]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/vm86_32.c
Merge branch 'x86/urgent' into x86/asm, before applying dependent patches
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / vm86_32.c
1 /*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
5 * stack - Manfred Spraul <manfred@colorfullife.com>
6 *
7 * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8 * them correctly. Now the emulation will be in a
9 * consistent state after stackfaults - Kasper Dupont
10 * <kasperd@daimi.au.dk>
11 *
12 * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13 * <kasperd@daimi.au.dk>
14 *
15 * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16 * caused by Kasper Dupont's changes - Stas Sergeev
17 *
18 * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19 * Kasper Dupont <kasperd@daimi.au.dk>
20 *
21 * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22 * Kasper Dupont <kasperd@daimi.au.dk>
23 *
24 * 9 apr 2002 - Changed stack access macros to jump to a label
25 * instead of returning to userspace. This simplifies
26 * do_int, and is needed by handle_vm6_fault. Kasper
27 * Dupont <kasperd@daimi.au.dk>
28 *
29 */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/capability.h>
34 #include <linux/errno.h>
35 #include <linux/interrupt.h>
36 #include <linux/syscalls.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/signal.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/smp.h>
43 #include <linux/highmem.h>
44 #include <linux/ptrace.h>
45 #include <linux/audit.h>
46 #include <linux/stddef.h>
47
48 #include <asm/uaccess.h>
49 #include <asm/io.h>
50 #include <asm/tlbflush.h>
51 #include <asm/irq.h>
52
53 /*
54 * Known problems:
55 *
56 * Interrupt handling is not guaranteed:
57 * - a real x86 will disable all interrupts for one instruction
58 * after a "mov ss,xx" to make stack handling atomic even without
59 * the 'lss' instruction. We can't guarantee this in v86 mode,
60 * as the next instruction might result in a page fault or similar.
61 * - a real x86 will have interrupts disabled for one instruction
62 * past the 'sti' that enables them. We don't bother with all the
63 * details yet.
64 *
65 * Let's hope these problems do not actually matter for anything.
66 */
67
68
69 #define KVM86 ((struct kernel_vm86_struct *)regs)
70 #define VMPI KVM86->vm86plus
71
72
73 /*
74 * 8- and 16-bit register defines..
75 */
76 #define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0])
77 #define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1])
78 #define IP(regs) (*(unsigned short *)&((regs)->pt.ip))
79 #define SP(regs) (*(unsigned short *)&((regs)->pt.sp))
80
81 /*
82 * virtual flags (16 and 32-bit versions)
83 */
84 #define VFLAGS (*(unsigned short *)&(current->thread.v86flags))
85 #define VEFLAGS (current->thread.v86flags)
86
87 #define set_flags(X, new, mask) \
88 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
89
90 #define SAFE_MASK (0xDD5)
91 #define RETURN_MASK (0xDFF)
92
93 struct pt_regs *save_v86_state(struct kernel_vm86_regs *regs)
94 {
95 struct tss_struct *tss;
96 struct pt_regs *ret;
97 struct task_struct *tsk = current;
98 struct vm86plus_struct __user *user;
99 long err = 0;
100
101 /*
102 * This gets called from entry.S with interrupts disabled, but
103 * from process context. Enable interrupts here, before trying
104 * to access user space.
105 */
106 local_irq_enable();
107
108 if (!tsk->thread.vm86_info) {
109 pr_alert("no vm86_info: BAD\n");
110 do_exit(SIGSEGV);
111 }
112 set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | tsk->thread.v86mask);
113 user = tsk->thread.vm86_info;
114
115 if (!access_ok(VERIFY_WRITE, user, VMPI.is_vm86pus ?
116 sizeof(struct vm86plus_struct) :
117 sizeof(struct vm86_struct))) {
118 pr_alert("could not access userspace vm86_info\n");
119 do_exit(SIGSEGV);
120 }
121
122 put_user_try {
123 put_user_ex(regs->pt.bx, &user->regs.ebx);
124 put_user_ex(regs->pt.cx, &user->regs.ecx);
125 put_user_ex(regs->pt.dx, &user->regs.edx);
126 put_user_ex(regs->pt.si, &user->regs.esi);
127 put_user_ex(regs->pt.di, &user->regs.edi);
128 put_user_ex(regs->pt.bp, &user->regs.ebp);
129 put_user_ex(regs->pt.ax, &user->regs.eax);
130 put_user_ex(regs->pt.ip, &user->regs.eip);
131 put_user_ex(regs->pt.cs, &user->regs.cs);
132 put_user_ex(regs->pt.flags, &user->regs.eflags);
133 put_user_ex(regs->pt.sp, &user->regs.esp);
134 put_user_ex(regs->pt.ss, &user->regs.ss);
135 put_user_ex(regs->es, &user->regs.es);
136 put_user_ex(regs->ds, &user->regs.ds);
137 put_user_ex(regs->fs, &user->regs.fs);
138 put_user_ex(regs->gs, &user->regs.gs);
139
140 put_user_ex(tsk->thread.screen_bitmap, &user->screen_bitmap);
141 } put_user_catch(err);
142 if (err) {
143 pr_alert("could not access userspace vm86_info\n");
144 do_exit(SIGSEGV);
145 }
146
147 tss = &per_cpu(cpu_tss, get_cpu());
148 tsk->thread.sp0 = tsk->thread.saved_sp0;
149 tsk->thread.sysenter_cs = __KERNEL_CS;
150 load_sp0(tss, &tsk->thread);
151 tsk->thread.saved_sp0 = 0;
152 put_cpu();
153
154 ret = KVM86->regs32;
155
156 lazy_load_gs(ret->gs);
157
158 return ret;
159 }
160
161 static void mark_screen_rdonly(struct mm_struct *mm)
162 {
163 pgd_t *pgd;
164 pud_t *pud;
165 pmd_t *pmd;
166 pte_t *pte;
167 spinlock_t *ptl;
168 int i;
169
170 down_write(&mm->mmap_sem);
171 pgd = pgd_offset(mm, 0xA0000);
172 if (pgd_none_or_clear_bad(pgd))
173 goto out;
174 pud = pud_offset(pgd, 0xA0000);
175 if (pud_none_or_clear_bad(pud))
176 goto out;
177 pmd = pmd_offset(pud, 0xA0000);
178 split_huge_page_pmd_mm(mm, 0xA0000, pmd);
179 if (pmd_none_or_clear_bad(pmd))
180 goto out;
181 pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
182 for (i = 0; i < 32; i++) {
183 if (pte_present(*pte))
184 set_pte(pte, pte_wrprotect(*pte));
185 pte++;
186 }
187 pte_unmap_unlock(pte, ptl);
188 out:
189 up_write(&mm->mmap_sem);
190 flush_tlb();
191 }
192
193
194
195 static int do_vm86_irq_handling(int subfunction, int irqnumber);
196 static long do_sys_vm86(struct vm86plus_struct __user *v86, bool plus,
197 struct kernel_vm86_struct *info);
198
199 SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, v86)
200 {
201 struct kernel_vm86_struct info; /* declare this _on top_,
202 * this avoids wasting of stack space.
203 * This remains on the stack until we
204 * return to 32 bit user space.
205 */
206
207 return do_sys_vm86((struct vm86plus_struct __user *) v86, false, &info);
208 }
209
210
211 SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
212 {
213 struct kernel_vm86_struct info; /* declare this _on top_,
214 * this avoids wasting of stack space.
215 * This remains on the stack until we
216 * return to 32 bit user space.
217 */
218
219 switch (cmd) {
220 case VM86_REQUEST_IRQ:
221 case VM86_FREE_IRQ:
222 case VM86_GET_IRQ_BITS:
223 case VM86_GET_AND_RESET_IRQ:
224 return do_vm86_irq_handling(cmd, (int)arg);
225 case VM86_PLUS_INSTALL_CHECK:
226 /*
227 * NOTE: on old vm86 stuff this will return the error
228 * from access_ok(), because the subfunction is
229 * interpreted as (invalid) address to vm86_struct.
230 * So the installation check works.
231 */
232 return 0;
233 }
234
235 /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
236 return do_sys_vm86((struct vm86plus_struct __user *) arg, true, &info);
237 }
238
239
240 static long do_sys_vm86(struct vm86plus_struct __user *v86, bool plus,
241 struct kernel_vm86_struct *info)
242 {
243 struct tss_struct *tss;
244 struct task_struct *tsk = current;
245 unsigned long err = 0;
246
247 if (tsk->thread.saved_sp0)
248 return -EPERM;
249
250 if (!access_ok(VERIFY_READ, v86, plus ?
251 sizeof(struct vm86_struct) :
252 sizeof(struct vm86plus_struct)))
253 return -EFAULT;
254
255 memset(info, 0, sizeof(*info));
256 get_user_try {
257 unsigned short seg;
258 get_user_ex(info->regs.pt.bx, &v86->regs.ebx);
259 get_user_ex(info->regs.pt.cx, &v86->regs.ecx);
260 get_user_ex(info->regs.pt.dx, &v86->regs.edx);
261 get_user_ex(info->regs.pt.si, &v86->regs.esi);
262 get_user_ex(info->regs.pt.di, &v86->regs.edi);
263 get_user_ex(info->regs.pt.bp, &v86->regs.ebp);
264 get_user_ex(info->regs.pt.ax, &v86->regs.eax);
265 get_user_ex(info->regs.pt.ip, &v86->regs.eip);
266 get_user_ex(seg, &v86->regs.cs);
267 info->regs.pt.cs = seg;
268 get_user_ex(info->regs.pt.flags, &v86->regs.eflags);
269 get_user_ex(info->regs.pt.sp, &v86->regs.esp);
270 get_user_ex(seg, &v86->regs.ss);
271 info->regs.pt.ss = seg;
272 get_user_ex(info->regs.es, &v86->regs.es);
273 get_user_ex(info->regs.ds, &v86->regs.ds);
274 get_user_ex(info->regs.fs, &v86->regs.fs);
275 get_user_ex(info->regs.gs, &v86->regs.gs);
276
277 get_user_ex(info->flags, &v86->flags);
278 get_user_ex(info->screen_bitmap, &v86->screen_bitmap);
279 get_user_ex(info->cpu_type, &v86->cpu_type);
280 } get_user_catch(err);
281 if (err)
282 return err;
283
284 if (copy_from_user(&info->int_revectored, &v86->int_revectored,
285 sizeof(struct revectored_struct)))
286 return -EFAULT;
287 if (copy_from_user(&info->int21_revectored, &v86->int21_revectored,
288 sizeof(struct revectored_struct)))
289 return -EFAULT;
290 if (plus) {
291 if (copy_from_user(&info->vm86plus, &v86->vm86plus,
292 sizeof(struct vm86plus_info_struct)))
293 return -EFAULT;
294 info->vm86plus.is_vm86pus = 1;
295 }
296
297 info->regs32 = current_pt_regs();
298 tsk->thread.vm86_info = v86;
299
300 /*
301 * The flags register is also special: we cannot trust that the user
302 * has set it up safely, so this makes sure interrupt etc flags are
303 * inherited from protected mode.
304 */
305 VEFLAGS = info->regs.pt.flags;
306 info->regs.pt.flags &= SAFE_MASK;
307 info->regs.pt.flags |= info->regs32->flags & ~SAFE_MASK;
308 info->regs.pt.flags |= X86_VM_MASK;
309
310 info->regs.pt.orig_ax = info->regs32->orig_ax;
311
312 switch (info->cpu_type) {
313 case CPU_286:
314 tsk->thread.v86mask = 0;
315 break;
316 case CPU_386:
317 tsk->thread.v86mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
318 break;
319 case CPU_486:
320 tsk->thread.v86mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
321 break;
322 default:
323 tsk->thread.v86mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
324 break;
325 }
326
327 /*
328 * Save old state, set default return value (%ax) to 0 (VM86_SIGNAL)
329 */
330 info->regs32->ax = VM86_SIGNAL;
331 tsk->thread.saved_sp0 = tsk->thread.sp0;
332 lazy_save_gs(info->regs32->gs);
333
334 tss = &per_cpu(cpu_tss, get_cpu());
335 tsk->thread.sp0 = (unsigned long) &info->VM86_TSS_ESP0;
336 if (cpu_has_sep)
337 tsk->thread.sysenter_cs = 0;
338 load_sp0(tss, &tsk->thread);
339 put_cpu();
340
341 tsk->thread.screen_bitmap = info->screen_bitmap;
342 if (info->flags & VM86_SCREEN_BITMAP)
343 mark_screen_rdonly(tsk->mm);
344
345 /*call __audit_syscall_exit since we do not exit via the normal paths */
346 #ifdef CONFIG_AUDITSYSCALL
347 if (unlikely(current->audit_context))
348 __audit_syscall_exit(1, 0);
349 #endif
350
351 __asm__ __volatile__(
352 "movl %0,%%esp\n\t"
353 "movl %1,%%ebp\n\t"
354 #ifdef CONFIG_X86_32_LAZY_GS
355 "mov %2, %%gs\n\t"
356 #endif
357 "jmp resume_userspace"
358 : /* no outputs */
359 :"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0));
360 unreachable(); /* we never return here */
361 }
362
363 static inline void return_to_32bit(struct kernel_vm86_regs *regs16, int retval)
364 {
365 struct pt_regs *regs32;
366
367 regs32 = save_v86_state(regs16);
368 regs32->ax = retval;
369 __asm__ __volatile__("movl %0,%%esp\n\t"
370 "movl %1,%%ebp\n\t"
371 "jmp resume_userspace"
372 : : "r" (regs32), "r" (current_thread_info()));
373 }
374
375 static inline void set_IF(struct kernel_vm86_regs *regs)
376 {
377 VEFLAGS |= X86_EFLAGS_VIF;
378 if (VEFLAGS & X86_EFLAGS_VIP)
379 return_to_32bit(regs, VM86_STI);
380 }
381
382 static inline void clear_IF(struct kernel_vm86_regs *regs)
383 {
384 VEFLAGS &= ~X86_EFLAGS_VIF;
385 }
386
387 static inline void clear_TF(struct kernel_vm86_regs *regs)
388 {
389 regs->pt.flags &= ~X86_EFLAGS_TF;
390 }
391
392 static inline void clear_AC(struct kernel_vm86_regs *regs)
393 {
394 regs->pt.flags &= ~X86_EFLAGS_AC;
395 }
396
397 /*
398 * It is correct to call set_IF(regs) from the set_vflags_*
399 * functions. However someone forgot to call clear_IF(regs)
400 * in the opposite case.
401 * After the command sequence CLI PUSHF STI POPF you should
402 * end up with interrupts disabled, but you ended up with
403 * interrupts enabled.
404 * ( I was testing my own changes, but the only bug I
405 * could find was in a function I had not changed. )
406 * [KD]
407 */
408
409 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
410 {
411 set_flags(VEFLAGS, flags, current->thread.v86mask);
412 set_flags(regs->pt.flags, flags, SAFE_MASK);
413 if (flags & X86_EFLAGS_IF)
414 set_IF(regs);
415 else
416 clear_IF(regs);
417 }
418
419 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
420 {
421 set_flags(VFLAGS, flags, current->thread.v86mask);
422 set_flags(regs->pt.flags, flags, SAFE_MASK);
423 if (flags & X86_EFLAGS_IF)
424 set_IF(regs);
425 else
426 clear_IF(regs);
427 }
428
429 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
430 {
431 unsigned long flags = regs->pt.flags & RETURN_MASK;
432
433 if (VEFLAGS & X86_EFLAGS_VIF)
434 flags |= X86_EFLAGS_IF;
435 flags |= X86_EFLAGS_IOPL;
436 return flags | (VEFLAGS & current->thread.v86mask);
437 }
438
439 static inline int is_revectored(int nr, struct revectored_struct *bitmap)
440 {
441 __asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
442 :"=r" (nr)
443 :"m" (*bitmap), "r" (nr));
444 return nr;
445 }
446
447 #define val_byte(val, n) (((__u8 *)&val)[n])
448
449 #define pushb(base, ptr, val, err_label) \
450 do { \
451 __u8 __val = val; \
452 ptr--; \
453 if (put_user(__val, base + ptr) < 0) \
454 goto err_label; \
455 } while (0)
456
457 #define pushw(base, ptr, val, err_label) \
458 do { \
459 __u16 __val = val; \
460 ptr--; \
461 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
462 goto err_label; \
463 ptr--; \
464 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
465 goto err_label; \
466 } while (0)
467
468 #define pushl(base, ptr, val, err_label) \
469 do { \
470 __u32 __val = val; \
471 ptr--; \
472 if (put_user(val_byte(__val, 3), base + ptr) < 0) \
473 goto err_label; \
474 ptr--; \
475 if (put_user(val_byte(__val, 2), base + ptr) < 0) \
476 goto err_label; \
477 ptr--; \
478 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
479 goto err_label; \
480 ptr--; \
481 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
482 goto err_label; \
483 } while (0)
484
485 #define popb(base, ptr, err_label) \
486 ({ \
487 __u8 __res; \
488 if (get_user(__res, base + ptr) < 0) \
489 goto err_label; \
490 ptr++; \
491 __res; \
492 })
493
494 #define popw(base, ptr, err_label) \
495 ({ \
496 __u16 __res; \
497 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
498 goto err_label; \
499 ptr++; \
500 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
501 goto err_label; \
502 ptr++; \
503 __res; \
504 })
505
506 #define popl(base, ptr, err_label) \
507 ({ \
508 __u32 __res; \
509 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
510 goto err_label; \
511 ptr++; \
512 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
513 goto err_label; \
514 ptr++; \
515 if (get_user(val_byte(__res, 2), base + ptr) < 0) \
516 goto err_label; \
517 ptr++; \
518 if (get_user(val_byte(__res, 3), base + ptr) < 0) \
519 goto err_label; \
520 ptr++; \
521 __res; \
522 })
523
524 /* There are so many possible reasons for this function to return
525 * VM86_INTx, so adding another doesn't bother me. We can expect
526 * userspace programs to be able to handle it. (Getting a problem
527 * in userspace is always better than an Oops anyway.) [KD]
528 */
529 static void do_int(struct kernel_vm86_regs *regs, int i,
530 unsigned char __user *ssp, unsigned short sp)
531 {
532 unsigned long __user *intr_ptr;
533 unsigned long segoffs;
534
535 if (regs->pt.cs == BIOSSEG)
536 goto cannot_handle;
537 if (is_revectored(i, &KVM86->int_revectored))
538 goto cannot_handle;
539 if (i == 0x21 && is_revectored(AH(regs), &KVM86->int21_revectored))
540 goto cannot_handle;
541 intr_ptr = (unsigned long __user *) (i << 2);
542 if (get_user(segoffs, intr_ptr))
543 goto cannot_handle;
544 if ((segoffs >> 16) == BIOSSEG)
545 goto cannot_handle;
546 pushw(ssp, sp, get_vflags(regs), cannot_handle);
547 pushw(ssp, sp, regs->pt.cs, cannot_handle);
548 pushw(ssp, sp, IP(regs), cannot_handle);
549 regs->pt.cs = segoffs >> 16;
550 SP(regs) -= 6;
551 IP(regs) = segoffs & 0xffff;
552 clear_TF(regs);
553 clear_IF(regs);
554 clear_AC(regs);
555 return;
556
557 cannot_handle:
558 return_to_32bit(regs, VM86_INTx + (i << 8));
559 }
560
561 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
562 {
563 if (VMPI.is_vm86pus) {
564 if ((trapno == 3) || (trapno == 1)) {
565 KVM86->regs32->ax = VM86_TRAP + (trapno << 8);
566 /* setting this flag forces the code in entry_32.S to
567 the path where we call save_v86_state() and change
568 the stack pointer to KVM86->regs32 */
569 set_thread_flag(TIF_NOTIFY_RESUME);
570 return 0;
571 }
572 do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
573 return 0;
574 }
575 if (trapno != 1)
576 return 1; /* we let this handle by the calling routine */
577 current->thread.trap_nr = trapno;
578 current->thread.error_code = error_code;
579 force_sig(SIGTRAP, current);
580 return 0;
581 }
582
583 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
584 {
585 unsigned char opcode;
586 unsigned char __user *csp;
587 unsigned char __user *ssp;
588 unsigned short ip, sp, orig_flags;
589 int data32, pref_done;
590
591 #define CHECK_IF_IN_TRAP \
592 if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
593 newflags |= X86_EFLAGS_TF
594 #define VM86_FAULT_RETURN do { \
595 if (VMPI.force_return_for_pic && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) \
596 return_to_32bit(regs, VM86_PICRETURN); \
597 if (orig_flags & X86_EFLAGS_TF) \
598 handle_vm86_trap(regs, 0, 1); \
599 return; } while (0)
600
601 orig_flags = *(unsigned short *)&regs->pt.flags;
602
603 csp = (unsigned char __user *) (regs->pt.cs << 4);
604 ssp = (unsigned char __user *) (regs->pt.ss << 4);
605 sp = SP(regs);
606 ip = IP(regs);
607
608 data32 = 0;
609 pref_done = 0;
610 do {
611 switch (opcode = popb(csp, ip, simulate_sigsegv)) {
612 case 0x66: /* 32-bit data */ data32 = 1; break;
613 case 0x67: /* 32-bit address */ break;
614 case 0x2e: /* CS */ break;
615 case 0x3e: /* DS */ break;
616 case 0x26: /* ES */ break;
617 case 0x36: /* SS */ break;
618 case 0x65: /* GS */ break;
619 case 0x64: /* FS */ break;
620 case 0xf2: /* repnz */ break;
621 case 0xf3: /* rep */ break;
622 default: pref_done = 1;
623 }
624 } while (!pref_done);
625
626 switch (opcode) {
627
628 /* pushf */
629 case 0x9c:
630 if (data32) {
631 pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
632 SP(regs) -= 4;
633 } else {
634 pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
635 SP(regs) -= 2;
636 }
637 IP(regs) = ip;
638 VM86_FAULT_RETURN;
639
640 /* popf */
641 case 0x9d:
642 {
643 unsigned long newflags;
644 if (data32) {
645 newflags = popl(ssp, sp, simulate_sigsegv);
646 SP(regs) += 4;
647 } else {
648 newflags = popw(ssp, sp, simulate_sigsegv);
649 SP(regs) += 2;
650 }
651 IP(regs) = ip;
652 CHECK_IF_IN_TRAP;
653 if (data32)
654 set_vflags_long(newflags, regs);
655 else
656 set_vflags_short(newflags, regs);
657
658 VM86_FAULT_RETURN;
659 }
660
661 /* int xx */
662 case 0xcd: {
663 int intno = popb(csp, ip, simulate_sigsegv);
664 IP(regs) = ip;
665 if (VMPI.vm86dbg_active) {
666 if ((1 << (intno & 7)) & VMPI.vm86dbg_intxxtab[intno >> 3])
667 return_to_32bit(regs, VM86_INTx + (intno << 8));
668 }
669 do_int(regs, intno, ssp, sp);
670 return;
671 }
672
673 /* iret */
674 case 0xcf:
675 {
676 unsigned long newip;
677 unsigned long newcs;
678 unsigned long newflags;
679 if (data32) {
680 newip = popl(ssp, sp, simulate_sigsegv);
681 newcs = popl(ssp, sp, simulate_sigsegv);
682 newflags = popl(ssp, sp, simulate_sigsegv);
683 SP(regs) += 12;
684 } else {
685 newip = popw(ssp, sp, simulate_sigsegv);
686 newcs = popw(ssp, sp, simulate_sigsegv);
687 newflags = popw(ssp, sp, simulate_sigsegv);
688 SP(regs) += 6;
689 }
690 IP(regs) = newip;
691 regs->pt.cs = newcs;
692 CHECK_IF_IN_TRAP;
693 if (data32) {
694 set_vflags_long(newflags, regs);
695 } else {
696 set_vflags_short(newflags, regs);
697 }
698 VM86_FAULT_RETURN;
699 }
700
701 /* cli */
702 case 0xfa:
703 IP(regs) = ip;
704 clear_IF(regs);
705 VM86_FAULT_RETURN;
706
707 /* sti */
708 /*
709 * Damn. This is incorrect: the 'sti' instruction should actually
710 * enable interrupts after the /next/ instruction. Not good.
711 *
712 * Probably needs some horsing around with the TF flag. Aiee..
713 */
714 case 0xfb:
715 IP(regs) = ip;
716 set_IF(regs);
717 VM86_FAULT_RETURN;
718
719 default:
720 return_to_32bit(regs, VM86_UNKNOWN);
721 }
722
723 return;
724
725 simulate_sigsegv:
726 /* FIXME: After a long discussion with Stas we finally
727 * agreed, that this is wrong. Here we should
728 * really send a SIGSEGV to the user program.
729 * But how do we create the correct context? We
730 * are inside a general protection fault handler
731 * and has just returned from a page fault handler.
732 * The correct context for the signal handler
733 * should be a mixture of the two, but how do we
734 * get the information? [KD]
735 */
736 return_to_32bit(regs, VM86_UNKNOWN);
737 }
738
739 /* ---------------- vm86 special IRQ passing stuff ----------------- */
740
741 #define VM86_IRQNAME "vm86irq"
742
743 static struct vm86_irqs {
744 struct task_struct *tsk;
745 int sig;
746 } vm86_irqs[16];
747
748 static DEFINE_SPINLOCK(irqbits_lock);
749 static int irqbits;
750
751 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
752 | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
753 | (1 << SIGUNUSED))
754
755 static irqreturn_t irq_handler(int intno, void *dev_id)
756 {
757 int irq_bit;
758 unsigned long flags;
759
760 spin_lock_irqsave(&irqbits_lock, flags);
761 irq_bit = 1 << intno;
762 if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
763 goto out;
764 irqbits |= irq_bit;
765 if (vm86_irqs[intno].sig)
766 send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
767 /*
768 * IRQ will be re-enabled when user asks for the irq (whether
769 * polling or as a result of the signal)
770 */
771 disable_irq_nosync(intno);
772 spin_unlock_irqrestore(&irqbits_lock, flags);
773 return IRQ_HANDLED;
774
775 out:
776 spin_unlock_irqrestore(&irqbits_lock, flags);
777 return IRQ_NONE;
778 }
779
780 static inline void free_vm86_irq(int irqnumber)
781 {
782 unsigned long flags;
783
784 free_irq(irqnumber, NULL);
785 vm86_irqs[irqnumber].tsk = NULL;
786
787 spin_lock_irqsave(&irqbits_lock, flags);
788 irqbits &= ~(1 << irqnumber);
789 spin_unlock_irqrestore(&irqbits_lock, flags);
790 }
791
792 void release_vm86_irqs(struct task_struct *task)
793 {
794 int i;
795 for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
796 if (vm86_irqs[i].tsk == task)
797 free_vm86_irq(i);
798 }
799
800 static inline int get_and_reset_irq(int irqnumber)
801 {
802 int bit;
803 unsigned long flags;
804 int ret = 0;
805
806 if (invalid_vm86_irq(irqnumber)) return 0;
807 if (vm86_irqs[irqnumber].tsk != current) return 0;
808 spin_lock_irqsave(&irqbits_lock, flags);
809 bit = irqbits & (1 << irqnumber);
810 irqbits &= ~bit;
811 if (bit) {
812 enable_irq(irqnumber);
813 ret = 1;
814 }
815
816 spin_unlock_irqrestore(&irqbits_lock, flags);
817 return ret;
818 }
819
820
821 static int do_vm86_irq_handling(int subfunction, int irqnumber)
822 {
823 int ret;
824 switch (subfunction) {
825 case VM86_GET_AND_RESET_IRQ: {
826 return get_and_reset_irq(irqnumber);
827 }
828 case VM86_GET_IRQ_BITS: {
829 return irqbits;
830 }
831 case VM86_REQUEST_IRQ: {
832 int sig = irqnumber >> 8;
833 int irq = irqnumber & 255;
834 if (!capable(CAP_SYS_ADMIN)) return -EPERM;
835 if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
836 if (invalid_vm86_irq(irq)) return -EPERM;
837 if (vm86_irqs[irq].tsk) return -EPERM;
838 ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
839 if (ret) return ret;
840 vm86_irqs[irq].sig = sig;
841 vm86_irqs[irq].tsk = current;
842 return irq;
843 }
844 case VM86_FREE_IRQ: {
845 if (invalid_vm86_irq(irqnumber)) return -EPERM;
846 if (!vm86_irqs[irqnumber].tsk) return 0;
847 if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
848 free_vm86_irq(irqnumber);
849 return 0;
850 }
851 }
852 return -EINVAL;
853 }
854