]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/vm86_32.c
Replace <asm/uaccess.h> with <linux/uaccess.h> globally
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / vm86_32.c
1 /*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
5 * stack - Manfred Spraul <manfred@colorfullife.com>
6 *
7 * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8 * them correctly. Now the emulation will be in a
9 * consistent state after stackfaults - Kasper Dupont
10 * <kasperd@daimi.au.dk>
11 *
12 * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13 * <kasperd@daimi.au.dk>
14 *
15 * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16 * caused by Kasper Dupont's changes - Stas Sergeev
17 *
18 * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19 * Kasper Dupont <kasperd@daimi.au.dk>
20 *
21 * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22 * Kasper Dupont <kasperd@daimi.au.dk>
23 *
24 * 9 apr 2002 - Changed stack access macros to jump to a label
25 * instead of returning to userspace. This simplifies
26 * do_int, and is needed by handle_vm6_fault. Kasper
27 * Dupont <kasperd@daimi.au.dk>
28 *
29 */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/capability.h>
34 #include <linux/errno.h>
35 #include <linux/interrupt.h>
36 #include <linux/syscalls.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/signal.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/smp.h>
43 #include <linux/highmem.h>
44 #include <linux/ptrace.h>
45 #include <linux/audit.h>
46 #include <linux/stddef.h>
47 #include <linux/slab.h>
48 #include <linux/security.h>
49
50 #include <linux/uaccess.h>
51 #include <asm/io.h>
52 #include <asm/tlbflush.h>
53 #include <asm/irq.h>
54 #include <asm/traps.h>
55 #include <asm/vm86.h>
56
57 /*
58 * Known problems:
59 *
60 * Interrupt handling is not guaranteed:
61 * - a real x86 will disable all interrupts for one instruction
62 * after a "mov ss,xx" to make stack handling atomic even without
63 * the 'lss' instruction. We can't guarantee this in v86 mode,
64 * as the next instruction might result in a page fault or similar.
65 * - a real x86 will have interrupts disabled for one instruction
66 * past the 'sti' that enables them. We don't bother with all the
67 * details yet.
68 *
69 * Let's hope these problems do not actually matter for anything.
70 */
71
72
73 /*
74 * 8- and 16-bit register defines..
75 */
76 #define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0])
77 #define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1])
78 #define IP(regs) (*(unsigned short *)&((regs)->pt.ip))
79 #define SP(regs) (*(unsigned short *)&((regs)->pt.sp))
80
81 /*
82 * virtual flags (16 and 32-bit versions)
83 */
84 #define VFLAGS (*(unsigned short *)&(current->thread.vm86->veflags))
85 #define VEFLAGS (current->thread.vm86->veflags)
86
87 #define set_flags(X, new, mask) \
88 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
89
90 #define SAFE_MASK (0xDD5)
91 #define RETURN_MASK (0xDFF)
92
93 void save_v86_state(struct kernel_vm86_regs *regs, int retval)
94 {
95 struct tss_struct *tss;
96 struct task_struct *tsk = current;
97 struct vm86plus_struct __user *user;
98 struct vm86 *vm86 = current->thread.vm86;
99 long err = 0;
100
101 /*
102 * This gets called from entry.S with interrupts disabled, but
103 * from process context. Enable interrupts here, before trying
104 * to access user space.
105 */
106 local_irq_enable();
107
108 if (!vm86 || !vm86->user_vm86) {
109 pr_alert("no user_vm86: BAD\n");
110 do_exit(SIGSEGV);
111 }
112 set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
113 user = vm86->user_vm86;
114
115 if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
116 sizeof(struct vm86plus_struct) :
117 sizeof(struct vm86_struct))) {
118 pr_alert("could not access userspace vm86 info\n");
119 do_exit(SIGSEGV);
120 }
121
122 put_user_try {
123 put_user_ex(regs->pt.bx, &user->regs.ebx);
124 put_user_ex(regs->pt.cx, &user->regs.ecx);
125 put_user_ex(regs->pt.dx, &user->regs.edx);
126 put_user_ex(regs->pt.si, &user->regs.esi);
127 put_user_ex(regs->pt.di, &user->regs.edi);
128 put_user_ex(regs->pt.bp, &user->regs.ebp);
129 put_user_ex(regs->pt.ax, &user->regs.eax);
130 put_user_ex(regs->pt.ip, &user->regs.eip);
131 put_user_ex(regs->pt.cs, &user->regs.cs);
132 put_user_ex(regs->pt.flags, &user->regs.eflags);
133 put_user_ex(regs->pt.sp, &user->regs.esp);
134 put_user_ex(regs->pt.ss, &user->regs.ss);
135 put_user_ex(regs->es, &user->regs.es);
136 put_user_ex(regs->ds, &user->regs.ds);
137 put_user_ex(regs->fs, &user->regs.fs);
138 put_user_ex(regs->gs, &user->regs.gs);
139
140 put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
141 } put_user_catch(err);
142 if (err) {
143 pr_alert("could not access userspace vm86 info\n");
144 do_exit(SIGSEGV);
145 }
146
147 tss = &per_cpu(cpu_tss, get_cpu());
148 tsk->thread.sp0 = vm86->saved_sp0;
149 tsk->thread.sysenter_cs = __KERNEL_CS;
150 load_sp0(tss, &tsk->thread);
151 vm86->saved_sp0 = 0;
152 put_cpu();
153
154 memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
155
156 lazy_load_gs(vm86->regs32.gs);
157
158 regs->pt.ax = retval;
159 }
160
161 static void mark_screen_rdonly(struct mm_struct *mm)
162 {
163 pgd_t *pgd;
164 pud_t *pud;
165 pmd_t *pmd;
166 pte_t *pte;
167 spinlock_t *ptl;
168 int i;
169
170 down_write(&mm->mmap_sem);
171 pgd = pgd_offset(mm, 0xA0000);
172 if (pgd_none_or_clear_bad(pgd))
173 goto out;
174 pud = pud_offset(pgd, 0xA0000);
175 if (pud_none_or_clear_bad(pud))
176 goto out;
177 pmd = pmd_offset(pud, 0xA0000);
178
179 if (pmd_trans_huge(*pmd)) {
180 struct vm_area_struct *vma = find_vma(mm, 0xA0000);
181 split_huge_pmd(vma, pmd, 0xA0000);
182 }
183 if (pmd_none_or_clear_bad(pmd))
184 goto out;
185 pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
186 for (i = 0; i < 32; i++) {
187 if (pte_present(*pte))
188 set_pte(pte, pte_wrprotect(*pte));
189 pte++;
190 }
191 pte_unmap_unlock(pte, ptl);
192 out:
193 up_write(&mm->mmap_sem);
194 flush_tlb();
195 }
196
197
198
199 static int do_vm86_irq_handling(int subfunction, int irqnumber);
200 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
201
202 SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
203 {
204 return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
205 }
206
207
208 SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
209 {
210 switch (cmd) {
211 case VM86_REQUEST_IRQ:
212 case VM86_FREE_IRQ:
213 case VM86_GET_IRQ_BITS:
214 case VM86_GET_AND_RESET_IRQ:
215 return do_vm86_irq_handling(cmd, (int)arg);
216 case VM86_PLUS_INSTALL_CHECK:
217 /*
218 * NOTE: on old vm86 stuff this will return the error
219 * from access_ok(), because the subfunction is
220 * interpreted as (invalid) address to vm86_struct.
221 * So the installation check works.
222 */
223 return 0;
224 }
225
226 /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
227 return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
228 }
229
230
231 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
232 {
233 struct tss_struct *tss;
234 struct task_struct *tsk = current;
235 struct vm86 *vm86 = tsk->thread.vm86;
236 struct kernel_vm86_regs vm86regs;
237 struct pt_regs *regs = current_pt_regs();
238 unsigned long err = 0;
239
240 err = security_mmap_addr(0);
241 if (err) {
242 /*
243 * vm86 cannot virtualize the address space, so vm86 users
244 * need to manage the low 1MB themselves using mmap. Given
245 * that BIOS places important data in the first page, vm86
246 * is essentially useless if mmap_min_addr != 0. DOSEMU,
247 * for example, won't even bother trying to use vm86 if it
248 * can't map a page at virtual address 0.
249 *
250 * To reduce the available kernel attack surface, simply
251 * disallow vm86(old) for users who cannot mmap at va 0.
252 *
253 * The implementation of security_mmap_addr will allow
254 * suitably privileged users to map va 0 even if
255 * vm.mmap_min_addr is set above 0, and we want this
256 * behavior for vm86 as well, as it ensures that legacy
257 * tools like vbetool will not fail just because of
258 * vm.mmap_min_addr.
259 */
260 pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d). Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
261 current->comm, task_pid_nr(current),
262 from_kuid_munged(&init_user_ns, current_uid()));
263 return -EPERM;
264 }
265
266 if (!vm86) {
267 if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
268 return -ENOMEM;
269 tsk->thread.vm86 = vm86;
270 }
271 if (vm86->saved_sp0)
272 return -EPERM;
273
274 if (!access_ok(VERIFY_READ, user_vm86, plus ?
275 sizeof(struct vm86_struct) :
276 sizeof(struct vm86plus_struct)))
277 return -EFAULT;
278
279 memset(&vm86regs, 0, sizeof(vm86regs));
280 get_user_try {
281 unsigned short seg;
282 get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
283 get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
284 get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
285 get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
286 get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
287 get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
288 get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
289 get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
290 get_user_ex(seg, &user_vm86->regs.cs);
291 vm86regs.pt.cs = seg;
292 get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
293 get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
294 get_user_ex(seg, &user_vm86->regs.ss);
295 vm86regs.pt.ss = seg;
296 get_user_ex(vm86regs.es, &user_vm86->regs.es);
297 get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
298 get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
299 get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
300
301 get_user_ex(vm86->flags, &user_vm86->flags);
302 get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
303 get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
304 } get_user_catch(err);
305 if (err)
306 return err;
307
308 if (copy_from_user(&vm86->int_revectored,
309 &user_vm86->int_revectored,
310 sizeof(struct revectored_struct)))
311 return -EFAULT;
312 if (copy_from_user(&vm86->int21_revectored,
313 &user_vm86->int21_revectored,
314 sizeof(struct revectored_struct)))
315 return -EFAULT;
316 if (plus) {
317 if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
318 sizeof(struct vm86plus_info_struct)))
319 return -EFAULT;
320 vm86->vm86plus.is_vm86pus = 1;
321 } else
322 memset(&vm86->vm86plus, 0,
323 sizeof(struct vm86plus_info_struct));
324
325 memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
326 vm86->user_vm86 = user_vm86;
327
328 /*
329 * The flags register is also special: we cannot trust that the user
330 * has set it up safely, so this makes sure interrupt etc flags are
331 * inherited from protected mode.
332 */
333 VEFLAGS = vm86regs.pt.flags;
334 vm86regs.pt.flags &= SAFE_MASK;
335 vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
336 vm86regs.pt.flags |= X86_VM_MASK;
337
338 vm86regs.pt.orig_ax = regs->orig_ax;
339
340 switch (vm86->cpu_type) {
341 case CPU_286:
342 vm86->veflags_mask = 0;
343 break;
344 case CPU_386:
345 vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
346 break;
347 case CPU_486:
348 vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
349 break;
350 default:
351 vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
352 break;
353 }
354
355 /*
356 * Save old state
357 */
358 vm86->saved_sp0 = tsk->thread.sp0;
359 lazy_save_gs(vm86->regs32.gs);
360
361 tss = &per_cpu(cpu_tss, get_cpu());
362 /* make room for real-mode segments */
363 tsk->thread.sp0 += 16;
364
365 if (static_cpu_has(X86_FEATURE_SEP))
366 tsk->thread.sysenter_cs = 0;
367
368 load_sp0(tss, &tsk->thread);
369 put_cpu();
370
371 if (vm86->flags & VM86_SCREEN_BITMAP)
372 mark_screen_rdonly(tsk->mm);
373
374 memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
375 force_iret();
376 return regs->ax;
377 }
378
379 static inline void set_IF(struct kernel_vm86_regs *regs)
380 {
381 VEFLAGS |= X86_EFLAGS_VIF;
382 }
383
384 static inline void clear_IF(struct kernel_vm86_regs *regs)
385 {
386 VEFLAGS &= ~X86_EFLAGS_VIF;
387 }
388
389 static inline void clear_TF(struct kernel_vm86_regs *regs)
390 {
391 regs->pt.flags &= ~X86_EFLAGS_TF;
392 }
393
394 static inline void clear_AC(struct kernel_vm86_regs *regs)
395 {
396 regs->pt.flags &= ~X86_EFLAGS_AC;
397 }
398
399 /*
400 * It is correct to call set_IF(regs) from the set_vflags_*
401 * functions. However someone forgot to call clear_IF(regs)
402 * in the opposite case.
403 * After the command sequence CLI PUSHF STI POPF you should
404 * end up with interrupts disabled, but you ended up with
405 * interrupts enabled.
406 * ( I was testing my own changes, but the only bug I
407 * could find was in a function I had not changed. )
408 * [KD]
409 */
410
411 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
412 {
413 set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
414 set_flags(regs->pt.flags, flags, SAFE_MASK);
415 if (flags & X86_EFLAGS_IF)
416 set_IF(regs);
417 else
418 clear_IF(regs);
419 }
420
421 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
422 {
423 set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
424 set_flags(regs->pt.flags, flags, SAFE_MASK);
425 if (flags & X86_EFLAGS_IF)
426 set_IF(regs);
427 else
428 clear_IF(regs);
429 }
430
431 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
432 {
433 unsigned long flags = regs->pt.flags & RETURN_MASK;
434
435 if (VEFLAGS & X86_EFLAGS_VIF)
436 flags |= X86_EFLAGS_IF;
437 flags |= X86_EFLAGS_IOPL;
438 return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
439 }
440
441 static inline int is_revectored(int nr, struct revectored_struct *bitmap)
442 {
443 return test_bit(nr, bitmap->__map);
444 }
445
446 #define val_byte(val, n) (((__u8 *)&val)[n])
447
448 #define pushb(base, ptr, val, err_label) \
449 do { \
450 __u8 __val = val; \
451 ptr--; \
452 if (put_user(__val, base + ptr) < 0) \
453 goto err_label; \
454 } while (0)
455
456 #define pushw(base, ptr, val, err_label) \
457 do { \
458 __u16 __val = val; \
459 ptr--; \
460 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
461 goto err_label; \
462 ptr--; \
463 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
464 goto err_label; \
465 } while (0)
466
467 #define pushl(base, ptr, val, err_label) \
468 do { \
469 __u32 __val = val; \
470 ptr--; \
471 if (put_user(val_byte(__val, 3), base + ptr) < 0) \
472 goto err_label; \
473 ptr--; \
474 if (put_user(val_byte(__val, 2), base + ptr) < 0) \
475 goto err_label; \
476 ptr--; \
477 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
478 goto err_label; \
479 ptr--; \
480 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
481 goto err_label; \
482 } while (0)
483
484 #define popb(base, ptr, err_label) \
485 ({ \
486 __u8 __res; \
487 if (get_user(__res, base + ptr) < 0) \
488 goto err_label; \
489 ptr++; \
490 __res; \
491 })
492
493 #define popw(base, ptr, err_label) \
494 ({ \
495 __u16 __res; \
496 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
497 goto err_label; \
498 ptr++; \
499 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
500 goto err_label; \
501 ptr++; \
502 __res; \
503 })
504
505 #define popl(base, ptr, err_label) \
506 ({ \
507 __u32 __res; \
508 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
509 goto err_label; \
510 ptr++; \
511 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
512 goto err_label; \
513 ptr++; \
514 if (get_user(val_byte(__res, 2), base + ptr) < 0) \
515 goto err_label; \
516 ptr++; \
517 if (get_user(val_byte(__res, 3), base + ptr) < 0) \
518 goto err_label; \
519 ptr++; \
520 __res; \
521 })
522
523 /* There are so many possible reasons for this function to return
524 * VM86_INTx, so adding another doesn't bother me. We can expect
525 * userspace programs to be able to handle it. (Getting a problem
526 * in userspace is always better than an Oops anyway.) [KD]
527 */
528 static void do_int(struct kernel_vm86_regs *regs, int i,
529 unsigned char __user *ssp, unsigned short sp)
530 {
531 unsigned long __user *intr_ptr;
532 unsigned long segoffs;
533 struct vm86 *vm86 = current->thread.vm86;
534
535 if (regs->pt.cs == BIOSSEG)
536 goto cannot_handle;
537 if (is_revectored(i, &vm86->int_revectored))
538 goto cannot_handle;
539 if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
540 goto cannot_handle;
541 intr_ptr = (unsigned long __user *) (i << 2);
542 if (get_user(segoffs, intr_ptr))
543 goto cannot_handle;
544 if ((segoffs >> 16) == BIOSSEG)
545 goto cannot_handle;
546 pushw(ssp, sp, get_vflags(regs), cannot_handle);
547 pushw(ssp, sp, regs->pt.cs, cannot_handle);
548 pushw(ssp, sp, IP(regs), cannot_handle);
549 regs->pt.cs = segoffs >> 16;
550 SP(regs) -= 6;
551 IP(regs) = segoffs & 0xffff;
552 clear_TF(regs);
553 clear_IF(regs);
554 clear_AC(regs);
555 return;
556
557 cannot_handle:
558 save_v86_state(regs, VM86_INTx + (i << 8));
559 }
560
561 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
562 {
563 struct vm86 *vm86 = current->thread.vm86;
564
565 if (vm86->vm86plus.is_vm86pus) {
566 if ((trapno == 3) || (trapno == 1)) {
567 save_v86_state(regs, VM86_TRAP + (trapno << 8));
568 return 0;
569 }
570 do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
571 return 0;
572 }
573 if (trapno != 1)
574 return 1; /* we let this handle by the calling routine */
575 current->thread.trap_nr = trapno;
576 current->thread.error_code = error_code;
577 force_sig(SIGTRAP, current);
578 return 0;
579 }
580
581 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
582 {
583 unsigned char opcode;
584 unsigned char __user *csp;
585 unsigned char __user *ssp;
586 unsigned short ip, sp, orig_flags;
587 int data32, pref_done;
588 struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
589
590 #define CHECK_IF_IN_TRAP \
591 if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
592 newflags |= X86_EFLAGS_TF
593
594 orig_flags = *(unsigned short *)&regs->pt.flags;
595
596 csp = (unsigned char __user *) (regs->pt.cs << 4);
597 ssp = (unsigned char __user *) (regs->pt.ss << 4);
598 sp = SP(regs);
599 ip = IP(regs);
600
601 data32 = 0;
602 pref_done = 0;
603 do {
604 switch (opcode = popb(csp, ip, simulate_sigsegv)) {
605 case 0x66: /* 32-bit data */ data32 = 1; break;
606 case 0x67: /* 32-bit address */ break;
607 case 0x2e: /* CS */ break;
608 case 0x3e: /* DS */ break;
609 case 0x26: /* ES */ break;
610 case 0x36: /* SS */ break;
611 case 0x65: /* GS */ break;
612 case 0x64: /* FS */ break;
613 case 0xf2: /* repnz */ break;
614 case 0xf3: /* rep */ break;
615 default: pref_done = 1;
616 }
617 } while (!pref_done);
618
619 switch (opcode) {
620
621 /* pushf */
622 case 0x9c:
623 if (data32) {
624 pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
625 SP(regs) -= 4;
626 } else {
627 pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
628 SP(regs) -= 2;
629 }
630 IP(regs) = ip;
631 goto vm86_fault_return;
632
633 /* popf */
634 case 0x9d:
635 {
636 unsigned long newflags;
637 if (data32) {
638 newflags = popl(ssp, sp, simulate_sigsegv);
639 SP(regs) += 4;
640 } else {
641 newflags = popw(ssp, sp, simulate_sigsegv);
642 SP(regs) += 2;
643 }
644 IP(regs) = ip;
645 CHECK_IF_IN_TRAP;
646 if (data32)
647 set_vflags_long(newflags, regs);
648 else
649 set_vflags_short(newflags, regs);
650
651 goto check_vip;
652 }
653
654 /* int xx */
655 case 0xcd: {
656 int intno = popb(csp, ip, simulate_sigsegv);
657 IP(regs) = ip;
658 if (vmpi->vm86dbg_active) {
659 if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
660 save_v86_state(regs, VM86_INTx + (intno << 8));
661 return;
662 }
663 }
664 do_int(regs, intno, ssp, sp);
665 return;
666 }
667
668 /* iret */
669 case 0xcf:
670 {
671 unsigned long newip;
672 unsigned long newcs;
673 unsigned long newflags;
674 if (data32) {
675 newip = popl(ssp, sp, simulate_sigsegv);
676 newcs = popl(ssp, sp, simulate_sigsegv);
677 newflags = popl(ssp, sp, simulate_sigsegv);
678 SP(regs) += 12;
679 } else {
680 newip = popw(ssp, sp, simulate_sigsegv);
681 newcs = popw(ssp, sp, simulate_sigsegv);
682 newflags = popw(ssp, sp, simulate_sigsegv);
683 SP(regs) += 6;
684 }
685 IP(regs) = newip;
686 regs->pt.cs = newcs;
687 CHECK_IF_IN_TRAP;
688 if (data32) {
689 set_vflags_long(newflags, regs);
690 } else {
691 set_vflags_short(newflags, regs);
692 }
693 goto check_vip;
694 }
695
696 /* cli */
697 case 0xfa:
698 IP(regs) = ip;
699 clear_IF(regs);
700 goto vm86_fault_return;
701
702 /* sti */
703 /*
704 * Damn. This is incorrect: the 'sti' instruction should actually
705 * enable interrupts after the /next/ instruction. Not good.
706 *
707 * Probably needs some horsing around with the TF flag. Aiee..
708 */
709 case 0xfb:
710 IP(regs) = ip;
711 set_IF(regs);
712 goto check_vip;
713
714 default:
715 save_v86_state(regs, VM86_UNKNOWN);
716 }
717
718 return;
719
720 check_vip:
721 if (VEFLAGS & X86_EFLAGS_VIP) {
722 save_v86_state(regs, VM86_STI);
723 return;
724 }
725
726 vm86_fault_return:
727 if (vmpi->force_return_for_pic && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
728 save_v86_state(regs, VM86_PICRETURN);
729 return;
730 }
731 if (orig_flags & X86_EFLAGS_TF)
732 handle_vm86_trap(regs, 0, X86_TRAP_DB);
733 return;
734
735 simulate_sigsegv:
736 /* FIXME: After a long discussion with Stas we finally
737 * agreed, that this is wrong. Here we should
738 * really send a SIGSEGV to the user program.
739 * But how do we create the correct context? We
740 * are inside a general protection fault handler
741 * and has just returned from a page fault handler.
742 * The correct context for the signal handler
743 * should be a mixture of the two, but how do we
744 * get the information? [KD]
745 */
746 save_v86_state(regs, VM86_UNKNOWN);
747 }
748
749 /* ---------------- vm86 special IRQ passing stuff ----------------- */
750
751 #define VM86_IRQNAME "vm86irq"
752
753 static struct vm86_irqs {
754 struct task_struct *tsk;
755 int sig;
756 } vm86_irqs[16];
757
758 static DEFINE_SPINLOCK(irqbits_lock);
759 static int irqbits;
760
761 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
762 | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
763 | (1 << SIGUNUSED))
764
765 static irqreturn_t irq_handler(int intno, void *dev_id)
766 {
767 int irq_bit;
768 unsigned long flags;
769
770 spin_lock_irqsave(&irqbits_lock, flags);
771 irq_bit = 1 << intno;
772 if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
773 goto out;
774 irqbits |= irq_bit;
775 if (vm86_irqs[intno].sig)
776 send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
777 /*
778 * IRQ will be re-enabled when user asks for the irq (whether
779 * polling or as a result of the signal)
780 */
781 disable_irq_nosync(intno);
782 spin_unlock_irqrestore(&irqbits_lock, flags);
783 return IRQ_HANDLED;
784
785 out:
786 spin_unlock_irqrestore(&irqbits_lock, flags);
787 return IRQ_NONE;
788 }
789
790 static inline void free_vm86_irq(int irqnumber)
791 {
792 unsigned long flags;
793
794 free_irq(irqnumber, NULL);
795 vm86_irqs[irqnumber].tsk = NULL;
796
797 spin_lock_irqsave(&irqbits_lock, flags);
798 irqbits &= ~(1 << irqnumber);
799 spin_unlock_irqrestore(&irqbits_lock, flags);
800 }
801
802 void release_vm86_irqs(struct task_struct *task)
803 {
804 int i;
805 for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
806 if (vm86_irqs[i].tsk == task)
807 free_vm86_irq(i);
808 }
809
810 static inline int get_and_reset_irq(int irqnumber)
811 {
812 int bit;
813 unsigned long flags;
814 int ret = 0;
815
816 if (invalid_vm86_irq(irqnumber)) return 0;
817 if (vm86_irqs[irqnumber].tsk != current) return 0;
818 spin_lock_irqsave(&irqbits_lock, flags);
819 bit = irqbits & (1 << irqnumber);
820 irqbits &= ~bit;
821 if (bit) {
822 enable_irq(irqnumber);
823 ret = 1;
824 }
825
826 spin_unlock_irqrestore(&irqbits_lock, flags);
827 return ret;
828 }
829
830
831 static int do_vm86_irq_handling(int subfunction, int irqnumber)
832 {
833 int ret;
834 switch (subfunction) {
835 case VM86_GET_AND_RESET_IRQ: {
836 return get_and_reset_irq(irqnumber);
837 }
838 case VM86_GET_IRQ_BITS: {
839 return irqbits;
840 }
841 case VM86_REQUEST_IRQ: {
842 int sig = irqnumber >> 8;
843 int irq = irqnumber & 255;
844 if (!capable(CAP_SYS_ADMIN)) return -EPERM;
845 if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
846 if (invalid_vm86_irq(irq)) return -EPERM;
847 if (vm86_irqs[irq].tsk) return -EPERM;
848 ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
849 if (ret) return ret;
850 vm86_irqs[irq].sig = sig;
851 vm86_irqs[irq].tsk = current;
852 return irq;
853 }
854 case VM86_FREE_IRQ: {
855 if (invalid_vm86_irq(irqnumber)) return -EPERM;
856 if (!vm86_irqs[irqnumber].tsk) return 0;
857 if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
858 free_vm86_irq(irqnumber);
859 return 0;
860 }
861 }
862 return -EINVAL;
863 }
864