]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/uv_time.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/hirofumi/fatfs-2.6
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / uv_time.c
1 /*
2 * SGI RTC clock/timer routines.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Copyright (c) 2009 Silicon Graphics, Inc. All Rights Reserved.
19 * Copyright (c) Dimitri Sivanich
20 */
21 #include <linux/clockchips.h>
22
23 #include <asm/uv/uv_mmrs.h>
24 #include <asm/uv/uv_hub.h>
25 #include <asm/uv/bios.h>
26 #include <asm/uv/uv.h>
27 #include <asm/apic.h>
28 #include <asm/cpu.h>
29
30 #define RTC_NAME "sgi_rtc"
31
32 static cycle_t uv_read_rtc(struct clocksource *cs);
33 static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
34 static void uv_rtc_timer_setup(enum clock_event_mode,
35 struct clock_event_device *);
36
37 static struct clocksource clocksource_uv = {
38 .name = RTC_NAME,
39 .rating = 400,
40 .read = uv_read_rtc,
41 .mask = (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK,
42 .shift = 10,
43 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
44 };
45
46 static struct clock_event_device clock_event_device_uv = {
47 .name = RTC_NAME,
48 .features = CLOCK_EVT_FEAT_ONESHOT,
49 .shift = 20,
50 .rating = 400,
51 .irq = -1,
52 .set_next_event = uv_rtc_next_event,
53 .set_mode = uv_rtc_timer_setup,
54 .event_handler = NULL,
55 };
56
57 static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
58
59 /* There is one of these allocated per node */
60 struct uv_rtc_timer_head {
61 spinlock_t lock;
62 /* next cpu waiting for timer, local node relative: */
63 int next_cpu;
64 /* number of cpus on this node: */
65 int ncpus;
66 struct {
67 int lcpu; /* systemwide logical cpu number */
68 u64 expires; /* next timer expiration for this cpu */
69 } cpu[1];
70 };
71
72 /*
73 * Access to uv_rtc_timer_head via blade id.
74 */
75 static struct uv_rtc_timer_head **blade_info __read_mostly;
76
77 static int uv_rtc_evt_enable;
78
79 /*
80 * Hardware interface routines
81 */
82
83 /* Send IPIs to another node */
84 static void uv_rtc_send_IPI(int cpu)
85 {
86 unsigned long apicid, val;
87 int pnode;
88
89 apicid = cpu_physical_id(cpu);
90 pnode = uv_apicid_to_pnode(apicid);
91 val = (1UL << UVH_IPI_INT_SEND_SHFT) |
92 (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
93 (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
94
95 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
96 }
97
98 /* Check for an RTC interrupt pending */
99 static int uv_intr_pending(int pnode)
100 {
101 return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
102 UVH_EVENT_OCCURRED0_RTC1_MASK;
103 }
104
105 /* Setup interrupt and return non-zero if early expiration occurred. */
106 static int uv_setup_intr(int cpu, u64 expires)
107 {
108 u64 val;
109 int pnode = uv_cpu_to_pnode(cpu);
110
111 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
112 UVH_RTC1_INT_CONFIG_M_MASK);
113 uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
114
115 uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
116 UVH_EVENT_OCCURRED0_RTC1_MASK);
117
118 val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
119 ((u64)cpu_physical_id(cpu) << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
120
121 /* Set configuration */
122 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
123 /* Initialize comparator value */
124 uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
125
126 if (uv_read_rtc(NULL) <= expires)
127 return 0;
128
129 return !uv_intr_pending(pnode);
130 }
131
132 /*
133 * Per-cpu timer tracking routines
134 */
135
136 static __init void uv_rtc_deallocate_timers(void)
137 {
138 int bid;
139
140 for_each_possible_blade(bid) {
141 kfree(blade_info[bid]);
142 }
143 kfree(blade_info);
144 }
145
146 /* Allocate per-node list of cpu timer expiration times. */
147 static __init int uv_rtc_allocate_timers(void)
148 {
149 int cpu;
150
151 blade_info = kmalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL);
152 if (!blade_info)
153 return -ENOMEM;
154 memset(blade_info, 0, uv_possible_blades * sizeof(void *));
155
156 for_each_present_cpu(cpu) {
157 int nid = cpu_to_node(cpu);
158 int bid = uv_cpu_to_blade_id(cpu);
159 int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
160 struct uv_rtc_timer_head *head = blade_info[bid];
161
162 if (!head) {
163 head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
164 (uv_blade_nr_possible_cpus(bid) *
165 2 * sizeof(u64)),
166 GFP_KERNEL, nid);
167 if (!head) {
168 uv_rtc_deallocate_timers();
169 return -ENOMEM;
170 }
171 spin_lock_init(&head->lock);
172 head->ncpus = uv_blade_nr_possible_cpus(bid);
173 head->next_cpu = -1;
174 blade_info[bid] = head;
175 }
176
177 head->cpu[bcpu].lcpu = cpu;
178 head->cpu[bcpu].expires = ULLONG_MAX;
179 }
180
181 return 0;
182 }
183
184 /* Find and set the next expiring timer. */
185 static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
186 {
187 u64 lowest = ULLONG_MAX;
188 int c, bcpu = -1;
189
190 head->next_cpu = -1;
191 for (c = 0; c < head->ncpus; c++) {
192 u64 exp = head->cpu[c].expires;
193 if (exp < lowest) {
194 bcpu = c;
195 lowest = exp;
196 }
197 }
198 if (bcpu >= 0) {
199 head->next_cpu = bcpu;
200 c = head->cpu[bcpu].lcpu;
201 if (uv_setup_intr(c, lowest))
202 /* If we didn't set it up in time, trigger */
203 uv_rtc_send_IPI(c);
204 } else {
205 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
206 UVH_RTC1_INT_CONFIG_M_MASK);
207 }
208 }
209
210 /*
211 * Set expiration time for current cpu.
212 *
213 * Returns 1 if we missed the expiration time.
214 */
215 static int uv_rtc_set_timer(int cpu, u64 expires)
216 {
217 int pnode = uv_cpu_to_pnode(cpu);
218 int bid = uv_cpu_to_blade_id(cpu);
219 struct uv_rtc_timer_head *head = blade_info[bid];
220 int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
221 u64 *t = &head->cpu[bcpu].expires;
222 unsigned long flags;
223 int next_cpu;
224
225 spin_lock_irqsave(&head->lock, flags);
226
227 next_cpu = head->next_cpu;
228 *t = expires;
229
230 /* Will this one be next to go off? */
231 if (next_cpu < 0 || bcpu == next_cpu ||
232 expires < head->cpu[next_cpu].expires) {
233 head->next_cpu = bcpu;
234 if (uv_setup_intr(cpu, expires)) {
235 *t = ULLONG_MAX;
236 uv_rtc_find_next_timer(head, pnode);
237 spin_unlock_irqrestore(&head->lock, flags);
238 return -ETIME;
239 }
240 }
241
242 spin_unlock_irqrestore(&head->lock, flags);
243 return 0;
244 }
245
246 /*
247 * Unset expiration time for current cpu.
248 *
249 * Returns 1 if this timer was pending.
250 */
251 static int uv_rtc_unset_timer(int cpu, int force)
252 {
253 int pnode = uv_cpu_to_pnode(cpu);
254 int bid = uv_cpu_to_blade_id(cpu);
255 struct uv_rtc_timer_head *head = blade_info[bid];
256 int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
257 u64 *t = &head->cpu[bcpu].expires;
258 unsigned long flags;
259 int rc = 0;
260
261 spin_lock_irqsave(&head->lock, flags);
262
263 if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
264 rc = 1;
265
266 if (rc) {
267 *t = ULLONG_MAX;
268 /* Was the hardware setup for this timer? */
269 if (head->next_cpu == bcpu)
270 uv_rtc_find_next_timer(head, pnode);
271 }
272
273 spin_unlock_irqrestore(&head->lock, flags);
274
275 return rc;
276 }
277
278
279 /*
280 * Kernel interface routines.
281 */
282
283 /*
284 * Read the RTC.
285 */
286 static cycle_t uv_read_rtc(struct clocksource *cs)
287 {
288 return (cycle_t)uv_read_local_mmr(UVH_RTC);
289 }
290
291 /*
292 * Program the next event, relative to now
293 */
294 static int uv_rtc_next_event(unsigned long delta,
295 struct clock_event_device *ced)
296 {
297 int ced_cpu = cpumask_first(ced->cpumask);
298
299 return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
300 }
301
302 /*
303 * Setup the RTC timer in oneshot mode
304 */
305 static void uv_rtc_timer_setup(enum clock_event_mode mode,
306 struct clock_event_device *evt)
307 {
308 int ced_cpu = cpumask_first(evt->cpumask);
309
310 switch (mode) {
311 case CLOCK_EVT_MODE_PERIODIC:
312 case CLOCK_EVT_MODE_ONESHOT:
313 case CLOCK_EVT_MODE_RESUME:
314 /* Nothing to do here yet */
315 break;
316 case CLOCK_EVT_MODE_UNUSED:
317 case CLOCK_EVT_MODE_SHUTDOWN:
318 uv_rtc_unset_timer(ced_cpu, 1);
319 break;
320 }
321 }
322
323 static void uv_rtc_interrupt(void)
324 {
325 int cpu = smp_processor_id();
326 struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
327
328 if (!ced || !ced->event_handler)
329 return;
330
331 if (uv_rtc_unset_timer(cpu, 0) != 1)
332 return;
333
334 ced->event_handler(ced);
335 }
336
337 static int __init uv_enable_evt_rtc(char *str)
338 {
339 uv_rtc_evt_enable = 1;
340
341 return 1;
342 }
343 __setup("uvrtcevt", uv_enable_evt_rtc);
344
345 static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
346 {
347 struct clock_event_device *ced = &__get_cpu_var(cpu_ced);
348
349 *ced = clock_event_device_uv;
350 ced->cpumask = cpumask_of(smp_processor_id());
351 clockevents_register_device(ced);
352 }
353
354 static __init int uv_rtc_setup_clock(void)
355 {
356 int rc;
357
358 if (!is_uv_system())
359 return -ENODEV;
360
361 clocksource_uv.mult = clocksource_hz2mult(sn_rtc_cycles_per_second,
362 clocksource_uv.shift);
363
364 /* If single blade, prefer tsc */
365 if (uv_num_possible_blades() == 1)
366 clocksource_uv.rating = 250;
367
368 rc = clocksource_register(&clocksource_uv);
369 if (rc)
370 printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
371 else
372 printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
373 sn_rtc_cycles_per_second/(unsigned long)1E6);
374
375 if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
376 return rc;
377
378 /* Setup and register clockevents */
379 rc = uv_rtc_allocate_timers();
380 if (rc)
381 goto error;
382
383 x86_platform_ipi_callback = uv_rtc_interrupt;
384
385 clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
386 NSEC_PER_SEC, clock_event_device_uv.shift);
387
388 clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
389 sn_rtc_cycles_per_second;
390
391 clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
392 (NSEC_PER_SEC / sn_rtc_cycles_per_second);
393
394 rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
395 if (rc) {
396 x86_platform_ipi_callback = NULL;
397 uv_rtc_deallocate_timers();
398 goto error;
399 }
400
401 printk(KERN_INFO "UV RTC clockevents registered\n");
402
403 return 0;
404
405 error:
406 clocksource_unregister(&clocksource_uv);
407 printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
408
409 return rc;
410 }
411 arch_initcall(uv_rtc_setup_clock);