return 0;
544 }
545
546 /*
547 * We have to fix things up as follows:
548 *
549 * Typically, the new ip is relative to the copied instruction. We need
550 * to make it relative to the original instruction (FIX_IP). Exceptions
551 * are return instructions and absolute or indirect jump or call instructions.
552 *
553 * If the single-stepped instruction was a call, the return address that
554 * is atop the stack is the address following the copied instruction. We
555 * need to make it the address following the original instruction (FIX_CALL).
556 *
557 * If the original instruction was a rip-relative instruction such as
558 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
559 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
560 * We need to restore the contents of the scratch register
561 * (FIX_RIP_reg).
562 */
563 static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
564 {
565 struct uprobe_task *utask = current->utask;
566
567 riprel_post_xol(auprobe, regs);
568 if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
569 long correction = utask->vaddr - utask->xol_vaddr;
570 regs->ip += correction;
571 } else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
572 regs->sp += sizeof_long(); /* Pop incorrect return address */
573 if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
574 return -ERESTART;
575 }
576 /* popf; tell the caller to not touch TF */
577 if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
578 utask->autask.saved_tf = true;
579
580 return 0;
581 }
582
583 static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
584 {
585 riprel_post_xol(auprobe, regs);
586 }
587
588 static const struct uprobe_xol_ops default_xol_ops = {
589 .pre_xol = default_pre_xol_op,
590 .post_xol = default_post_xol_op,
591 .abort = default_abort_op,
592 };
593
594 static bool branch_is_call(struct arch_uprobe *auprobe)
595 {
596 return auprobe->branch.opc1 == 0xe8;
597 }
598
599 #define CASE_COND \
600 COND(70, 71, XF(OF)) \
601 COND(72, 73, XF(CF)) \
602 COND(74, 75, XF(ZF)) \
603 COND(78, 79, XF(SF)) \
604 COND(7a, 7b, XF(PF)) \
605 COND(76, 77, XF(CF) || XF(ZF)) \
606 COND(7c, 7d, XF(SF) != XF(OF)) \
607 COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
608
609 #define COND(op_y, op_n, expr) \
610 case 0x ## op_y: DO((expr) != 0) \
611 case 0x ## op_n: DO((expr) == 0)
612
613 #define XF(xf) (!!(flags & X86_EFLAGS_ ## xf))
614
615 static bool is_cond_jmp_opcode(u8 opcode)
616 {
617 switch (opcode) {
618 #define DO(expr) \
619 return true;
620 CASE_COND
621 #undef DO
622
623 default:
624 return false;
625 }
626 }
627
628 static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
629 {
630 unsigned long flags = regs->flags;
631
632 switch (auprobe->branch.opc1) {
633 #define DO(expr) \
634 return expr;
635 CASE_COND
636 #undef DO
637
638 default: /* not a conditional jmp */
639 return true;
640 }
641 }
642
643 #undef XF
644 #undef COND
645 #undef CASE_COND
646
647 static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
648 {
649 unsigned long new_ip = regs->ip += auprobe->branch.ilen;
650 unsigned long offs = (long)auprobe->branch.offs;
651
652 if (branch_is_call(auprobe)) {
653 /*
654 * If it fails we execute this (mangled, see the comment in
655 * branch_clear_offset) insn out-of-line. In the likely case
656 * this should trigger the trap, and the probed application
657 * should die or restart the same insn after it handles the
658 * signal, arch_uprobe_post_xol() won't be even called.
659 *
660 * But there is corner case, see the comment in ->post_xol().
661 */
662 if (emulate_push_stack(regs, new_ip))
663 return false;
664 } else if (!check_jmp_cond(auprobe, regs)) {
665 offs = 0;
666 }
667
668 regs->ip = new_ip + offs;
669 return true;
670 }
671
672 static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
673 {
674 unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
675
676 if (emulate_push_stack(regs, *src_ptr))
677 return false;
678 regs->ip += auprobe->push.ilen;
679 return true;
680 }
681
682 static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
683 {
684 BUG_ON(!branch_is_call(auprobe));
685 /*
686 * We can only get here if branch_emulate_op() failed to push the ret
687 * address _and_ another thread expanded our stack before the (mangled)
688 * "call" insn was executed out-of-line. Just restore ->sp and restart.
689 * We could also restore ->ip and try to call branch_emulate_op() again.
690 */
691 regs->sp += sizeof_long();
692 return -ERESTART;
693 }
694
695 static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
696 {
697 /*
698 * Turn this insn into "call 1f; 1:", this is what we will execute
699 * out-of-line if ->emulate() fails. We only need this to generate
700 * a trap, so that the probed task receives the correct signal with
701 * the properly filled siginfo.
702 *
703 * But see the comment in ->post_xol(), in the unlikely case it can
704 * succeed. So we need to ensure that the new ->ip can not fall into
705 * the non-canonical area and trigger #GP.
706 *
707 * We could turn it into (say) "pushf", but then we would need to
708 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
709 * of ->insn[] for set_orig_insn().
710 */
711 memset(auprobe->insn + insn_offset_immediate(insn),
712 0, insn->immediate.nbytes);
713 }
714
715 static const struct uprobe_xol_ops branch_xol_ops = {
716 .emulate = branch_emulate_op,
717 .post_xol = branch_post_xol_op,
718 };
719
720 static const struct uprobe_xol_ops push_xol_ops = {
721 .emulate = push_emulate_op,
722 };
723
724 /* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
725 static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
726 {
727 u8 opc1 = OPCODE1(insn);
728 int i;
729
730 switch (opc1) {
731 case 0xeb: /* jmp 8 */
732 case 0xe9: /* jmp 32 */
733 case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */
734 break;
735
736 case 0xe8: /* call relative */
737 branch_clear_offset(auprobe, insn);
738 break;
739
740 case 0x0f:
741 if (insn->opcode.nbytes != 2)
742 return -ENOSYS;
743 /*
744 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
745 * OPCODE1() of the "short" jmp which checks the same condition.
746 */
747 opc1 = OPCODE2(insn) - 0x10;
748 /* fall through */
749 default:
750 if (!is_cond_jmp_opcode(opc1))
751 return -ENOSYS;
752 }
753
754 /*
755 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
756 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
757 * No one uses these insns, reject any branch insns with such prefix.
758 */
759 for (i = 0; i < insn->prefixes.nbytes; i++) {
760 if (insn->prefixes.bytes[i] == 0x66)
761 return -ENOTSUPP;
762 }
763
764 auprobe->branch.opc1 = opc1;
765 auprobe->branch.ilen = insn->length;
766 auprobe->branch.offs = insn->immediate.value;
767
768 auprobe->ops = &branch_xol_ops;
769 return 0;
770 }
771
772 /* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
773 static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
774 {
775 u8 opc1 = OPCODE1(insn), reg_offset = 0;
776
777 if (opc1 < 0x50 || opc1 > 0x57)
778 return -ENOSYS;
779
780 if (insn->length > 2)
781 return -ENOSYS;
782 if (insn->length == 2) {
783 /* only support rex_prefix 0x41 (x64 only) */
784 #ifdef CONFIG_X86_64
785 if (insn->rex_prefix.nbytes != 1 ||
786 insn->rex_prefix.bytes[0] != 0x41)
787 return -ENOSYS;
788
789 switch (opc1) {
790 case 0x50:
791 reg_offset = offsetof(struct pt_regs, r8);
792 break;
793 case 0x51:
794 reg_offset = offsetof(struct pt_regs, r9);
795 break;
796 case 0x52:
797 reg_offset = offsetof(struct pt_regs, r10);
798 break;
799 case 0x53:
800 reg_offset = offsetof(struct pt_regs, r11);
801 break;
802 case 0x54:
803 reg_offset = offsetof(struct pt_regs, r12);
804 break;
805 case 0x55:
806 reg_offset = offsetof(struct pt_regs, r13);
807 break;
808 case 0x56:
809 reg_offset = offsetof(struct pt_regs, r14);
810 break;
811 case 0x57:
812 reg_offset = offsetof(struct pt_regs, r15);
813 break;
814 }
815 #else
816 return -ENOSYS;
817 #endif
818 } else {
819 switch (opc1) {
820 case 0x50:
821 reg_offset = offsetof(struct pt_regs, ax);
822 break;
823 case 0x51:
824 reg_offset = offsetof(struct pt_regs, cx);
825 break;
826 case 0x52:
827 reg_offset = offsetof(struct pt_regs, dx);
828 break;
829 case 0x53:
830 reg_offset = offsetof(struct pt_regs, bx);
831 break;
832 case 0x54:
833 reg_offset = offsetof(struct pt_regs, sp);
834 break;
835 case 0x55:
836 reg_offset = offsetof(struct pt_regs, bp);
837 break;
838 case 0x56:
839 reg_offset = offsetof(struct pt_regs, si);
840 break;
841 case 0x57:
842 reg_offset = offsetof(struct pt_regs, di);
843 break;
844 }
845 }
846
847 auprobe->push.reg_offset = reg_offset;
848 auprobe->push.ilen = insn->length;
849 auprobe->ops = &push_xol_ops;
850 return 0;
851 }
852
853 /**
854 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
855 * @mm: the probed address space.
856 * @arch_uprobe: the probepoint information.
857 * @addr: virtual address at which to install the probepoint
858 * Return 0 on success or a -ve number on error.
859 */
860 int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
861 {
862 struct insn insn;
863 u8 fix_ip_or_call = UPROBE_FIX_IP;
864 int ret;
865
866 ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
867 if (ret)
868 return ret;
869
870 ret = branch_setup_xol_ops(auprobe, &insn);
871 if (ret != -ENOSYS)
872 return ret;
873
874 ret = push_setup_xol_ops(auprobe, &insn);
875 if (ret != -ENOSYS)
876 return ret;
877
878 /*
879 * Figure out which fixups default_post_xol_op() will need to perform,
880 * and annotate defparam->fixups accordingly.
881 */
882 switch (OPCODE1(&insn)) {
883 case 0x9d: /* popf */
884 auprobe->defparam.fixups |= UPROBE_FIX_SETF;
885 break;
886 case 0xc3: /* ret or lret -- ip is correct */
887 case 0xcb:
888 case 0xc2:
889 case 0xca:
890 case 0xea: /* jmp absolute -- ip is correct */
891 fix_ip_or_call = 0;
892 break;
893 case 0x9a: /* call absolute - Fix return addr, not ip */
894 fix_ip_or_call = UPROBE_FIX_CALL;
895 break;
896 case 0xff:
897 switch (MODRM_REG(&insn)) {
898 case 2: case 3: /* call or lcall, indirect */
899 fix_ip_or_call = UPROBE_FIX_CALL;
900 break;
901 case 4: case 5: /* jmp or ljmp, indirect */
902 fix_ip_or_call = 0;
903 break;
904 }
905 /* fall through */
906 default:
907 riprel_analyze(auprobe, &insn);
908 }
909
910 auprobe->defparam.ilen = insn.length;
911 auprobe->defparam.fixups |= fix_ip_or_call;
912
913 auprobe->ops = &default_xol_ops;
914 return 0;
915 }
916
917 /*
918 * arch_uprobe_pre_xol - prepare to execute out of line.
919 * @auprobe: the probepoint information.
920 * @regs: reflects the saved user state of current task.
921 */
922 int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
923 {
924 struct uprobe_task *utask = current->utask;
925
926 if (auprobe->ops->pre_xol) {
927 int err = auprobe->ops->pre_xol(auprobe, regs);
928 if (err)
929 return err;
930 }
931
932 regs->ip = utask->xol_vaddr;
933 utask->autask.saved_trap_nr = current->thread.trap_nr;
934 current->thread.trap_nr = UPROBE_TRAP_NR;
935
936 utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
937 regs->flags |= X86_EFLAGS_TF;
938 if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
939 set_task_blockstep(current, false);
940
941 return 0;
942 }
943
944 /*
945 * If xol insn itself traps and generates a signal(Say,
946 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
947 * instruction jumps back to its own address. It is assumed that anything
948 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
949 *
950 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
951 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
952 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
953 */
954 bool arch_uprobe_xol_was_trapped(struct task_struct *t)
955 {
956 if (t->thread.trap_nr != UPROBE_TRAP_NR)
957 return true;
958
959 return false;
960 }
961
962 /*
963 * Called after single-stepping. To avoid the SMP problems that can
964 * occur when we temporarily put back the original opcode to
965 * single-step, we single-stepped a copy of the instruction.
966 *
967 * This function prepares to resume execution after the single-step.
968 */
969 int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
970 {
971 struct uprobe_task *utask = current->utask;
972 bool send_sigtrap = utask->autask.saved_tf;
973 int err = 0;
974
975 WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
976 current->thread.trap_nr = utask->autask.saved_trap_nr;
977
978 if (auprobe->ops->post_xol) {
979 err = auprobe->ops->post_xol(auprobe, regs);
980 if (err) {
981 /*
982 * Restore ->ip for restart or post mortem analysis.
983 * ->post_xol() must not return -ERESTART unless this
984 * is really possible.
985 */
986 regs->ip = utask->vaddr;
987 if (err == -ERESTART)
988 err = 0;
989 send_sigtrap = false;
990 }
991 }
992 /*
993 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
994 * so we can get an extra SIGTRAP if we do not clear TF. We need
995 * to examine the opcode to make it right.
996 */
997 if (send_sigtrap)
998 send_sig(SIGTRAP, current, 0);
999
1000 if (!utask->autask.saved_tf)
1001 regs->flags &= ~X86_EFLAGS_TF;
1002
1003 return err;
1004 }
1005
1006 /* callback routine for handling exceptions. */
1007 int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1008 {
1009 struct die_args *args = data;
1010 struct pt_regs *regs = args->regs;
1011 int ret = NOTIFY_DONE;
1012
1013 /* We are only interested in userspace traps */
1014 if (regs && !user_mode(regs))
1015 return NOTIFY_DONE;
1016
1017 switch (val) {
1018 case DIE_INT3:
1019 if (uprobe_pre_sstep_notifier(regs))
1020 ret = NOTIFY_STOP;
1021
1022 break;
1023
1024 case DIE_DEBUG:
1025 if (uprobe_post_sstep_notifier(regs))
1026 ret = NOTIFY_STOP;
1027
1028 default:
1029 break;
1030 }
1031
1032 return ret;
1033 }
1034
1035 /*
1036 * This function gets called when XOL instruction either gets trapped or
1037 * the thread has a fatal signal. Reset the instruction pointer to its
1038 * probed address for the potential restart or for post mortem analysis.
1039 */
1040 void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1041 {
1042 struct uprobe_task *utask = current->utask;
1043
1044 if (auprobe->ops->abort)
1045 auprobe->ops->abort(auprobe, regs);
1046
1047 current->thread.trap_nr = utask->autask.saved_trap_nr;
1048 regs->ip = utask->vaddr;
1049 /* clear TF if it was set by us in arch_uprobe_pre_xol() */
1050 if (!utask->autask.saved_tf)
1051 regs->flags &= ~X86_EFLAGS_TF;
1052 }
1053
1054 static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1055 {
1056 if (auprobe->ops->emulate)
1057 return auprobe->ops->emulate(auprobe, regs);
1058 return false;
1059 }
1060
1061 bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1062 {
1063 bool ret = __skip_sstep(auprobe, regs);
1064 if (ret && (regs->flags & X86_EFLAGS_TF))
1065 send_sig(SIGTRAP, current, 0);
1066 return ret;
1067 }
1068
1069 unsigned long
1070 arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1071 {
1072 int rasize = sizeof_long(), nleft;
1073 unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1074
1075 if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1076 return -1;
1077
1078 /* check whether address has been already hijacked */
1079 if (orig_ret_vaddr == trampoline_vaddr)
1080 return orig_ret_vaddr;
1081
1082 nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1083 if (likely(!nleft))
1084 return orig_ret_vaddr;
1085
1086 if (nleft != rasize) {
1087 pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1088 current->pid, regs->sp, regs->ip);
1089
1090 force_sig(SIGSEGV, current);
1091 }
1092
1093 return -1;
1094 }
1095
1096 bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1097 struct pt_regs *regs)
1098 {
1099 if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1100 return regs->sp < ret->stack;
1101 else
1102 return regs->sp <= ret->stack;
1103 }